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Abstract—In this paper, we discuss pulse dynamics in harmoni-
cally mode-locked semiconductor lasers and present the conditions
necessary for stability. In a laser mode-locked at the th har-
monic, the pulse energy fluctuations have ( +1) different modes
of relaxation oscillations. Different modes correspond to different
patterns for the energy fluctuations in the different pulses inside
the laser cavity. In the higher order relaxation oscillation modes,
the energy fluctuations are negatively correlated in different pulses
inside the laser cavity, and these modes can cause instability. Gain
saturation on time scales of the order of the pulse width (dynamic
gain saturation) stabilizes pulse energy fluctuations with respect to
relaxation oscillations. The precise limits on the stable operating
regime depend on the gain dynamics at both slow and fast time
scales. We also discuss harmonic mode-locking in the presence of
a slow saturable absorber. Dynamic loss saturation in a saturable
absorber can work against dynamic gain saturation and limit the
stability range for harmonic mode-locking.

Index Terms—Laser stability, optical pulses, semiconductor
lasers.

I. INTRODUCTION

HARMONICALLY mode-locked lasers are attractive as
sources of high-repetition-rate optical pulses that can be

used in electrooptic sampling, optical analog-to-digital conver-
sion, optical telecommunication systems, and ultrafast optical
measurements [1]–[5]. Stability of the pulses in harmonically
mode-locked lasers is important for most of these applications.
A laser mode-locked at the th harmonic has optical pulses
propagating inside the laser cavity. The requirements for pulse
stability in fiber lasers were analyzed in [6] and [7]. It was
shown that pulse stability results from the combination of Kerr
nonlinearity and optical filtering. For soliton pulses, the pulse
width is inversely proportional to the pulse energy. If the pulse
energy increases, the pulse width decreases and the pulse expe-
riences less loss from the active modulator. On the other hand,
since the pulse bandwidth also increases with decrease in the
pulse width, the pulse experiences more loss from the optical
filter. The pulse energy fluctuations are damped if the increase
in loss from the optical filter is more than the increase in gain
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from the active modulator. This condition was used to obtain
a minimum value for the pulse energy for stable operation.
The stability of soliton pulses in fiber lasers was also analyzed
numerically in [8], and the stability requirements predicted in
[6] and [7] were verified. It was also shown in [8] that, when
the pulse power is smaller than the minimum value required for
stable operation, instabilities can lead to pulse dropouts. In the
case of harmonically mode-locked semiconductor lasers, the
following questions arise: 1) what stabilizes the pulses and 2)
what are the limits on the stable operating regime. In this paper,
we present a theoretical model to answer these questions.

In the analytical treatments of [6] and [7], it was assumed
that every pulse in the laser cavity is the same. This assumption
makes it impossible to study the slow gain dynamics and find
the precise limits on the stable operating regime. In harmon-
ically mode-locked semiconductor lasers, the gain relaxation
times can be much longer than the pulse repetition times. Pulse
energy fluctuations that are negatively correlated in different
pulses inside the laser cavity do not change the average power
much and are therefore almost invisible to the gain medium
on slow time scales. These negatively correlated pulse energy
fluctuations can grow, causing instability and pulse dropouts.
The energy fluctuations in all of the pulses in the laser cavity
as well as the gain dynamics need to be taken into account
to find the precise limits on the stable operating regime. Har-
monically mode-locked semiconductor lasers can have more
than 100 different pulses propagating inside the laser cavity [3],
[9]–[11], and it seems like a daunting task to numerically model
the fluctuations in all of the pulses. The theoretical technique
presented in this paper takes into account the energy fluctua-
tions in all of the pulses in the laser cavity as well as the gain
dynamics via nonlinear finite-difference equations, which are
then linearized to obtain finite-difference equations for the pulse
photon-number fluctuations. A similar method was used by the
authors earlier to characterize the pulse timing fluctuations in
harmonically mode-locked lasers [12].

Pulse stability in fundamentally and harmonically
mode-locked semiconductor lasers can be affected by a
number of different processes. For example, in [13], it was
shown that, in actively mode-locked lasers, dynamic gain
saturation in the gain medium causes the pulse to move off
the gain maximum (in time) of the modulator, and the excess
gain just behind the pulse results in instabilities that limit the
maximum pulse energy. In lasers, the oscillatory dynamics of
small perturbations in laser gain and photon number around an
operating point are called relaxation oscillations. The operating
point is considered stable if the perturbations are damped
in time. The operating point is unstable if small fluctuations
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Fig. 1. Dynamic gain saturation in semiconductor gain medium.

grow with time and drive the laser system away from the
operating point. In this paper, we focus only on the instabilities
that could arise in harmonically mode-locked semiconductor
lasers as a result of the dynamics of the nonlinear interaction
among the pulses via the gain medium and on the conditions
for stability with respect to relaxation oscillations. We show
that gain saturation on time scales of the order of the pulse
width (dynamic gain saturation) stabilizes pulse energy fluc-
tuations in harmonically mode-locked semiconductor lasers
with respect to relaxation oscillations (see Fig. 1). Therefore,
Kerr nonlinearity and soliton effects are not necessary for
stability in harmonically mode-locked semiconductor lasers.
The precise limits on the stable operating regime depend on
the gain dynamics at both slow and fast time scales. We show
that, in a laser mode-locked at the th harmonic, the pulse
energy fluctuations have different modes of relaxation
oscillations. Different modes correspond to different patterns
for the energy fluctuations in the different pulses inside the
laser cavity. The lowest two of these modes correspond to the
two quadratures of damped relaxation oscillations in which
the energies of all of the pulses in the laser cavity fluctuate
in phase. In the higher order relaxation oscillation modes, the
energy fluctuations are negatively correlated in different pulses
inside the laser cavity, and these modes can cause instability.
We also discuss harmonic mode-locking in the presence of a
slow saturable absorber. Dynamic loss saturation in a saturable
absorber can work against dynamic gain saturation and limit
the stability range for harmonic mode-locking.

II. THEORETICAL MODEL

We consider the external-cavity ring laser topology of [3], [9],
and [10] and shown in Fig. 2. The laser structure consists of a
gain section [a semiconductor optical amplifier (SOA)], a mod-
ulator section, and a bandwidth-limiting optical filter. The laser
is loss-modulated and the peak loss in the modulator section is
zero. The laser is assumed to be mode-locked at the th har-
monic, and therefore there are optical pulses in the cavity.
The cavity round-trip time is , and the pulse repetition time
is , where . The cavity round-trip frequency
and the pulse repetition frequency are defined as and

, respectively. Below, we derive nonlinear discrete-time
finite-difference equations to model the dynamics in harmoni-
cally mode-locked lasers. These equations are then linearized

Fig. 2. Harmonically mode-locked semiconductor laser with a ring-shaped
cavity.

to obtain finite-difference equations for the carrier and photon
number fluctuations.

We assume that a pulse traveling inside the gain section is de-
scribed by the complex amplitude , which is normalized
such that equals the number of photons
in the pulse at location in the gain section. In the gain section,
the equation for the complex amplitude (or the slowly
varying envelope) of the pulse in the moving frame of reference
is as follows [15]:

(1)

where is the modal dispersion (in s cm ), is the
modal gain per unit length (incm ), and is the semiconductor
linewidth enhancement factor that describes the changes in the
material refractive index that accompany changes in the material
gain [16]. Effects due to finite gain bandwidth are ignored in
(1) since it is assumed that the pulse bandwidth is limited by
the optical filter in the cavity. The gain is assumed to depend
linearly on the carrier density in the gain section

(2)

where is the carrier density (in cm ) above the trans-
parency carrier density [16], and is the ratio of the differ-
ential gain of the material (in cm ) and the effective area of the
optical mode in the gain section [16]. The saturation pulse en-
ergy for the gain medium equals , where is the
photon energy. In the presence of an optical pulse the carrier
density satisfies the equation

(3)

where is the current pumped into the active region, is the
electric charge, is the length of the gain section, and is the
carrier recombination lifetime. We define a quantity that is
given by the relation

(4)

Here, is the time just before the pulse reaches the location
inside the gains section. is therefore the total integrated

carrier number in the gain section just before the pulse. Using
the above differential equations that describe pulse propagation
and amplification inside the gain section, one can derive the fol-
lowing exact relation for the pulse photon number before ( )
and after ( ) the gain section (see Appendix A):

(5)
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Fig. 3. Amplifier gainn =n , normalized to the unsaturated gain (assumed to
be 10 dB) is plotted as a function of the normalized input pulse energyE =E .

The effect of dynamic gain saturation is shown in Fig. 3, which
plots the gain of the amplifier, normalized to the unsat-
urated gain, as a function of the normalized input pulse energy

. Pulses with larger energy see less gain than pulses
with smaller energy. One can also define the total carrier number

just after the pulse in the gain section by the relation

(6)

where is the time just after the pulse at location . Assuming
the pulse width to be short enough so that there is no significant
carrier recombination taking place within the duration of the
pulse, the increase in the pulse photon number must equal the
decrease in the carrier number. Therefore

(7)

Using (5) and (7), we can write finite-difference equations for
the pulse photon number and the carrier number. Assuming that
the net photon loss in the modulator section, the filter section,
and from the output coupler can all be expressed by the mul-
tiplicative factor (see Appendix C), one can write the fol-
lowing equation relating the photon number of the

th pulse just before entering the gain section to that of
the th pulse:

(8)

Here, is the carrier number before the th pulse. Note that
appears on the left-hand side of the above equation

and not . This is because there are pulses in the cavity

and the th pulse after one complete round trip becomes the
th pulse. Equation (8) represents separate finite-dif-

ference equations for the different pulses in the laser cavity.
The carrier number before the th pulse can be
obtained from by using (3) and (7) to yield

(9)

Equations (8) and (9) constitute a system of nonlinear
coupled finite-difference equations for the carrier number in the
gain section and the number of photons in the different pulses.
These equations assume no coupling between the pulse photon
number fluctuations and other pulse fluctuations. For example,
in [13], it was shown that the pulse photon number fluctuations
can couple to the pulse timing fluctuations in the presence of
dynamic gain saturation. In this paper, we ignore such couplings
for the sake of simplicity and because their inclusion have been
found to not affect the main results presented in this paper in
any significant way. These nonlinear equations can give more
than one steady-state solution. The most desirable steady-state
solution is the one in which all of the pulses are identical and
there are no pulse dropouts. We assume a solution in which all of
the pulses in the cavity have number of photons just before
entering the gain section, and the carrier number in the gain
section just before each pulse is . These steady-state values
satisfy

(10)

and (11), shown at the bottom of the page. The stability of
the assumed solution can be studied by linearizing the non-
linear equations in (9) and (8) around the steady state to obtain
the following finite-difference equations for the pulse photon
number and carrier number fluctuations, and ,
respectively:

(12)

(13)

where describes the decay of the carrier number fluctu-
ation due to carrier recombination and stimulated emission,

describes the carrier number fluctuations induced by the
photon number fluctuations, describes the decay of the
photon number fluctuations due to dynamic gain saturation, and

(11)
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describes the photon number fluctuations induced by the
fluctuations in the carrier number. Equations (12) and (13) are
a system of linear coupled finite-difference equations
for the carrier and photon number fluctuations. Expressions for

, , , and in (12) and (13) are given as follows:

(14)

(15)

(16)

(17)

The values of the parameters , , , and given above
are for the specific model assumed here. The finite-difference
equations in (12) and (13) are more general and can be used for
most harmonically mode-locked lasers provided that the values
of , , , and are available. In Section III, we deter-
mine the conditions necessary for the stability of this system.

III. RELAXATION OSCILLATION MODES AND CONDITIONS

FOR STABILITY

The system of finite-difference equations for the fluctuations
in (12) and (13) can be solved by assuming a solution of the
form

(18)

(19)

Substituting (19) into (12) and (13), we find

(20)

and the allowed values of are the complex roots of an th
order polynomial

(21)

The polynomial above has in complex roots (
) which correspond to relaxation os-

cillation modes. The assumed steady-state solution is stable if
and only if the magnitudes of all the roots are less than unity.
The roots determine the pattern of the photon number (or
the energy) fluctuations in pulses inside the laser cavity corre-
sponding to each relaxation oscillation mode. Since the poly-
nomial in (21) has real coefficients, the complex roots come
in complex conjugate pairs. The first conjugate pair of roots
correspond to relaxation oscillation modes in which the photon
number (or the energy) of different pulses inside the laser cavity
fluctuate in phase. The higher order roots correspond to relax-
ation oscillation modes in which the photon number fluctuations
of different pulses inside the laser cavity are increasingly out of
phase. The general trends are best illustrated by an example.

TABLE I
LASER PARAMETER VALUES USED IN SIMULATIONS

(UNLESS STATED OTHERWISE)

Fig. 4. Time evolution of the photon number fluctuations for the first and
second (m = 1, 2) relaxation oscillation modes for an N = 6 harmonically
mode-locked laser.

The roots can easily be obtained by numerically solving the
equation in (21). For simulations, unless stated otherwise, we
use the laser parameter values listed in Table I. Fig. 4 shows the
time evolution of the pulse photon number fluctuations (normal-
ized units) for the first two relaxation oscillation modes (
and ) as a function of the pulse number for a
harmonically mode-locked laser. It should be noted that every

th pulse is the same pulse after a cavity round trip. The
pulse energy is . The photon number fluctuations in all
of the pulses inside the laser cavity are seen to be in phase.

Fig. 5 shows the time evolution of the photon number fluc-
tuations for the third and fourth relaxation oscillation modes
( and ). Fig. 6 shows the photon number fluc-
tuations corresponding to the fifth and sixth relaxation oscilla-
tion modes ( and ). It can be seen that the photon
number fluctuations among the pulses in the cavity are increas-
ingly out of phase for higher order relaxation oscillation modes.
Fig. 7 shows the photon number fluctuations for the highest
( ) relaxation oscillation mode. For the highest mode, the
energy fluctuations in the neighboring pulses inside the laser
cavity are completely out of phase. Also, Figs. 4–7 show that
the higher order relaxation oscillation modes are less damped
than the lower order modes. In Section III-A, we analytically
determine the conditions necessary for the stability of the relax-
ation oscillation modes.
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Fig. 5. Time evolution of the photon number fluctuations for the third and
fourth (m = 3, 4) relaxation oscillation modes for a N = 6 harmonically
mode-locked laser.

Fig. 6. Time evolution of the photon number fluctuations for the fifth and sixth
(m = 5, 6) relaxation oscillation modes for a N = 6 harmonically mode-
locked laser.

Fig. 7. Time evolution of the photon number fluctuations for the seventh (m =

7) relaxation oscillation mode for aN = 6 harmonically mode-locked laser.

A. Stability of Fundamentally Mode-Locked Operation

For fundamentally mode-locked operation ( ), the two
roots of the second-order polynomial in (21) are complex con-
jugates of each other and have magnitude given by

(22)

Therefore, fundamentally mode-locked operation will be stable
if (and only if) the following condition is satisfied:

(23)

For , , , and given in (14)–(17), and using the
relation in (10), it can be shown that (23) is satisfied for all
pulse energies. Fundamentally mode-locked operation is there-
fore stable with respect to relaxation oscillations.

B. Stability of Harmonically Mode-Locked Operation

A complete analytical analysis of the stability of harmoni-
cally mode-locked operation is complicated. It can be shown
that a necessary (but not sufficient) condition for all of the roots
of the polynomial in (21) to have magnitude less than unity is
(see Appendix B)

(24)

The above relation is the most important result of this paper,
and it sets the limits for stable harmonic mode-locking in
semiconductor lasers. The condition in (24) shows that har-
monic mode-locking is not stable if . This result can
be understood in a simple way. The slow response of the gain
medium is tied to the total energy in all of the pulses in the laser
cavity. Pulse energy fluctuations that are positively correlated
in different pulses are damped by the slow negative feedback
from the gain medium. These positively correlated pulse energy
fluctuations correspond to the lower order relaxation oscillation
modes. Pulse energy fluctuations that are negatively correlated
in different pulses are not damped by the slow response of
the gain medium. These negatively correlated pulse energy
fluctuations correspond to the higher order relaxation oscilla-
tion modes. Therefore, dynamic gain saturation that results in
a nonzero positive value for helps to stabilize harmonic
mode-locking in semiconductor lasers with respect to relax-
ation oscillations.

In [6] and [7] the stability of harmonically mode-locked fiber
lasers was attributed to the soliton effect, and the stability con-
dition derived there is equivalent to in the language
used in this paper (although in [6] and [7] was entirely due
to the soliton effect and not due to dynamic gain saturation).
Slow gain dynamics were ignored in [6] and [7] since they were
expected to play a minor role in fiber lasers. The condition in
(24) sets a more stringent condition for stability since slow gain
dynamics tend to destabilize harmonic mode-locking in semi-
conductor lasers.

The condition necessary for stability given in (24) can also be
derived in a simple way by estimating the largest (in magnitude)
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root of the equation in (21). When is even, is real
and is assumed to be given by the approximate expression

(25)

The assumed form in (25) is such that the pulse energy fluctua-
tions in the th relaxation oscillation mode are completely
negatively correlated in the neighboring pulses. We substitute
(25) into (21) and expand to first order in to obtain

(26)

The methods used to obtain (26) are justified as long as the mag-
nitude of the resulting value of is much less than unity.
The pulse energy fluctuations are stable if . Equation
(26) shows that provided the condition for stability
given earlier in (24) is satisfied. Numerical simulations confirm
that the approximate form for assumed in (25) is accu-
rate as long as , which is almost always the case
in semiconductor mode-locked lasers. For odd, the solution
in (25) is not a good approximation. must have the
same sign as . This is because the th pulse is the
same pulse after one complete round trip. The noise in a pulse
evolves slowly and is not expected to change sign in one round
trip. Numerical simulations show that, for odd, the largest (in
magnitude) roots and of (21) are complex conjugates
of each other and are given to a very good approximation by

(27)

The solution above represents the maximum possible negative
correlation between the neighboring pulses when is odd. The
approximate value of is found as before as

(28)

where is just the complex conjugate of . For odd,
and are in general complex, and pulse energy fluctua-

tions are stable if , which is the case
if the condition for stability given in (24) is satisfied.

C. Damping of the Relaxation Oscillation Modes

In general, the difference is proportional to the
damping of the th relaxation oscillation mode. A nega-
tive value of would imply instability. Since the
highest order relaxation oscillation mode is the least damped,

determines the stability of the laser (note that
). The larger the value of ,

the stronger the damping of the highest relaxation oscillation
mode, and the more stable will be the laser against noise and
pulse dropouts. In case of the model presented in this paper, the
value of depends on the ratio of the pulse energy

to the saturation pulse energy of the gain medium
defined earlier, the ratio of the pulse repetition time to the
carrier recombination time , and the cavity round-trip loss

. Fig. 8 shows the value of as a function of the

Fig. 8. 1� jz j is plotted as a function of E =E for different values of
the cavity round-trip loss e for a N = 20 harmonically mode-locked laser
with a cavity round-trip time T equal to 2 ns.

Fig. 9. 1� jz j is plotted as a function of E =E for different values of
N . The assumed values of e and T are 0.4 and 2 ns, respectively.

ratio for a harmonically mode-locked laser
with a cavity round-trip time equal to 2 ns. The different
curves correspond to different values of the cavity round-trip
loss . All other laser parameters are as in Table I. A larger
pulse energy causes more dynamic gain saturation, resulting in
increased damping and better pulse stability for harmonically
mode-locked operation. Fig. 8 shows that dynamic gain sat-
uration ensures that harmonic mode-locking is stable against
relaxation oscillations even for very small pulse energies. It
needs to be pointed out here that, at very small pulse energies,
the damping of the relaxation oscillations can become weak,
and the noise-induced pulse fluctuations can become large,
such that the linearized analysis presented in this paper may
no longer be valid. Fig. 9 shows the value of as a
function of the ratio for different values of . The
assumed values of and are 0.4 and 2 ns, respectively.
A smaller value of implies a longer pulse repetition interval,
larger damping of the carrier number fluctuations from pulse to
pulse, and therefore better stability for harmonic mode-locking
against gain dynamics at slow time scales.
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Fig. 10. Harmonically mode-locked semiconductor laser with a saturable ab-
sorber section.

IV. EFFECT OF SATURABLE ABSORBER ON HARMONIC

MODE-LOCKING IN SEMICONDUCTOR LASERS

So far, we have considered a mode-locked laser without a
saturable absorber section. A saturable absorber helps generate
shorter pulses. In many practical cases, saturable absorption is
present in a semiconductor amplifier even when a separate sec-
tion is not explicitly included due to light absorption at defect
sites or in unpumped regions of the optical waveguide. A sat-
urable absorber can destabilize harmonic mode-locking since it
offers less loss to larger energy pulses compared with smaller
energy pulses, and this can make the higher order relaxation os-
cillation modes unstable. We consider the laser cavity shown in
Fig. 10, in which a saturable absorber is added after the gain
section.

We assume that the saturable absorber is slow (i.e., the loss re-
covers on a time scale much longer than the pulse width) but the
loss recovers on a time scale much shorter than the pulse repeti-
tion interval (so that slow loss dynamics can be neglected). The
total unsaturated loss of the absorber is given by the multiplica-
tive factor . The saturation pulse energy for the absorber is
given by the expression

(29)

where is the ratio of the differential loss of the material (in
cm ) and the effective area of the optical mode in the absorber
section [16]. For pulse shaping with a slow saturable absorber,
one must have the saturation energy of the gain section
larger than [17]. We assume in this paper that

. One can derive the following nonlinear finite-difference
equation for the pulse photon numbers and the carrier number
in the gain section using the methods described earlier:

(30)

(31)

(32)

Here, is an extra variable that stands for the photon
number of the th pulse just before entering the saturable
absorber section. The above equations include gain dynamics
on both fast and slow time scales and loss dynamics on just
the fast time scales. Therefore, dynamic loss saturation, which
tends to destabilize harmonic mode-locking, is included in the
model. Assuming a steady state in which the energies of all

Fig. 11. 1�jz j is plotted as a function of E =E for different values of
N for a harmonically mode-locked laser both with (solid) and without (dashed)
a saturable absorber. The assumed values of e , e , and T are 0.4, 0.6,
and 2 ns, respectively. Harmonic mode-locking becomes unstable for pulse en-
ergies much smaller than E in the presence of a saturable absorber.

pulses in the cavity are the same, the above equations can be
linearized to obtain finite-difference equations for the pulse
photon number fluctuations and the carrier number fluctuations.
These linearized equations are identical in form to the equa-
tions given earlier in (12) and (13) except that the expressions
for the parameters and are different and are given in
Appendix D.

The stability of harmonic mode-locking with respect to relax-
ation oscillations in the presence of the saturable absorber can be
studied by looking the at value of the damping factor
corresponding to the highest relaxation oscillation mode. Recall
that stability demands . Fig. 11 plots
as a function of the ratio for different values of for
a harmonically mode-locked laser both with and without a sat-
urable absorber. The assumed values of , , and are
0.4, 0.6, and 2 ns, respectively, and . The ver-
tical slopes of the curves for the saturable absorber case corre-
spond to the values of becoming negative below cer-
tain minimum pulse energies and indicate the range of stability
with respect to relaxation oscillations. For pulse energies much
smaller than the gain saturation energy , dynamic gain satu-
ration is not able to stabilize harmonic mode-locking in the pres-
ence of dynamic loss saturation. For large pulse energies, both
the gain and the loss are saturated, and harmonic mode-locking
is stable.

It was pointed out earlier that lower order relaxation modes
are more stable and/or more strongly damped than higher order
modes. Fig. 12 plots as a function of the ratio
for different values of for a harmonically mode-
locked laser. The assumed values of , , and are
0.4, 0.6, and 2 ns, respectively, and . It can
be seen that modes 1–4 are stable even for small pulse energies
while modes 5–11 become unstable for small pulse energies.
The higher stability of lower order relaxation oscillation modes
is evident from the figure.

The range of stability depends on the strength of the sat-
urable absorber (measured in terms of the total unsaturated loss).
Fig. 13 plots the value of as a function of the ratio
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Fig. 12. 1�jz j is plotted as a function ofE =E for different values ofm
for an N = 10 harmonically mode-locked laser with a saturable absorber. The
assumed values of e , e , and T are 0.4, 0.6, and 2 ns, respectively, and
E = E =2. Modes 1–4 are stable even for small pulse energies while
modes 5–11 become unstable for small pulse energies.

Fig. 13. 1�jz j is plotted as a function ofE =E for different values of
the unsaturated loss e in the absorber for an N = 10 harmonically mode-
locked laser with a saturable absorber. The assumed values of e and T are
0.4 and 2 ns, respectively, and E = E =2. Harmonic mode-locking is
stable for smaller pulse energies when the saturable absorber is weak.

for different values of the unsaturated loss in the
absorber for a harmonically mode-locked laser. The as-
sumed values of and are 0.4 and 2 ns, respectively, and

. Harmonic mode-locking is stable for smaller
pulse energies when the saturable absorber is weaker.

A fast saturable absorber, instead of a slow saturable absorber,
would change the analysis presented above, but the final form of
the linearized equations would still come out to be the same as
the equations given in (12) and (13). The values of and
would be different than the values given in Appendix D, but the
basic features and trends in the results presented above for the
slow saturable absorber case are expected to remain unchanged.

Fig. 14. Time-dependent photon numbers (normalized to the initial photon
number) of the two pulses in a N = 2 harmonically mode-locked laser (with
a saturable absorber) are plotted as a function of time. The assumed values of
e , e , and T are 0.4, 0.6, and 2 ns, respectively, and E = E =2.
Harmonic mode-locking is unstable for the small initial pulse energies and leads
to one pulse dropping out.

V. PULSE DROPOUTS

Any initial noise-induced perturbation can always be ex-
panded in terms of the relaxation oscillation modes, and the
most general solution for and can be written as

(33)

(34)

where represents the roots of the polynomial in (21). If an
unstable relaxation oscillation mode is excited, then the ener-
gies of certain pulses will grow with time, while the energies of
other pulses will decrease with time, depending on the pattern
of the photon number fluctuations corresponding to that mode.
This can lead to pulse dropouts. As an example, we consider
an harmonically mode-locked laser with a saturable
absorber. The assumed values of , , and are 0.4,
0.6, and 2 ns, respectively, and . We start by
assuming an operating point that is a solution of the time-in-
dependent version of the nonlinear finite-difference equations
given in (30)–(32). The initial energies of both the pulses inside
the cavity were the same and equal to . For these
pulse energies, the linearized analysis discussed above gives

. The magnitude of is greater than unity, and
therefore the assumed operating point is unstable with respect to
fluctuations that are negatively correlated in the two pulses in-
side the cavity. The magnitudes of and are less than unity.
The results obtained by simulating the nonlinear finite-differ-
ence equations given in (30)–(32) in time are shown in Fig. 14,
which plots the photon number of both the pulses inside the laser
cavity as a function of time. During the simulation, numerical
errors produced a perturbation in which photon number fluctu-
ations were negatively correlated in the two pulses. The fluctu-
ations grew in time until one pulse completely dropped out and,
in steady state, only one pulse existed in the cavity. It is favor-
able for one pulse to become more energetic at the expense of
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the other pulse and thereby reduce losses in the saturable ab-
sorber. This simulation shows that instabilities observed in the
linearized analysis can lead to pulse dropouts.

VI. CONCLUSION

In this paper, we have presented conditions necessary for
the stability of harmonically mode-locked semiconductor lasers
with respect to relaxation oscillations. Relaxation oscillation
modes in harmonically mode-locked lasers can have pulse en-
ergy fluctuations that are negatively correlated among different
pulses inside the laser cavity, and these modes can cause insta-
bility. We have shown that dynamic gain saturation can stabilize
harmonic mode-locking. In the presence of a saturable absorber,
stable operation is obtained only for pulse energies above a min-
imum value. The model presented in this paper has ignored non-
linear effects, such as Kerr nonlinearity and two-photon absorp-
tion, that could become important for high-intensity pulses and
affect pulse stability in harmonically mode-locked lasers.

The predictions in this paper can be verified experimentally.
For example, in [12], it was shown that the spectral weights
of the supermode noise peaks in the experimentally measured
pulse noise spectral density functions can be related to the cor-
relations in the noise of different pulses inside the laser cavity.
Negatively correlated pulse energy fluctuations correspond to
increased spectral weight in the supermode noise peaks located
near the odd integral multiples of one-half the pulse repetition
frequency. Therefore, relaxation oscillation induced instability
should manifest itself in the experimentally measured spectral
weights of the supermode noise peaks.

APPENDIX A
NONLINEAR EQUATION FOR THE PULSE PHOTON NUMBER

We start from (3) that

(35)

Within the duration of the pulse, and assuming the duration of
the pulse to be much shorter than the carrier relaxation time ),
the above equation becomes

(36)

Integrating the above equation, we obtain the time-dependent
gain seen by the pulse

(37)

where is a time just before the pulse reaches the location
in the gain section. The equation for the pulse photon number is
obtained by substituting (37) into (1), multiplying both sides by

, integrating over the time variable , and keeping the
real part of the resulting equation. This yields

(38)

Equation (38) can be integrated to give a relation between the
pulse photon numbers and at the input and output of the
gain section, respectively, as

(39)

where is defined by

(40)

APPENDIX B
NECESSARY CONDITION FOR THE STABILITY OF

HARMONICALLY MODE-LOCKED OPERATION

Stability of harmonic mode-locking requires that the magni-
tude of all the roots of the following equation are less than unity:

(41)

We use a bilinear transformation from the complex -plane into
the -plane that maps the region inside the unit circle (i.e.,

) into the left half plane (i.e., ) to yield

(42)

The roots will have magnitude less than unity if all solutions
of the equation below are in the left half plane (i.e., have negative
real parts) as

(43)

After multiplying by in (43), we obtain an equation
of the form

(44)

The coefficients can be obtained from (43). The necessary
(but not sufficient) conditions for the roots of (44) to have neg-
ative real parts are as follows.

1) All of the coefficients must have the same sign.
2) All must be nonzero, unless for all even or all odd

are zero.
The above two conditions give the necessary condition for the
stability of harmonic mode-locking given in (24). For the
fundamentally mode-locked case, the above conditions are also
sufficient. For , the well-known Routh–Hurwitz criteria
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can be used to analyze the necessary as well as sufficient condi-
tions for the roots of (44) to have negative real parts [18].

APPENDIX C
MODELING MODULATOR, FILTER, AND OUTPUT

COUPLING LOSSES

Modulator Section Loss: Pulse propagation in the modu-
lator section is described by the equation [15]

(45)

(46)

where is the loss per unit length (in cm ) and is the
group velocity of the pulse. The approximation in (46) is valid
if the pulse transit time through the modulator is much smaller
than the pulse width. The above equation can be integrated to
obtain a relation between the number of photons in the pulse at
the input and output of the modulator

(47)

where the modulator loss is

(48)

Here, is the length of the modulator section, and is the pulse
width. The variable in indicates the pulse shape at
the location of the modulator.

Optical Filter Loss: We assume that the transmitivity
through the optical filter near the frequency of peak transmis-
sion is given by the equation

(49)

where is the bandwidth of the filter. is also assumed to
be equal to the pulse center frequency. The photon loss in the
optical filter is then given by the relation [15]

(50)

where the filter loss is

(51)

The variable in indicates the pulse shape at the lo-
cation of the filter.

Output Coupling Loss: The photon loss in the cavity from
the output coupler and from the insertion losses associated
with various components is given by the exponential function

. For example, if the reflectivity of the output cou-
pler is , then the contribution of the output coupler to is

.

Total Loss: If the total round-trip loss is described by the
multiplicative factor then equals

(52)

where the expressions for , , and were given in the
previous sections. In most cases, .

APPENDIX D
EXPRESSIONS FOR , , , AND IN THE PRESENCE OF

THE SATURABLE ABSORBER

The expressions are as follows:

(53)

(54)

(55)

(56)
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