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Graphene Terahertz Plasmon Oscillators
Farhan Rana

Abstract—In this paper we propose and discuss coherent
terahertz sources based on charge density wave (plasmon) amplifi-
cation in two-dimensional graphene. The coupling of the plasmons
to interband electron–hole transitions in population inverted
graphene layers can lead to plasmon amplification through stimu-
lated emission. Plasmon gain values in graphene can be very large
due to the small group velocity of the plasmons and the strong
confinement of the plasmon field in the vicinity of the graphene
layer. We present a transmission line model for plasmon propaga-
tion in graphene that includes plasmon dissipation and plasmon
interband gain due to stimulated emission. Using this model, we
discuss design for terahertz plasmon oscillators and derive the
threshold condition for oscillation taking into account internal
losses and also losses due to external coupling. The threshold con-
dition is shown to depend on the ratio of the external impedance
and the characteristic impedance of the plasmon transmission
line. The large gain values available at terahertz frequencies in
graphene can lead to integrated oscillators that have dimensions
in the 1–10 m range.

Index Terms—Carbon, nanotechnology, plasmons, submil-
limeter-wave oscillators.

I. INTRODUCTION

GRAPHENE is a single two-dimensional (2-D) atomic
layer of carbon atoms forming a dense honeycomb crystal

lattice [1]. The electronic properties of graphene have generated
tremendous interest in both experimental and theoretical arenas
[2], [4]–[9], [12]. The energy dispersion relation of electrons
and holes with zero (or close to zero) bandgap results in novel
behavior of both single-particle and collective excitations [1],
[2], [4]–[9], [12]. The high mobility of electrons in graphene
has prompted theoretical and experimental investigations into
graphene-based ultrahigh-speed electronic devices such as
field-effect transistors, pn-junction diodes, and terahertz de-
vices [4], [5], [7], [10]–[14]. Negative conductance at terahertz
frequencies under population inversion conditions has been
predicted by Ryzhii et al. in [13], [14] and the potential for
graphene-based terahertz oscillators was also suggested there.
It has been shown that the frequencies of the charge density
waves (or plasmons) in graphene at moderate carrier densities
(10 –10 cm are in the terahertz frequency range [4], [5],
[12]. Plasmons in graphene are strongly coupled to the inter-
band electronic transitions. The zero bandgap of graphene leads
to strong damping of the plasmons at finite temperatures as
plasmons can decay by exciting interband electron–hole pairs
[2], [3], [12]. Plasmon emission with the accompanying decay
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Fig. 1. (Left) Energy bands of graphene showing stimulated absorption of plas-
mons. (Right) Population inverted graphene bands showing stimulated emission
of plasmons.

of electron–hole pairs has also been experimentally observed
in graphene [15]. Recently, the author showed that plasmons
in graphene can experience very large gain values (exceeding
10 cm ) at frequencies in the 1–10 terahertz range under
moderate population inversion conditions due to the stimulated
emission of plasmons [12]. This process is depicted in Fig. 1.
Plasmon gain in graphene is similar to the optical gain resulting
from the stimulated emission of photons in III–V semicon-
ductor interband lasers at optical and infrared frequencies. The
main difference is that the slow group velocity of plasmons in
graphene at terahertz frequencies and the strong confinement
of the electromagnetic field associated with the plasmons near
the graphene layer results in plasmon gain values that are much
larger than the typical gain values in semiconductor interband
lasers.

In this paper, we propose and discuss terahertz oscillators
based on plasmon amplification in graphene. We present a
transmission line model for plasmon propagation in graphene
that includes plasmon dissipation due to intraband scattering
and plasmon interband gain due to stimulated emission. Using
this model, we discuss terahertz plasmon gain in graphene,
present designs for practical terahertz oscillators, and derive
the threshold condition for oscillation taking into account both
intrinsic losses and losses due to coupling power out of the
device. A critical parameter that emerges from this analysis is
the characteristic impedance of the plasmon transmission line.
The threshold condition is shown to depend on the ratio of the
external impedance and the characteristic impedance of the
plasmon transmission line. The transmission line model pre-
sented here is not just relevant for plasmon oscillators but can
also be used to model the high frequency electrical behavior of
graphene-based devices and interconnects. We use this model
to obtain the impedance of a graphene strip under population
inversion conditions. The electromagnetic energy of plasmons
is confined within very small distances of the graphene layer
in the vertical direction. In Section VI, we discuss techniques
to confine plasmons in the lateral direction as well using
sub-micron scale dielectric waveguiding structures in order to
minimize propagation losses. The large gain values predicted
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for plasmons in graphene can enable very compact integrated
terahertz amplifiers and oscillators.

Plasmons in metals and semiconductors from THz to optical
frequencies have been the subject of much attention in the last
few years [16], [17]. Plasmon losses in metals are generally
large in the visible and near-IR frequency range [16], [17]. The
strong confinement of the plasmon field in the vicinity of the
metal surface near the plasmon resonance frequency makes am-
plification of plasmons difficult to achieve with a gain medium
placed outside the metal. Plasmons in graphene are particularly
interesting and unique since the material that supports the plas-
mons can also provide plasmon gain. The strong confinement of
the plasmon field in the vicinity of the graphene layer then be-
comes an advantage and not an obstacle for achieving plasmon
amplification.

II. PLASMONS IN GRAPHENE

In this section, we summarize one of the methods that has
been used previously to describe plasmons in graphene and is
based on the random phase approximation [2], [3], [12]. In Sec-
tion III, we will present a transmission line model for plasmons
in graphene that is more relevant for device applications. In
graphene, the valence and conduction bands resulting from the
mixing of the -orbitals are degenerate at the inequivalent
and points of the Brillouin zone [1]. Near these points, the
conduction and valence band dispersion relations can be written
as [1]

(1)

where is the velocity of the electrons and holes and equals
10 cm/s [1]. We assume different Fermi levels for conduc-
tion and valence electrons to allow for non-equilibrium elec-
tron–hole populations. The electron and hole densities are given
by the expressions

(2)

(3)

The factor of 4 in the front accounts for spin degeneracy and the
two valleys at and [1], and and

are the Fermi distribution functions of the conduction and
valence electrons with Fermi energies and , respectively.
The wavevector is measured from the point. The com-
plex propagation vector of the plasmon mode of frequency

is given by the equation, , where is the
longitudinal dielectric function of graphene [2], [3], [12]. In this
plasmon mode, the charge density (not the number density) as-
sociated with the electrons and the charge density associated
with the holes oscillate in-phase. In the random phase approxi-
mation (RPA) can be written as [18]

(4)

Here, is the bare 2-D Coulomb interaction and equals
. is the average of the dielectric constant of the

media on either side of the graphene layer. is the elec-
tron–hole propagator including both intraband and interband

Fig. 2. A graphene layer connected with metal ohmic contacts on each end
(top view). Note that the width W is not the physical width of the graphene
layer—but the width of the region in which the plasmons propagate.

processes. For small wavevectors (i.e., for ) the intra-
band and interband contributions to the propagator can be ap-
proximated as follows [12]:

(5)

(6)

Here, . Plasmon energy loss due to intraband scattering
has been included with a scattering time in the number-con-
serving relaxation-time approximation which assumes that as
a result of scattering the carrier distribution relaxes to the local
equilibrium distribution [19]. The real part of the interband con-
tribution to the propagator modifies the effective dielectric con-
stant and leads to a reduction in the plasmon frequency under
population inversion conditions. The imaginary part of the inter-
band contribution to the propagator incorporates plasmon loss
or gain due to stimulated interband transitions. Using (5) and
(6), and (4) the plasmon dispersion can be obtained [12].

III. A TRANSMISSION LINE MODEL FOR PLASMONS IN

GRAPHENE

A. Transmission Line Equations

The procedure for obtaining the plasmon dispersion in
graphene outlined in the previous section does not explicitly
account for the connection of the device with the outside world.
In this paper, we present a transmission line model for the
plasmons in graphene that is more suitable for device design
applications. We assume a graphene layer of effective width

and length , connected on each side with a metal ohmic
contact to the outside world, as shown in Fig. 2. As discussed
later in Section VI, the width is not necessarily the physical
width of the graphene layer but the effective width of the region
in which the plasmons can be confined. We also assume in
this section that population inversion can be achieved in the
graphene layer. Details on how to achieve population inversion
are discussed in Section VII. We assume a plasmon wave of fre-
quency and wavevector propagating in the -direction for
which variations in the charge density (units: Coulombs/m),
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current (units: Amps), and the electrostatic potential
(units: Volts) in the plane of the graphene layer can be written
as

(7)

(8)

(9)

Outside the graphene layer the potential decays exponentially as
, where is the distance from the graphene layer. Charge

conservation implies

(10)

B. Electrostatic Capacitance and Quantum Kinetic Inductance

The potential can be related to the charge density
using the electrostatic capacitance per unit length

(11)

where is

(12)

The expression above for the capacitance assumes a wide
graphene layer with no top or bottom metal plane.

It also assumes that . The condition will
be assumed to be true throughout this paper. It follows from
(10) and (11) that the current can be related to the potential as
follows:

(13)

A variation in the potential generates a current that can also be
expressed using the inductance per unit length and the
resistance per unit length of the plasmon transmission
line (as is done in standard transmission line analysis [25])

(14)

The inductance is the sum of the kinetic inductance
and the magnetostatic inductance [20], and

the resistance includes plasmon dissipation due to intra-
band momentum relaxation scattering of electrons and holes as
well as plasmon gain due to interband stimulated emission. For
all geometries considered in this paper, the magnetostatic induc-
tance is found to be several orders of magnitude smaller than the
kinetic inductance, and will therefore be ignored. This has been
shown to be true for carbon nanotubes as well [20]. The expres-
sions for and can be obtained by looking at

the microscopic dynamic response of graphene to potential per-
turbations and this response is described by the electron–hole
propagator [18]

(15)

The microscopic expressions for and can be
obtained by comparing the right hand sides of (14) and (15). Un-
like in the case of carbon nanotubes [20], [21], the expression for
the kinetic inductance in graphene is frequency and wavevector
dependent. The dispersion relation for the plasmons can be ob-
tained from the standard transmission line formula that relates
the propagation vector and the frequency [25]

(16)

Assuming , (16) simplifies to,

(17)

The above equation for the plasmon dispersion is almost iden-
tical to the one obtained by setting equal to zero in the
random phase approximation (RPA). The only difference is that
Coulomb interaction is expressed in a more general way in terms
of the electrostatic capacitance in (17). Equation (17), which is
obtained using the transmission line model of the plasmons, thus
correctly reproduces the plasmon dispersion relation. Given the
plasma dispersion relation, one may drop the explicit functional
dependence on the wavevector in all the expressions.

C. Power Flow

The power carried by the plasmon wave can be found
using the Poynting vector,

(18)

(19)

The second term in the parenthesis in (18) is due to the displace-
ment current and arises because unlike in a standard transmis-
sion line the plasmon field is not completely transverse to the
direction of propagation. The displacement current term’s con-
tribution to the power is exactly one-half of the first term and
has the opposite sign. Consequently, the expression for the total
power in (19) is different by a factor of two compared to the
standard transmission line formula [25]. In order to conserve
power when the device is connected to an external circuit, it is
convenient to define the transmission line current as

(20)
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Fig. 3. Calculated plasmon dispersion relation in graphene at 77 K is plotted for
different electron–hole densities (n = p = 1; 2; 3; 4� 10 cm ). The con-
dition !(q) > vq is satisfied for frequencies that have net gain in the terahertz
range. The assumed values of v and � are 10 cm/s and 0.5 ps, respectively.

The current is the maximum current that can be gener-
ated by the plasmon wave in an external circuit consistent with
the conservation of power. This will be shown explicitly in Sec-
tion V. Using this definition of the current, the power carried by
the plasmon wave can be written in the standard form

(21)

D. Characteristic Transmission Line Impedance

Finally, the expression for the characteristic impedance
of the plasmon transmission line is defined as

(22)

IV. TERAHERTZ PLASMON GAIN

In this section, we discuss the plasmon gain in graphene at
terahertz frequencies. Few conditions must be met in order for
the plasmons to have net gain. The condition
must be satisfied by the plasma dispersion relation in order to
avoid direct intraband absorption of the plasmons by electrons
and holes. The condition must be satisfied
in order for the plasmons to have gain via stimulated emission
at the frequency . In addition, for net gain the loss due to in-
traband (momentum relaxing) scattering of electrons and holes
must be less than the gain due to stimulated interband transi-
tions. This implies that the imaginary part of the propagator

must be positive (and the resistance must be
negative). Since the charge density wave corresponding to plas-
mons has the form , the imaginary part of the prop-
agation vector corresponds to net gain or loss. We define the
net plasmon energy gain as . The net plasmon
gain is the difference of the interband plasmon gain and the

Fig. 4. Net plasmon gain (interband gain minus intraband loss) in graphene
at 77 K is plotted for different electron–hole densities (n = p =
1; 2; 3; 4 � 10 cm ). The assumed values of v and � are 10 cm/s
and 0.5 ps, respectively.

Fig. 5. Calculated plasmon dispersion relation in graphene at 300 K is plotted
for different electron–hole densities (n = p = 1; 1:5; 2; 2:5 � 10 cm ).
The condition !(q) > vq is satisfied for frequencies that have net gain in
the terahertz range. The assumed values of v and � are 10 cm/s and 0.5 ps,
respectively.

Fig. 6. Net plasmon gain (interband gain minus intraband loss) in graphene at
300 K is plotted for different electron–hole densities (n = p = 1; 1:5;2; 2:5�
10 cm ). The assumed values of v and � are 10 cm/s and 0.5 ps, respec-
tively.

intraband plasmon losses. Figs. 3–6 show the plasmon disper-
sion and the net plasmon gain for different electron–hole den-
sities at K and K. Plasmon dispersion (but
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Fig. 7. The group velocity of the plasmons in graphene, normalized to the speed
of light in free space, is plotted for different electron–hole densities (n = p =
1; 2; 3; 4� 10 cm ) for T = 77 K. The assumed value of v is 10 cm/s.

not plasmon gain) in graphene has been previously reported in
[2]–[5]. The values used for and in our calculations are
10 cm/s and , respectively (assuming silicon dioxide on
both sides of the graphene layer). The calculations assumed an
intraband scattering time of 0.5 ps which is less than the ex-
perimentally observed scattering time of around 0.6 ps in mo-
bility measurements at K [9], [12]. In [12] it has been
shown that the plasmon gain remains large even for scattering
times as small as 0.1 ps. The electron and hole densities were
assumed to be equal (i.e., ). It can be seen that the
net gain approaches 4 10 cm for carrier densities in the
10 5 10 cm range for frequencies in the 1–10 THz
range at K and at K. At low frequencies (less
than 1 THz), the losses from intraband scattering tend to dom-
inate. At higher frequencies, the net gain becomes positive for
electron–hole densities larger than a minimum threshold value.
The calculated plasmon gain values in graphene are between
10 to 100 times larger than the typical material gain values of
most III–V semiconductors in the optical and infrared frequency
range [22]. This large difference is due to the small group ve-
locity of plasmons in graphene at terahertz frequencies and is
similar to the gain enhancement observed in photonic crystals
near the photonic band edges due to the small group velocity
[23]. The calculated group velocity of plasmons in graphene is
shown in Fig. 7. The large values for the plasmon gain could
enable terahertz amplifiers and oscillators that are only few mi-
crons in length. Design of terahertz oscillators and the condi-
tions necessary for achieving terahertz oscillation are discussed
in Section V.

V. TERAHERTZ PLASMON OSCILLATORS: DESIGN AND

OSCILLATION CONDITION

We consider the terahertz plasmon oscillator depicted in
Fig. 8 where a population inverted graphene strip of width
and length is connected to an external circuit. The condition
for achieving oscillation in a plasmon oscillator must take into
account the energy coupled out of the device since this energy
must also be compensated by the plasmon gain in addition to
the intrinsic losses that arise due to plasmon loss. We assumed
that the external impedance connected to the device (as seen
from the two terminals of the device) is . also

Fig. 8. (Top) A schematic of a graphene terahertz oscillator coupled to an ex-
ternal load. (Bottom) Equivalent circuit model.

includes the resistances associated with the ohmic contacts to
the graphene layer. The external impedance could also repre-
sent an antenna structure for coupling the radiation out of the
device. We write the current and the potential associated with
the plasmons in graphene as a superposition of forward and
backward propagating waves using the complex time-harmonic
transmission line notation [25]

(23)

(24)

The reflection coefficient for the plasmons at the two ends
of the graphene strip is defined as

(25)

The boundary conditions imposed by the external circuit are the
following:

(26)

(27)

These boundary conditions give

(28)

and

(29)

Equation (29) gives the condition necessary for achieving ter-
ahertz oscillation. Since , the threshold gain
required to achieve oscillation as well as the frequencies (or the
wavevectors) of the oscillating plasmon modes can be obtained
from (29). The threshold gain needed to achieve oscilla-
tion can be expressed as

(30)

The oscillation condition in (29) can also be obtained
using a slightly different approach. The frequency dependent
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Fig. 9. The characteristic impedance Z (!) of a 0.5 �m wide plasmon trans-
mission line is plotted as a function of the frequency.

impedance of the graphene device looking in from its
two terminals at and can also be obtained using
the transmission line model and is found to be

(31)

The oscillation condition in (29) can then be written in the more
familiar form as .

Finally, it needs to be shown that the expression for current
in (20) and the boundary conditions in (26)–(27) are consistent
with the conservation of power between the oscillator and the
external circuit. The net power leaving the plasmon oscillator
from the two ends at and can be found using the
expression in (21)

(32)

The net power delivered to the load is

(33)

Using (28), the above two expressions can be shown to be equal.

A. Discussion

The ratio of the characteristic impedance of the plasmon
transmission line to the external impedance determines the
threshold gain. If the external impedance is much smaller or
much greater than the impedance of the transmission line then
the threshold gain required for oscillation is close to zero (since

). This means that oscillation can be achieved if the
gain from stimulated emission overcomes only the internal
transmission line losses but no power is coupled out of the
device and the device has therefore little practical utility. If in
some frequency range , then ,
and the threshold gain is infinite. In this case, plasmons are not
well confined in the cavity and oscillation cannot be achieved
for this frequency range. Both situations—when the impedance
of the plasmon transmission line is completely mismatched
or perfectly matched to the external impedance—need to be
avoided. A large capacitive external impedance can also be

Fig. 10. The threshold gain g (!) needed for oscillation is plotted as a func-
tion of the cavity length L for different values of the parameter j�j.

harmful as it can short the device at high frequencies and
result in poor power output coupling efficiencies. Achieving
oscillation as well as decent power output coupling efficiencies
both therefore depend on the ratio of the external impedance
and the characteristic impedance of the plasmon transmission
line. The impedance of the plasmon transmission line can range
from a few hundred Ohms to a few Kilo-Ohms. Fig. 9 shows
the characteristic impedance of a 0.5 m wide plasmon
transmission line as a function of the frequency for different
carrier densities at K.

Fig. 10 shows the threshold gain values needed to achieve os-
cillation as a function of the cavity length for different values
of the parameter . Comparing the curves in Fig. 10 to the
calculated gain values in Fig. 4 it can be seen that the large
plasmon gain values in graphene could allow plasmon oscilla-
tors with cavity lengths much smaller than 10 m. As a prac-
tical design example, we consider a 0.5 m wide, 5 m long,
plasmon transmission line connected to an external impedance

of 1.0 K at 4.0 THz. This value of external impedance
would correspond to the impedance of an integrated dipole an-
tenna plus the impedance of the ohmic contacts [26]. We assume

K and . From Fig. 9, the impedance
of the transmission line at 4.0 THz is around 2.2 K . There-
fore, is . Using (30), the required threshold gain
comes out to be approximately 1800 cm . This threshold gain
value is much smaller than the theoretically predicted maximum
net gain values of around 20 000 cm available at 4.0 THz in
graphene at moderate electron–hole densities (see Fig. 4) pro-
viding a good margin against extra losses that might not have
been accounted for in this paper.

The impedance of a graphene strip, given in (31),
is also interesting since in principle it can be experimentally
measured at even high frequencies using terahertz time-domain
spectroscopy techniques [27]. The expression in (31) indicates
that the impedance will exhibit resonances in frequency with
spacing given by the inverse plasmon roundtrip time in the
graphene strip. These resonances correspond to the confined
plasmon modes of the graphene strip. Figs. 11 and 12 show
the real and the imaginary parts of the impedance of a
0.5 m wide and 5 m long graphene strip as a function of the
frequency for different electron and hole densities at K.
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Fig. 11. The real part of the impedance Z (!) of a 0.5 �m wide and 5 �m
long graphene strip is plotted as a function of the frequency for different carrier
densities at T = 77 K. The assumed values of v and � are 10 cm/s and 0.5 ps,
respectively. In the presence of net plasmon gain (e.g., for frequencies between
2.5 and 6.5 THz for n = p = 3� 10 cm —see Fig. 4), the real part of the
impedance Z (!) is negative.

Fig. 12. The imaginary part of the impedance Z (!) of a 0.5 �m wide and 5
�m long graphene strip is plotted as a function of the frequency for different
carrier densities at T = 77 K. The assumed values of v and � are 10 cm/s and
0.5 ps, respectively.

The plasmon resonances in the impedance are clearly vis-
ible. The resonances disappear when the plasmon loss or the
plasmon gain are large, and become pronounced when the net
plasmon gain is close to zero. In the presence of net plasmon
gain (e.g., for frequencies between 2.5 and 6.5 THz in Figs. 11
and 12 for cm —see Fig. 4), the real part of
the impedance is negative. Experimental measurement
of the impedance under population inversion conditions
can therefore be used to measure the plasmon gain in graphene.
Note that at very small frequencies, when does not
hold, the expression for the impedance in (31) is not valid.

VI. PLASMON CONFINEMENT AND WAVEGUIDING

In Section II, we mentioned that the width is not neces-
sarily the physical with of the graphene layer. In this section, we
show that plasmons can be confined laterally and guided in hy-
brid waveguide-transmission-line structures. This is useful since
plasmons need to be kept away from regions where population
inversion is small in order to minimize losses. To illustrate the
basic idea we consider a graphene layer on top of an insulating

Fig. 13. Plasmon propagation across a dielectric interface in graphene. (Top)
Top view. (Bottom) Side view.

Fig. 14. A cross-sectional view of a hybrid waveguide-transmission line struc-
ture for plasmon confinement and guiding. Population inversion is achieved by
optical pumping [14].

substrate. The top surface of the graphene layer is covered by
two insulating media of different dielectric constants such that
the value of in the two cases are and , and these two
media form an interface at , as shown in Fig. 13. Con-
sider a plasmon wave incident at an angle at the interface. The
transmitted wave makes an angle . The condition for phase
matching [25], and the continuity of the potential and the normal
component of the current at the interface can give the value of
the angle and the amplitudes of the reflected and the trans-
mitted plasmon waves. The phase matching condition gives

(34)

For small wavevectors, the above equation can be approximated
with very little error by

(35)

If , then for larger than a certain critical angle
the plasmon wave is totally internally reflected. The value of
the critical angle is . For larger than the cer-
tain critical angle, the incident plasmon wave is completely re-
flected. This suggests that it is possible to confine and guide
plasmons in hybrid waveguide-transmission line structures in
which vertical confinement is provided by the graphene layer
itself and lateral confinement is provided by the dielectric guide
that has a single core sandwiched between two claddings on ei-
ther side. A cross-sectional view of such a guide is shown in
Fig. 14. The plasmon guide, like dielectric optical waveguides
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Fig. 15. A cross-sectional view of a plasmon guide integrated on a gated
pn-junction in graphene. Population inversion is achieved via electron–hole
injection under an applied forward bias [13].

[25], can support more than one transverse mode. A single trans-
verse mode plasmon guide is desirable for efficient power cou-
pling to the external circuit and can be obtained by keeping the
difference between the core and cladding values small. A full
analysis of the modes supported by the guide shown in Fig. 14
is beyond the scope of this paper but we should mention here
that for a single transverse mode plasmon guide the width
used in the analysis is roughly equal to the effective width of
the transverse mode in the guide. Methods to achieve popula-
tion inversion in graphene are discussed in Section VII.

VII. ACHIEVING POPULATION INVERSION IN GRAPHENE

Schemes for achieving population inversion in graphene via
optical and electrical pumping have been extensively discussed
by Ryzhii et al. in [13], [14] in the context of obtaining negative
conductivity in graphene at terahertz frequencies. A knowledge
of the electron–hole recombination times in graphene is critical
for the evaluation of different schemes but no experimental
results have so far been reported on recombination times in
graphene. Small bandgap semiconductors usually have large
electron–hole recombination rates due to Coulomb scattering
(Auger recombination) [28]. The zero bandgap and the large
optical phonon energy in graphene ( 180 meV [29]) suggest
that electron–hole recombination rates could be dominated
by Auger processes. Results in [24] show that electron–hole
recombination times due to Auger scattering in graphene are
weakly temperature dependent and can range from 1 to 100 ps
for electron–hole densities in the 10 –10 cm range. Op-
tical pumping scheme for achieving population inversion in a
plasmon waveguide is depicted in Fig. 14. The electron–hole
generation rate in graphene under optical pumping with
pump intensity and pump frequency is given by the
expression [14], [30]

(36)

Assuming K, an Auger recombination time of around
10 ps for electron–hole densities in the low 10 cm range
(see [24]), and optical pumping with a 10 m wavelength laser,
achieving plasmon gain at around 4.0 THz would require a
pump intensity of 2 KW cm . This intensity level is easily
achievable with a focused beam from a standard 5-W CO
laser. High power -switched pump lasers can also be used
at shorter near-IR wavelengths for pulsed operation. Another

way to achieve population inversion in graphene is via elec-
tron–hole injection in a forward biased electrostatically gated
pn-junction, as is done in semiconductor interband lasers [11],
[13]. This scheme is depicted in Fig. 15 which shows the cross
section of a plasmon guide at the junction of electrostatically
gated p and n regions. The guide helps to confine the plasmons
in the region where population inversion is expected to be
maximum under an applied forward bias. The zero-bandgap of
graphene suggests that band-to-band tunneling current could
be large in a forward biased pn-junction and could possibly
limit electron–hole injection. However, in [13] it was shown
that injected components of the electron and hole currents in
a forward biased graphene pn-junction could be significant,
and larger than the tunneling component, and could allow for
population inversion to be achieved.

VIII. CHALLENGES AND CONCLUSION

In this paper, we proposed and analyzed terahertz oscil-
lator designs based on plasmon amplification in graphene via
stimulated emission. We presented a transmission line model
for plasmon propagation and amplification in graphene, and
obtained the condition for oscillation that took into account
plasmon losses due to intraband scattering and also losses due
to external coupling. The ratio of the characteristic impedance
of the plasmon transmission line to the external impedance was
shown to play an important role in determining the threshold
condition for oscillation. The large values of the plasmon gain
could allow the realization of compact integrated terahertz
oscillators.

Several obstacles need to be overcome before the proposed
oscillators can be realized. Material quality remains a challenge.
Graphene monolayers and multilayers produced from currently
available experimental techniques are estimated to have defect/
impurity densities anywhere between 10 and 10 cm and
single-crystal coherence lengths of less than a micron [9], [31].
The values of the electron and hole momentum scattering times
are critical in determining plasmon losses. We modeled the in-
traband scattering rate with a single time constant the value of
which was estimated from experimental measurements of car-
rier mobility in graphene. Several momentum scattering mech-
anisms that could contribute to plasmon losses might have not
been accounted for in this approach. For example, interband
momentum relaxing scattering via acoustic phonons could con-
tribute to plasmon losses under population inversion conditions
for a zero-bandgap material. Plasmon losses due to image cur-
rents flowing in surrounding metals, ground plane, etc., were
also ignored in the analysis presented here. Experimental inves-
tigations will be needed to provide answers to many of these
questions. Given that plasmon wavelengths at terahertz frequen-
cies are much shorter than one micron (see Fig. 3), surface
roughness of the plasmon guide could scatter plasmons and also
contribute to plasmon losses. It is also not clear at the time of
the submission of this manuscript if or not graphene has a small
bandgap. Several factors, such as disorder, substrate interaction,
and spin-orbit interaction, can lead to the opening of a small
bandgap in graphene. The main ideas presented in this paper
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are expected to remain valid qualitatively provided the bandgap
is smaller than or equal to the frequency of the plasmons.

The maximum output power levels achievable with the pro-
posed oscillators would be determined by the maximum rate at
which electrons and holes can be injected, device heating, or
nonlinear effects (such as band-to-band tunneling caused by the
plasmon electric fields). Nonlinear effects would also become
important because of the simple fact that the amplitude of the
charge density wave can never exceed the actual charge density
of the electrons and the holes in the device. In fact, assumptions
made in this paper will break down well before the amplitude
of the charge density wave reaches such levels. A rough esti-
mate of the power levels can be made as follows. Assuming an
electron–hole density of 6 10 cm , frequency of oscilla-
tion of 4 THz, K, a plasmon guide of width 0.5 m and
length 5 m, the values of and come out to be ap-
proximately 10 cm and 2250 , respectively. The separation
of the electron and hole Fermi levels is approximately 50 meV.
Assuming a density wave amplitude of 2 10 cm , the am-
plitude of the potential associated with the wave comes out to be
approximately 45 mV. This gives a power of the order of 1 W.
The compact dimensions of the proposed oscillators could allow
small phase-locked arrays to increase the output power to mWatt
levels.
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