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@ Past attempts to understand effectiveness of deep learning
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» Classes of efficiently representable functions [Montufar'14, Poggio'17]
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% Goal: Explain ‘compression’ in Information Bottleneck framework

Estimating Information Flow in DNNs 2/12



Setup and Preliminaries

Feedforward DNN for Classification:

Estimating Information Flow in DNNs



Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X
(Label) (Feature/lmage)  (Input Layer)

Estimating Information Flow in DNNs



Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage)  (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

Estimating Information Flow in DNNs



Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage)  (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, =7
(Output Layer)

Estimating Information Flow in DNNs 3/12



Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage)  (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

=Y
(Output Layer)

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = (T(Wng_l —i—bg))

Estimating Information Flow in DNNs



Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, T3
(Label) (Feature/lmage)  (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, = 14
(Output Layer)

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = (T(Wng_l —i—bg))
@ fth Hidden Layer Enc & Dec: Py, x (enc) and Py, (dec)

Estimating Information Flow in DNNs 3/12



Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, T3
(Label) (Feature/lmage)  (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

1 T,=Y
(Output Layer)

Dog

@ Deterministic DNN: T, = fg(Tg_l) (MLP: Ty = (T(Wng_l —i—bg))
@ fth Hidden Layer Enc & Dec: Py, x (enc) and Py, (dec)

@ IB Theory: Track Ml pairs (I(X;7}),I(Y;Ty)) (information plane)
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Past Works: i
[Schwartz-Ziv& Tishby'17, sos H 2
Saxe et al. '18] - : §

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
= Plotted values are I(X;Bin(1}))

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(T})) ~ I(X;T})

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(Ty)) ~ I(X;T;)  No!

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(Ty)) ~ I(X;T;)  No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- =~ . -1 i
7 Lapert
‘g — Layer2
= 41— Layer3 1 1 1
s Layer4 /\MVJ/\/-_\\

— Layer5

T ST SRR
100 10" 10 10° 10
Epoch

5/12

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(Ty)) ~ I(X;T;)  No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- =~ . -1 i
7 Lapert
‘g — Layer2
:4' — Layer3 1 1 1
5 Laerd /\'\A"/\/’_\\
— Layer5
0- R L B T SRt

L L R R L R R
100 10" 10 10° 10
Epoch

@ Smaller bins = Closer to truth: I(X;T}) = In(2'?) ~ 8.31

5/12

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(Ty)) ~ I(X;T;)  No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- =~ . -1 i
7 Lapert
‘g — Layer2
:4' — Layer3 1 1 1
5 Laerd /\'\A"/\/’_\\
— Layer5
0- LA ! B B R RIS T Rttt

e
100 10" 10 10° 10
Epoch

@ Smaller bins = Closer to truth: I(X;T}) = In(2'?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)

5/12

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(Ty)) ~ I(X;T;)  No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- =~ . -1 i
7 Lapert
‘g — Layer2
= 41— Layer3 1 1 1
s Layer4 /\MVJ/\/-_\\

— Layer5
7 e B e il s

w e e e
Epoch
@ Smaller bins = Closer to truth: I(X;T}) = In(2'?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)

@ Plots showing estimation errors

5/12

Estimating Information Flow in DNNs



What is going on here?

@ Plots via binning-based estimator of I(X;7y), for X ~ Unif(dataset)
— Plotted values are I(X;Bin(Ty)) ~ I(X;T;)  No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
8- =~ . -1 i
7 Lapert
‘g — Layer2
:4' — Layer3 1 1 1
5 Laerd /\'\A"/\/’_\\
— Layer5
0- 1
L R B L B L e B B L L e e L e L B e R Bt

e SR RS
100 10" 10 10° 10
Epoch

@ Smaller bins = Closer to truth: I(X;T}) = In(2'?) ~ 8.31

@ Binning introduces “noise” into estimator (not present in the DNN)

@ Plots showing estimation errors

@ Real Problem: I(X;T}) is meaningless for studying the DNN
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Proposed Fix: Inject (small) Gaussian noise to neurons’ output

o Formally: T, = f,(Ty_1) + Zy, where Z, ~ N(0, %)

Ty_1 Sg(k) Tg(k)

o (W1 +bi(h))

Ze(k) ~ N(07IB2)

—> X — Ty is a parametrized channel that depends on DNN param.!
@ Operational Perspective:
» Performance & learned representations similar to det. DNNs (3 ~ 10~ 1)
> Noise masks fine variations — M| represents relevant/distingishable info.

» Dropout & quantized DNNs widely used in practice = internal noise
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Differential Entropy Estimation under Gaussian Convolutions

Estimate h(S + Z) using n i.i.d. samples from Ps € F4 (nonparametric
class) and knowing that Z ~ N (0, 3%14) independent of S.

Results [ZG-Greenewald-Polyanskiy'18]:

» Sample complexity is exponential in d
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Mutual Information (Estimation) in Noisy DNNs

@ Layer £: Denote Sy 2 fo(Ty_1) = Ty =S¢+ Zs, Zy ~ N(0,3%1)
@ Assume: X ~ Unif(X), where X £ {;}™, is empirical dataset

o Mutual Information: I(X;Ty) = h(Ty) — = S0 h(Ty| X = ;)
@ Distribution of S, is extremely complicated to compute/evaluate

@& But, Pg, and Pg,|x—,, are easily sampled from via DNN fwd. pass

= Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(S + Z) using n i.i.d. samples from Ps € F4 (nonparametric
class) and knowing that Z ~ N (0, 3%14) independent of S.

Results [ZG-Greenewald-Polyanskiy'18]:
» Sample complexity is exponential in d
> Absolute-error minimax risk is O((logn)%*/./n) (all const. explicit)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Swp T

o Input: X ~ Unif (X_; U X))
X2 {-3,-1,1} , X1 = {3}

® Move tanh center v =2 (<= b= -2)
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Single Neuron Classification:

o Input: X ~ Unif (X_; U X))
X2 {-3,-1,1} , X1 = {3}

X

tanh(wX + b)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif (X_; U X))
X2 {-3,-1,1} , X1 = {3}

X

tanh(wX + b)

———r-e

@ Sharpen tanh transition ( <= increase w and keep b = —2w)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X wa T
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X.12{-3,-1,1}, &1 = {3}
Z~N(0,8?)
S5,—10
l¢————————————
|
|
|
o | Py L l
T [ hd ¢ ®
-3 -2 ,} 1 ;@
' |
| | |
| | » |

8/12
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: ¥ < .

w,b

o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X.12{-3,-1,1}, &1 = {3}

Z ~ N(0, %)
S5.-10
lo——————————=
|
|
|
|
- 1 - - -
¢ ‘ b T N
-3 -2 -1 1 3
| I |
| I |
| I . |
—1
v/ Correct classification performance
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +b) Swp T

o Input: X ~ Unif (X_; U X))
X2 {-3,-1,1} , X1 = {3}

@ Empirical Results:

0.6 0

2
0.4 A 55
02 1 -10
L s

Epoch «%10° Epoch «%10° Epoch

Loss
Weight
B@s
IS
Bias / weight
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: . . .
w,b
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X1 &2{-3,-1,1}, 2 = {3}
Z ~ N(0, %)

@ Mutual Information:

I(X;T)
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Single Neuron Classification: . . .
w,b
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X1 &2{-3,-1,1}, 2 = {3}
Z ~ N(0, %)

@ Mutual Information:

I(X;T)=I(X; Sy +2)
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w,b
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
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w,b
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: . . .
w,b
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X1 &2{-3,-1,1}, 2 = {3}
Z ~ N(0, %)

@ Mutual Information:
I(X;T)=I1(X; Swp+ Z)=I(tanh(wX +b); Swp+Z) =I(Swp; Swp+Z)
= I(X;T) is the aggregate info. transmitted over AWGN w. symbols
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X wa T
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X.12{-3,-1,1}, &1 = {3}

A NN(07/B2)

@ Mutual Information:
I(X;T)=I1(X; Swp+ Z)=I(tanh(wX +b); Swp+Z) =I(Swp; Swp+Z)
= I(X;T) is the aggregate info. transmitted over AWGN w. symbols

Swp= {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanhBw+b) } — {£1}

PDF of Sw.b+Z vs. Epochs

1

o
o

Heatmap of PDF
&
o o

=]
10%0’ 102 10° 10* 10°
Epoch

Estimating Information Flow in DNNs 8/12



I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: . . .
w,b
o Input: X ~ Unif(X_; U X;) —=—tanh(wX +b)
X1 &2{-3,-1,1}, 2 = {3}
Z ~ N(0, %)

@ Mutual Information:
I(X;T)=I1(X; Swp+ Z)=I(tanh(wX +b); Swp+Z) =I(Swp; Swp+Z)
= I(X;T) is the aggregate info. transmitted over AWGN w. symbols
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +0b)

o Input: X ~ Unif (X_; U X))
X2 {-3,-1,1} , X1 = {3}

A NN(07/B2)

@ Mutual Information:
I(X;T)=I1(X; Swp+ Z)=I(tanh(wX +b); Swp+Z) =I(Swp; Swp+Z)
= I(X;T) is the aggregate info. transmitted over AWGN w. symbols
Swp = {tanh(=3w+b), tanh(—w+b), tanh(w+b), tanhBw+b)} — {1}

PDF of Sw b+Z vs. Epochs 15 I(X;T) vs. Epochs 4 5Mutual Information for Different 8 Values
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

@ Noise std.: Set to 5 =0.1
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

@ Noise std.: Set to 5 =0.1
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@ Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

@ Noise std.: Set to 5 =0.1

Ep22 Ep64
P 7 P i

LR} v L B R R | LAl LR | L B S |
10° 10! 10? 10° 10*
Epoch

= Compression of I(X;T}) driven by clustering of representations

Estimating Information Flow in DNNs

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:
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Circling back to Deterministic DNNs

o I(X;Ty) is constant
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Circling back to Deterministic DNNs

@ [(X;Ty) is constant = Doesn't measure clustering

o Alternative measures for clustering (det. and noisy DNNs):
» Scatter plots (up to 3D layers)
» Within-class & In-between-class pairwise distance distribution

> Binned entropy H (Bin(T%))
@ Noisy DNNs: I(X;Ty) and H(Bin(T})) highly correlated!*
@ Det. DNNs: H(Bin(7};)) compresses (resolution wrt bins size)
& Past Works: Estimated I(X;7y) by I(X;Bin(1})) = H(Bin(1}))
X Incapable of accurately estimating M| values

v/ Still, simple to compute & follows M in tracking clustering!
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Circling back to Deterministic DNNs (Cntd.)

Comparing to Previously Shown MI Plots:

MI(nats)
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'
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H(Bin(T_I))
*
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Circling back to Deterministic DNNs (Cntd.)

Comparing to Previously Shown MI Plots:
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= Past works we not showing Ml but clustering (via binned-Ml)!
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@ Reexamined Information Bottleneck Compression:
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@ Reexamined Information Bottleneck Compression:
» I(X;T) fluctuations in det. DNNs are theoretically impossible
» Yes, past works presented I(X;T) dynamics during training
@ Noisy DNN Framework: Studying IT quantities over DNNs
» Toolkit for accurate MI estimation over this framework
» Clustering of the learned representations is the source of compression

> Methods to track clustering in det. DNNs (incl. H (Bin(7})))

® Det. DNNs cluster representations = Clarify past observations
@ Future Research:

» Curse of dimensionality: How to track clustering in high-dimensions?

» Is compression necessary? Desirable?

» Build on findings to improve DNN training alg. and architectures
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