
Estimating Information Flow in Deep Neural

Networks

Ziv Goldfeld

MIT

56th Allerton Conference on Communication, Control, and Computing
Monticello, Illinois, US

October 4th, 2018

Collaborators: E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen,

B. Kingsbury and Y. Polyanskiy



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Past attempts to understand effectiveness of deep learning

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Past attempts to understand effectiveness of deep learning

◮ Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Past attempts to understand effectiveness of deep learning

◮ Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

Estimating Information Flow in DNNs 2/12



How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Past attempts to understand effectiveness of deep learning

◮ Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

◮ Information theory [Tishby’17, Saxe’18, Gabrié’18]
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How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Long way to go theory-wise:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Past attempts to understand effectiveness of deep learning

◮ Optimization in parameter space [Saxe’14, Choromanska’15, Advani’17]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

◮ Information theory [Tishby’17, Saxe’18, Gabrié’18]

⋆ Goal: Explain ‘compression’ in Information Bottleneck framework
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Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

ℓth Hidden Layer Enc & Dec: PTℓ|X (enc) and PŶ |Tℓ
(dec)

IB Theory: Track MI pairs
(
I(X; Tℓ), I(Y ; Tℓ)

)
(information plane)
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Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why? Formally...

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(
f̃ℓ(X)

∣
∣X

)
= ∞

Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

Intuition: Encoding all info. about X is arbitrarily fine variations of Tℓ

Past Works:

[Schwartz-Ziv&Tishby’17,

Saxe et al. ’18]
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What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

⊛⊛⊛ Real Problem: I(X; Tℓ) is meaningless for studying the DNN
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(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

Operational Perspective:

◮ Performance & learned representations similar to det. DNNs (β ≈ 10−1)

◮ Noise masks fine variations – MI represents relevant/distingishable info.

◮ Dropout & quantized DNNs widely used in practice ≈ internal noise
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Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

⊛⊛⊛ But, PSℓ
and PSℓ|X=xi

are easily sampled from via DNN fwd. pass

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

⊛⊛⊛ But, PSℓ
and PSℓ|X=xi

are easily sampled from via DNN fwd. pass

=⇒ Estimate MI from samples & Exploit noisy DNN structure

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

⊛⊛⊛ But, PSℓ
and PSℓ|X=xi

are easily sampled from via DNN fwd. pass

=⇒ Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(S + Z) using n i.i.d. samples from PS ∈ Fd (nonparametric

class) and knowing that Z ∼ N (0, β2Id) independent of S.

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

⊛⊛⊛ But, PSℓ
and PSℓ|X=xi

are easily sampled from via DNN fwd. pass

=⇒ Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(S + Z) using n i.i.d. samples from PS ∈ Fd (nonparametric

class) and knowing that Z ∼ N (0, β2Id) independent of S.

Results [ZG-Greenewald-Polyanskiy’18]:

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

⊛⊛⊛ But, PSℓ
and PSℓ|X=xi

are easily sampled from via DNN fwd. pass

=⇒ Estimate MI from samples & Exploit noisy DNN structure

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(S + Z) using n i.i.d. samples from PS ∈ Fd (nonparametric

class) and knowing that Z ∼ N (0, β2Id) independent of S.

Results [ZG-Greenewald-Polyanskiy’18]:

◮ Sample complexity is exponential in d

Estimating Information Flow in DNNs 7/12



Mutual Information (Estimation) in Noisy DNNs

Layer ℓ: Denote Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ Distribution of Sℓ is extremely complicated to compute/evaluate

⊛⊛⊛ But, PSℓ
and PSℓ|X=xi

are easily sampled from via DNN fwd. pass
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Differential Entropy Estimation under Gaussian Convolutions

Estimate h(S + Z) using n i.i.d. samples from PS ∈ Fd (nonparametric

class) and knowing that Z ∼ N (0, β2Id) independent of S.

Results [ZG-Greenewald-Polyanskiy’18]:

◮ Sample complexity is exponential in d

◮ Absolute-error minimax risk is O
(
(log n)d/4/

√
n

)
(all const. explicit)
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.1

=⇒ Compression of I(X; Tℓ) driven by clustering of representations
Estimating Information Flow in DNNs 9/12
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I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Within-class & In-between-class pairwise distance distribution

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
compresses (resolution wrt bins size)

⊛⊛⊛ Past Works: Estimated I(X; Tℓ) by I
(
X; Bin(Tℓ)

)
= H

(
Bin(Tℓ)

)

✗ Incapable of accurately estimating MI values

✓ Still, simple to compute & follows MI in tracking clustering!
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Comparing to Previously Shown MI Plots:
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Circling back to Deterministic DNNs (Cntd.)

Comparing to Previously Shown MI Plots:

=⇒ Past works we not showing MI but clustering (via binned-MI)!

Estimating Information Flow in DNNs 11/12
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⊛⊛⊛ Det. DNNs cluster representations =⇒ Clarify past observations

Future Research:

◮ Curse of dimensionality: How to track clustering in high-dimensions?

◮ Is compression necessary? Desirable?

◮ Build on findings to improve DNN training alg. and architectures
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