
Smoothing Probability Distributions for

High Dimensional Learning and Inference

Ziv Goldfeld

Cornell University

CS Brown Bag Talk

December 1st, 2020

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

⊛⊛⊛ Estimation error is typically n−1/d

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

⊛⊛⊛ Estimation error is typically n−1/d

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

⊛⊛⊛ Estimation error is typically n−1/d

Smoothing: Use P ∗Nσ and Pn∗Nσ, Nσ = N (0,σ2Id) (X+Z replaces X)

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

⊛⊛⊛ Estimation error is typically n−1/d

Smoothing: Use P ∗Nσ and Pn∗Nσ, Nσ = N (0,σ2Id) (X+Z replaces X)

Unsmoothed (= 0) Large Small

2/20

Smoothing Probability Distributions

Data Distribution: P ∈ P(Rd) where d ≫ 1

‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

⊛⊛⊛ Estimation error is typically n−1/d

Smoothing: Use P ∗Nσ and Pn∗Nσ, Nσ = N (0,σ2Id) (X+Z replaces X)

Unsmoothed (= 0) Large Small

Alleviates CoD: Enhancing empirical convergence to n−1/2 ∀d
2/20

Part I:

Measuring Information Flows in

Smoothed Deep Neural Networks

Deep Learning - What’s Under the Hood?

Unprecedented practical success

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

Label Feature/Image Input Layer

Cat

Dog

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

C%

D%

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

Label Feature/Image Input Layer

Cat

Dog

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

C%

D%

Internal

Representation

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

Label Feature/Image Input Layer

Cat

Dog

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

C%

D%

Internal

Representation

What drives the evolution of internal representations?

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

Label Feature/Image Input Layer

Cat

Dog

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

C%

D%

Internal

Representation

What drives the evolution of internal representations?

What are properties of learned representations?

3/20

Deep Learning - What’s Under the Hood?

Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

Label Feature/Image Input Layer

Cat

Dog

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

C%

D%

Internal

Representation

What drives the evolution of internal representations?

What are properties of learned representations?

How fully trained networks process information?
3/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

Optimization theory: Dynamics in parameter space

[Saxe-McClelland-Ganguli’14, Foster-Sekhari-Sridharan’18, Li-Liang’18]

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

Optimization theory: Dynamics in parameter space

[Saxe-McClelland-Ganguli’14, Foster-Sekhari-Sridharan’18, Li-Liang’18]

Approximation theory: Efficiently representable functions

[Hajnal-et al’93, Delalleau-Bengio’11, Eldan-Shamir’15, Telgarsky’16, Poggio-et al’17]

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

Optimization theory: Dynamics in parameter space

[Saxe-McClelland-Ganguli’14, Foster-Sekhari-Sridharan’18, Li-Liang’18]

Approximation theory: Efficiently representable functions

[Hajnal-et al’93, Delalleau-Bengio’11, Eldan-Shamir’15, Telgarsky’16, Poggio-et al’17]

Information theory: Track information flows through the network

[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Goldfeld et al.’19]

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

Optimization theory: Dynamics in parameter space

[Saxe-McClelland-Ganguli’14, Foster-Sekhari-Sridharan’18, Li-Liang’18]

Approximation theory: Efficiently representable functions

[Hajnal-et al’93, Delalleau-Bengio’11, Eldan-Shamir’15, Telgarsky’16, Poggio-et al’17]

Information theory: Track information flows through the network

[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Goldfeld et al.’19]

◮ Information-theoretic complexity measures of representations

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

Optimization theory: Dynamics in parameter space

[Saxe-McClelland-Ganguli’14, Foster-Sekhari-Sridharan’18, Li-Liang’18]

Approximation theory: Efficiently representable functions

[Hajnal-et al’93, Delalleau-Bengio’11, Eldan-Shamir’15, Telgarsky’16, Poggio-et al’17]

Information theory: Track information flows through the network

[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Goldfeld et al.’19]

◮ Information-theoretic complexity measures of representations

◮ New generalization bounds, architectures, and algorithms

4/20

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Statistical learning theory: Over-parametrization and double descent

[Belkin-Hsu-Ma’18, Liang-Rakhlin’18, Bartlett-Long-Lugosi-Tsiglera’20]

Optimization theory: Dynamics in parameter space

[Saxe-McClelland-Ganguli’14, Foster-Sekhari-Sridharan’18, Li-Liang’18]

Approximation theory: Efficiently representable functions

[Hajnal-et al’93, Delalleau-Bengio’11, Eldan-Shamir’15, Telgarsky’16, Poggio-et al’17]

Information theory: Track information flows through the network

[Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18, Goldfeld et al.’19]

◮ Information-theoretic complexity measures of representations

◮ New generalization bounds, architectures, and algorithms

◮ Visualization and interpertability

4/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Information Flows: I(X; Tℓ), I(Y ; Tℓ), and I(Tk; Tℓ).

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Information Flows: I(X; Tℓ), I(Y ; Tℓ), and I(Tk; Tℓ).
[

I(A; B) = DKL(PA,B||PA ⊗ PB)
Discrete

=
∑

a,b PA,B(a, b) log
PA,B(a,b)

PA(a)PB(b)

]

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Information Flows: I(X;Tℓ), I(Y ;Tℓ), and I(Tk; Tℓ).

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Information Flows: I(X;Tℓ), I(Y ;Tℓ), and I(Tk; Tℓ).

Data Processing Inequality: I(Y ;Tℓ) ≤ I(X;Tℓ)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

5/20

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

6/20

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

6/20

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

6/20

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

[Shwartz-Tishby’17]

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer)

(Hidden Layer)

=

(Output Layer)

6/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

7/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

Past methods are heuristic and w/o accuracy guarantees

7/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI & Accurate and scalable (in d) estimators

7/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI & Accurate and scalable (in d) estimators

Smoothing Inject (small) Gaussian noise to neurons’ output

[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’19]

7/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI & Accurate and scalable (in d) estimators

Smoothing Inject (small) Gaussian noise to neurons’ output

[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’19]

Formally: Tℓ = Sℓ + Zℓ, where Sℓ := fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

7/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI & Accurate and scalable (in d) estimators

Smoothing Inject (small) Gaussian noise to neurons’ output

[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’19]

Formally: Tℓ = Sℓ + Zℓ, where Sℓ := fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ Good proxy of det. DNN wrt performance & learned representations

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

7/20

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has n−1/d sample complexity

Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI & Accurate and scalable (in d) estimators

Smoothing Inject (small) Gaussian noise to neurons’ output

[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’19]

Formally: Tℓ = Sℓ + Zℓ, where Sℓ := fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ Good proxy of det. DNN wrt performance & learned representations

=⇒ Mutual information can be efficiently estimated over noisy DNN!

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

7/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

8/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

Estimator: Propagate samples & Gaussian conv. w/ empirical measure

8/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

Estimator: Propagate samples & Gaussian conv. w/ empirical measure

Optimal & explicit: Parametric rate n−1/2 & concrete error bounds

8/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

Estimator: Propagate samples & Gaussian conv. w/ empirical measure

Optimal & explicit: Parametric rate n−1/2 & concrete error bounds

Extensions: Readily adapted for I(Y ; Tℓ) and I(Tk; Tℓ) estimation

8/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

Estimator: Propagate samples & Gaussian conv. w/ empirical measure

Optimal & explicit: Parametric rate n−1/2 & concrete error bounds

Extensions: Readily adapted for I(Y ; Tℓ) and I(Tk; Tℓ) estimation

Future Goals: Improve scalability in dℓ & fast computational algorithm

8/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

Estimator: Propagate samples & Gaussian conv. w/ empirical measure

Optimal & explicit: Parametric rate n−1/2 & concrete error bounds

Extensions: Readily adapted for I(Y ; Tℓ) and I(Tk; Tℓ) estimation

Future Goals: Improve scalability in dℓ & fast computational algorithm

⊛⊛⊛ Scalability: Manifold hypothesis and/or lower dimensional embeddings

8/20

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).

Estimator: Propagate samples & Gaussian conv. w/ empirical measure

Optimal & explicit: Parametric rate n−1/2 & concrete error bounds

Extensions: Readily adapted for I(Y ; Tℓ) and I(Tk; Tℓ) estimation

Future Goals: Improve scalability in dℓ & fast computational algorithm

⊛⊛⊛ Scalability: Manifold hypothesis and/or lower dimensional embeddings

⊛⊛⊛ Algorithms: Integrate high dimensional Gaussian conv. into DNN arch.

8/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

⊛⊛⊛ weight orthonormality regularization
9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple experiments

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

Consequences and Future Goals: I(X; Tℓ) quantifies rep. complexity

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

Consequences and Future Goals: I(X; Tℓ) quantifies rep. complexity

⊛⊛⊛ Prove gen. bounds: P

(

gen(Xn, Y n, L) > 2O(I(X;Tℓ))+δ√
n

)

. e−O(δ2)

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

Consequences and Future Goals: I(X; Tℓ) quantifies rep. complexity

⊛⊛⊛ Prove gen. bounds: P

(

gen(Xn, Y n, L) > 2O(I(X;Tℓ))+δ√
n

)

. e−O(δ2)

⊛⊛⊛ Regularization and prunning: Algorithmic & architectural advances

9/20

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

Verified in multiple experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

Consequences and Future Goals: I(X; Tℓ) quantifies rep. complexity

⊛⊛⊛ Prove gen. bounds: P

(

gen(Xn, Y n, L) > 2O(I(X;Tℓ))+δ√
n

)

. e−O(δ2)

⊛⊛⊛ Regularization and prunning: Algorithmic & architectural advances

⊛⊛⊛ Visualization and interpretability: Heatmap of DNN neural activity

.

.

.

9/20

Mutual Information Heatmap Example

Noisy CNN for MNIST: Classification of hand-written digits

10/20

Mutual Information Heatmap Example

Noisy CNN for MNIST: Classification of hand-written digits

L
a

y
e

r
1

L
a

y
e

r
2

L
a

y
e

r
3

; ; | =

;

; | =

; ; | =

10/20

Part II:

Smooth Statistical Distances for

High-Dimensional Learning and Inference

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

11/20

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

Method: Complicated transformation of a simple latent variable

11/20

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

Method: Complicated transformation of a simple latent variable

Latent variable Z ∼ QZ ∈ P(Rp), p ≪ d

11/20

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

Method: Complicated transformation of a simple latent variable

Latent variable Z ∼ QZ ∈ P(Rp), p ≪ d

Expand Z to R
d space via (random) transformation Q

(θ)
X|Z

11/20

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

Method: Complicated transformation of a simple latent variable

Latent variable Z ∼ QZ ∈ P(Rp), p ≪ d

Expand Z to R
d space via (random) transformation Q

(θ)
X|Z

=⇒ Generative model: Qθ(·) :=
∫

Rp Q
(θ)
X|Z(·|z) dQZ(z)

11/20

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

Method: Complicated transformation of a simple latent variable

Latent variable Z ∼ QZ ∈ P(Rp), p ≪ d

Expand Z to R
d space via (random) transformation Q

(θ)
X|Z

=⇒ Generative model: Qθ(·) :=
∫

Rp Q
(θ)
X|Z(·|z) dQZ(z)

Latent Space Target Space

|

11/20

Implicit (Latent Variable) Generative Models

Goal: Learn a model Qθ ≈ P ∈ P(Rd) to approximate data distribution

Method: Complicated transformation of a simple latent variable

Latent variable Z ∼ QZ ∈ P(Rp), p ≪ d

Expand Z to R
d space via (random) transformation Q

(θ)
X|Z

=⇒ Generative model: Qθ(·) :=
∫

Rp Q
(θ)
X|Z(·|z) dQZ(z)

Minimum Distance Estimation: Solve θ⋆ ∈ argmin
θ

δ
(

P , Qθ

)

Latent Space Target Space

|

11/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

, (,)

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: W1(P, Q) := inf
πX,Y ∈Π(P,Q)

Eπ‖X − Y ‖

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: W1(P, Q) := inf
πX,Y ∈Π(P,Q)

Eπ‖X − Y ‖

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: W1(P, Q) := inf
πX,Y ∈Π(P,Q)

Eπ‖X − Y ‖

Comments:

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: W1(P, Q) := inf
πX,Y ∈Π(P,Q)

Eπ‖X − Y ‖

Comments:

Robustness to Supp. Mismatch: W1(P, Q) < ∞, ∀P, Q ∈ P1(Rd)

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: W1(P, Q) := inf
πX,Y ∈Π(P,Q)

Eπ‖X − Y ‖

Comments:

Robustness to Supp. Mismatch: W1(P, Q) < ∞, ∀P, Q ∈ P1(Rd)

Metric:
(

P1(Rd), W1

)

is metric space (metrizes weak convergence)

12/20

The 1-Wasserstein Distance

Setup: P, Q ∈ P1(Rd) (subscript for finite 1st moments)

Coupling: Π(P, Q) =
{

πX,Y ∈ P(Rd × R
d)

∣

∣

∣πX = P & πY = Q
}

Cost: c(x, y) = ‖x − y‖ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: W1(P, Q) := inf
πX,Y ∈Π(P,Q)

Eπ‖X − Y ‖

Comments:

Robustness to Supp. Mismatch: W1(P, Q) < ∞, ∀P, Q ∈ P1(Rd)

Metric:
(

P1(Rd), W1

)

is metric space (metrizes weak convergence)

Duality: W1(P, Q) = sup
f∈Lip1(Rd)

EP [f] −EQ[f] =⇒ W-GAN (minimax)

12/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P, Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

13/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P, Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

GANs [Goodfellow et al’14]:

13/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P , Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

GANs [Goodfellow et al’14]:

P (X (real) data sample)

13/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P ,Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

GANs [Goodfellow et al’14]:

P (X (real) data sample)

Q = Qθ (Y = gθ(Z) gen. sample)

13/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P ,Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

GANs [Goodfellow et al’14]:

P (X (real) data sample)

Q = Qθ (Y = gθ(Z) gen. sample)

f = dϕ (Lip1 constraint)

13/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P ,Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

Generator Net

G
e

n
e

ra
te

d
 S

a
m

p
le

R
e

a
l

S
a

m
p

le

Discriminator Net Real or

Fake?

GANs [Goodfellow et al’14]:

P (X (real) data sample)

Q = Qθ (Y = gθ(Z) gen. sample)

f = dϕ (Lip1 constraint)

13/20

From Duality to Generative Adversarial Networks

Dual Representation: W1(P ,Q) = sup
f∈Lip1(Rd)

EP f(X) − EQf(Y)

=⇒ inf
θ

W1(P , Qθ) ∼= inf
θ

sup
ϕ: dϕ∈Lip1(Rd)

Edϕ(X) − Edϕ
(

gθ(Z)
)

Generator Net

G
e

n
e

ra
te

d
 S

a
m

p
le

R
e

a
l

S
a

m
p

le

Discriminator Net Real or

Fake?

GANs [Goodfellow et al’14]:

P (X (real) data sample)

Q = Qθ (Y = gθ(Z) gen. sample)

f = dϕ (Lip1 constraint)

13/20

Generative Adversarial Networks
NVIDIA’s ProGAN 2.0 [Karras et al’19]

14/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

Empirical distribution Pn := 1
n

n
∑

i=1
δXi

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

Empirical distribution Pn := 1
n

n
∑

i=1
δXi

=⇒ Inherently we work with W1(Pn, Qθ)

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

Empirical distribution Pn := 1
n

n
∑

i=1
δXi

=⇒ Inherently we work with W1(Pn, Qθ)

Optimization: Can solve infθ W1 (Pn, Qθ) approximately

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

Empirical distribution Pn := 1
n

n
∑

i=1
δXi

=⇒ Inherently we work with W1(Pn, Qθ)

Optimization: Can solve infθ W1 (Pn, Qθ) approximately

Find θ̂n s.t. W1
(

Pn, Qθ̂n

) ≤ infθ W1
(

Pn, Qθ

)

+ ǫ

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

Empirical distribution Pn := 1
n

n
∑

i=1
δXi

=⇒ Inherently we work with W1(Pn, Qθ)

Optimization: Can solve infθ W1 (Pn, Qθ) approximately

Find θ̂n s.t. W1
(

Pn, Qθ̂n

) ≤ infθ W1
(

Pn, Qθ

)

+ ǫ

Generalization: W1
(

P , Qθ̂n

) − OPT ≤ 2W1 (Pn, P) + ǫ

15/20

Implicit Generative Models: Generalization

Goal: Solve OPT := infθ W1 (P , Qθ) exactly (find θ⋆)

Estimation: We don’t have P but data

{Xi}n
i=1 are i.i.d. samples from P ∈ P(Rd)

Empirical distribution Pn := 1
n

n
∑

i=1
δXi

=⇒ Inherently we work with W1(Pn, Qθ)

Optimization: Can solve infθ W1 (Pn, Qθ) approximately

Find θ̂n s.t. W1
(

Pn, Qθ̂n

) ≤ infθ W1
(

Pn, Qθ

)

+ ǫ

Generalization: W1
(

P , Qθ̂n

) − OPT ≤ 2W1 (Pn, P) + ǫ

=⇒ Boils down to empirical approximation question under W1

15/20

Empirical Approximation in High Dimensions

Question: What can we say about W1(Pn, P)?

16/20

Empirical Approximation in High Dimensions

Question: What can we say about W1(Pn, P)?

Theorem (Dudley’69)

For d ≥ 3 and P1(Rd)∋P ≪Leb(Rd): EW1(Pn, P)≍n− 1
d

16/20

Empirical Approximation in High Dimensions

Question: What can we say about W1(Pn, P)?

Theorem (Dudley’69)

For d ≥ 3 and P1(Rd)∋P ≪Leb(Rd): EW1(Pn, P)≍n− 1
d

16/20

Empirical Approximation in High Dimensions

Question: What can we say about W1(Pn, P)?

⊛⊛⊛ Implication: Too slow given dimensionality of real-world data

Theorem (Dudley’69)

For d ≥ 3 and P1(Rd)∋P ≪Leb(Rd): EW1(Pn, P)≍n− 1
d

16/20

Empirical Approximation in High Dimensions

Question: What can we say about W1(Pn, P)?

⊛⊛⊛ Implication: Too slow given dimensionality of real-world data

⊛⊛⊛ Question: Can smoothing help alleviates CoD?

Theorem (Dudley’69)

For d ≥ 3 and P1(Rd)∋P ≪Leb(Rd): EW1(Pn, P)≍n− 1
d

16/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

~

~

~

~

+ ~

+ ~

ChannelW W
()

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

Properties: Preserves structure but enhances statistical convergence

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

Properties: Preserves structure but enhances statistical convergence

Retain duality: W
(σ)
1 (P, Q) = sup

f∈Lip1(Rd)

E
[

f(X + Z)
] − E

[

f(Y + Z)
]

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

Properties: Preserves structure but enhances statistical convergence

Retain duality: W
(σ)
1 (P, Q) = sup

f∈Lip1(Rd)

E
[

f(X + Z)
] − E

[

f(Y + Z)
]

Inherit metric structure: Topologically equivalent to unsmooth W1

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

Properties: Preserves structure but enhances statistical convergence

Retain duality: W
(σ)
1 (P, Q) = sup

f∈Lip1(Rd)

E
[

f(X + Z)
] − E

[

f(Y + Z)
]

Inherit metric structure: Topologically equivalent to unsmooth W1

Stability:
∣

∣W
(σ)
1 (P, Q) − W1(P, Q)

∣

∣ ≤ 2σ
√

d for all P, Q

17/20

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald’19)

For σ ≥ 0, the smooth 1-Wasserstein distance between P and Q is

W
(σ)
1 (P, Q) := W1(P ∗ Nσ, Q ∗ Nσ),

where Nσ := N (0, σ2Id) is a d-dimensional isotropic Gaussian.

Interpretation: X ∼ P , Y ∼ Q and Z1, Z2 ∼ Nσ

X ⊥ Z1 =⇒ X + Z1 ∼ P ∗ Nσ & Y ⊥ Z2 =⇒ Y + Z2 ∼ Q ∗ Nσ

Properties: Preserves structure but enhances statistical convergence

Retain duality: W
(σ)
1 (P, Q) = sup

f∈Lip1(Rd)

E
[

f(X + Z)
] − E

[

f(Y + Z)
]

Inherit metric structure: Topologically equivalent to unsmooth W1

Stability:
∣

∣W
(σ)
1 (P, Q) − W1(P, Q)

∣

∣ ≤ 2σ
√

d for all P, Q

Fast emp. convergence: W
(σ)
1 (Pn, P) ≍ n−1/2 in all dimensions!

17/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

=⇒ Compatible for high-dimensional learning and inference!

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

=⇒ Compatible for high-dimensional learning and inference!

Future Goals: More distances, kernel, and efficient algorithms

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

=⇒ Compatible for high-dimensional learning and inference!

Future Goals: More distances, kernel, and efficient algorithms

⊛⊛⊛ More distances: p-Wasserstein distances, f -divergences, and IPMs

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

=⇒ Compatible for high-dimensional learning and inference!

Future Goals: More distances, kernel, and efficient algorithms

⊛⊛⊛ More distances: p-Wasserstein distances, f -divergences, and IPMs

⊛⊛⊛ More kernels: Optimize over choice of smoothing kernel

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

=⇒ Compatible for high-dimensional learning and inference!

Future Goals: More distances, kernel, and efficient algorithms

⊛⊛⊛ More distances: p-Wasserstein distances, f -divergences, and IPMs

⊛⊛⊛ More kernels: Optimize over choice of smoothing kernel

⊛⊛⊛ Efficient algorithms: Fast computational methods
.

.

.

18/20

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

1 Generalization: W
(σ)
1

(

P , Qθ̂n

) − infθ W
(σ)
1 (P , Qθ) . n− 1

2 , ∀d

2 Limit distributions: Asymptotic dist. of MDE and empirical error

3 Inequalities: Web of relationships between smooth distances

=⇒ Compatible for high-dimensional learning and inference!

Future Goals: More distances, kernel, and efficient algorithms

⊛⊛⊛ More distances: p-Wasserstein distances, f -divergences, and IPMs

⊛⊛⊛ More kernels: Optimize over choice of smoothing kernel

⊛⊛⊛ Efficient algorithms: Fast computational methods
.

.

.

Next-generation systems: benchmark performance & resource efficiency

18/20

Additional Research Topics
Neural Estimation:

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

Distill storage question from particular tech. & incorporate physics

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

Distill storage question from particular tech. & incorporate physics

Study information capacity (systems size, storage time, temp.)

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

Distill storage question from particular tech. & incorporate physics

Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

Distill storage question from particular tech. & incorporate physics

Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

Beneficial properties but impractical assumptions (known channel)

19/20

Additional Research Topics
Neural Estimation:

Approx. discriminator by a NN & optimize via gradient methods

Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Adapt classic learning setup to incorporate privacy constraints

Theory: Bound the risk when compared to non-privatized learner

Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

Distill storage question from particular tech. & incorporate physics

Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

Beneficial properties but impractical assumptions (known channel)

Bridge gaps via adversarial models & connect to adversarial learning
19/20

Want to know more?

Website: http://people.ece.cornell.edu/zivg/

Email: goldfeld@cornell.edu

Office: 322 Rhodes Hall

Spring 2021: ECE 6970 Statistical Distances for Machine Learning

Thank you!

20/20

