Smoothing Probability Distributions for High Dimensional Learning and Inference

Ziv Goldfeld

Cornell University

CS Brown Bag Talk

December 1st, 2020

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
‘Learning’ Objective: Loss, info. measure, distance...

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
‘Learning’ Objective: Loss, info. measure, distance...
Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
‘Learning’ Objective: Loss, info. measure, distance...
Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
'Learning' Objective: Loss, info. measure, distance...
Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

\Longrightarrow Estimate objective based on $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
'Learning' Objective: Loss, info. measure, distance...
Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

\Longrightarrow Estimate objective based on $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

* Estimation error is typically $n^{-1 / d}$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
'Learning' Objective: Loss, info. measure, distance...
Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

\Longrightarrow Estimate objective based on $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

* Estimation error is typically $n^{-1 / d}$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
'Learning' Objective: Loss, info. measure, distance... Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

\Longrightarrow Estimate objective based on $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

* Estimation error is typically $n^{-1 / d}$

Smoothing: Use $P * \mathcal{N}_{\sigma}$ and $P_{n} * \mathcal{N}_{\sigma}, \mathcal{N}_{\sigma}=\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)(X+Z$ replaces $X)$

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
‘Learning’ Objective: Loss, info. measure, distance... Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

\Longrightarrow Estimate objective based on $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

* Estimation error is typically $n^{-1 / d}$ Dimensionality

Smoothing: Use $P * \mathcal{N}_{\sigma}$ and $P_{n} * \mathcal{N}_{\sigma}, \mathcal{N}_{\sigma}=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)(X+Z$ replaces $X)$

Unsmoothed ($\sigma=0$)

Small σ

Large σ

Smoothing Probability Distributions

Data Distribution: $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ where $d \gg 1$
‘Learning’ Objective: Loss, info. measure, distance... Estimation: We don't have P but i.i.d. data $\left\{X_{i}\right\}_{i=1}^{n}$

\Longrightarrow Estimate objective based on $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

* Estimation error is typically $n^{-1 / d}$ nsionality

Smoothing: Use $P * \mathcal{N}_{\sigma}$ and $P_{n} * \mathcal{N}_{\sigma}, \mathcal{N}_{\sigma}=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)(X+Z$ replaces $X)$

Unsmoothed ($\sigma=0$)

Small σ
Large σ

Alleviates CoD: Enhancing empirical convergence to $n^{-1 / 2} \forall d$

Part I:

Measuring Information Flows in Smoothed Deep Neural Networks

Deep Learning - What's Under the Hood?

- Unprecedented practical success

Deep Learning - What's Under the Hood?

- Unprecedented practical success

Deep Learning - What's Under the Hood?

- Unprecedented practical success
- Lacking Theory: Macroscopic understanding of deep learning

Deep Learning - What's Under the Hood?

- Unprecedented practical success
- Lacking Theory: Macroscopic understanding of deep learning

Deep Learning - What's Under the Hood?

- Unprecedented practical success
- Lacking Theory: Macroscopic understanding of deep learning

Deep Learning - What's Under the Hood?

- Unprecedented practical success
- Lacking Theory: Macroscopic understanding of deep learning

? What drives the evolution of internal representations?

Deep Learning - What's Under the Hood?

- Unprecedented practical success
- Lacking Theory: Macroscopic understanding of deep learning

? What drives the evolution of internal representations?
? What are properties of learned representations?

Deep Learning - What's Under the Hood?

- Unprecedented practical success
- Lacking Theory: Macroscopic understanding of deep learning

? What drives the evolution of internal representations?
? What are properties of learned representations?
? How fully trained networks process information?

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]

Deep Learning - What’s Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]
- Optimization theory: Dynamics in parameter space [Saxe-McClelland-Ganguli'14, Foster-Sekhari-Sridharan'18, Li-Liang'18]

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]
- Optimization theory: Dynamics in parameter space [Saxe-McClelland-Ganguli'14, Foster-Sekhari-Sridharan'18, Li-Liang'18]
- Approximation theory: Efficiently representable functions [Hajnal-et al'93, Delalleau-Bengio'11, Eldan-Shamir'15, Telgarsky'16, Poggio-et al'17]

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]
- Optimization theory: Dynamics in parameter space [Saxe-McClelland-Ganguli'14, Foster-Sekhari-Sridharan'18, Li-Liang'18]
- Approximation theory: Efficiently representable functions [Hajnal-et al'93, Delalleau-Bengio'11, Eldan-Shamir'15, Telgarsky'16, Poggio-et al'17]
- Information theory: Track information flows through the network [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Goldfeld et al.'19]

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]
- Optimization theory: Dynamics in parameter space [Saxe-McClelland-Ganguli'14, Foster-Sekhari-Sridharan'18, Li-Liang'18]
- Approximation theory: Efficiently representable functions [Hajnal-et al'93, Delalleau-Bengio'11, Eldan-Shamir'15, Telgarsky'16, Poggio-et al'17]
- Information theory: Track information flows through the network [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Goldfeld et al.'19]
- Information-theoretic complexity measures of representations

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]
- Optimization theory: Dynamics in parameter space [Saxe-McClelland-Ganguli'14, Foster-Sekhari-Sridharan'18, Li-Liang'18]
- Approximation theory: Efficiently representable functions [Hajnal-et al'93, Delalleau-Bengio'11, Eldan-Shamir'15, Telgarsky'16, Poggio-et al'17]
- Information theory: Track information flows through the network [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Goldfeld et al.'19]
- Information-theoretic complexity measures of representations
- New generalization bounds, architectures, and algorithms

Deep Learning - What's Under the Hood? Cntd.

Trying to Understand Effectiveness of DL:

- Statistical learning theory: Over-parametrization and double descent [Belkin-Hsu-Ma'18, Liang-Rakhlin'18, Bartlett-Long-Lugosi-Tsiglera'20]
- Optimization theory: Dynamics in parameter space [Saxe-McClelland-Ganguli'14, Foster-Sekhari-Sridharan'18, Li-Liang'18]
- Approximation theory: Efficiently representable functions [Hajnal-et al'93, Delalleau-Bengio'11, Eldan-Shamir'15, Telgarsky'16, Poggio-et al'17]
- Information theory: Track information flows through the network [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18, Goldfeld et al.'19]
- Information-theoretic complexity measures of representations
- New generalization bounds, architectures, and algorithms
- Visualization and interpertability

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y}$

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$
- Information Flows: $I\left(X ; T_{\ell}\right), I\left(Y ; T_{\ell}\right)$, and $I\left(T_{k} ; T_{\ell}\right)$.

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$
- Information Flows: $I\left(X ; T_{\ell}\right), I\left(Y ; T_{\ell}\right)$, and $I\left(T_{k} ; T_{\ell}\right)$.

$$
\left[I(A ; B)=\mathrm{D}_{\mathrm{KL}}\left(P_{A, B} \| P_{A} \otimes P_{B}\right) \stackrel{\mathrm{Discrete}}{=} \sum_{a, b} P_{A, B}(a, b) \log \frac{P_{A, B}(a, b)}{P_{A}(a) P_{B}(b)}\right]
$$

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$
- Information Flows: $\boldsymbol{I}\left(\boldsymbol{X} ; \boldsymbol{T}_{\ell}\right), \boldsymbol{I}\left(\boldsymbol{Y} ; \boldsymbol{T}_{\ell}\right)$, and $I\left(T_{k} ; T_{\ell}\right)$.

Information Flows in DNNs: Definition

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

- Joint Distribution: $P_{X, Y} \Longrightarrow P_{X, Y} \cdot P_{T_{1}, \ldots, T_{L} \mid X}$
- Information Flows: $\boldsymbol{I}\left(\boldsymbol{X} ; \boldsymbol{T}_{\ell}\right), \boldsymbol{I}\left(\boldsymbol{Y} ; \boldsymbol{T}_{\ell}\right)$, and $I\left(T_{k} ; T_{\ell}\right)$.

Data Processing Inequality: $I\left(Y ; T_{\ell}\right) \leq I\left(X ; T_{\ell}\right)$

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Training: Track $\left(I\left(Y ; T_{\ell}\right), I\left(X ; T_{\ell}\right)\right)$ dynamics

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Training: Track $\left(I\left(Y ; T_{\ell}\right), I\left(X ; T_{\ell}\right)\right)$ dynamics
(1) Fitting: $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$ rise (short)

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Training: Track $\left(I\left(Y ; T_{\ell}\right), I\left(X ; T_{\ell}\right)\right)$ dynamics
(1) Fitting: $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$ rise (short)
(2) Compression: $I\left(X ; T_{\ell}\right)$ slowly drops (long)

Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer $T_{\ell}=f_{\ell}\left(T_{\ell-1}\right)$

Y	X	$T_{0}=X$	T_{1}	T_{2}	T_{3}
(Label)	(Feature/lmage)	(Input Layer)	(Hidden Layer 1)	(Hidden Layer 2)	(Hidden Layer 3)

Dog

[Shwartz-Tishby'17] 7999
Training: Track $\left(I\left(Y ; T_{\ell}\right), I\left(X ; T_{\ell}\right)\right)$ dynamics
(1) Fitting: $I\left(Y ; T_{\ell}\right) \& I\left(X ; T_{\ell}\right)$ rise (short)
(2) Compression: $I\left(X ; T_{\ell}\right)$ slowly drops (long)

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

- Past methods are heuristic and w/o accuracy guarantees

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

- Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI \& Accurate and scalable (in d) estimators

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

- Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI \& Accurate and scalable (in d) estimators
Smoothing Inject (small) Gaussian noise to neurons' output
[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'19]

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

- Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI \& Accurate and scalable (in d) estimators
Smoothing Inject (small) Gaussian noise to neurons' output
[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'19]

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell}:=f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

- Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI \& Accurate and scalable (in d) estimators
Smoothing Inject (small) Gaussian noise to neurons' output
[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'19]

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell}:=f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

\Longrightarrow Good proxy of det. DNN wrt performance \& learned representations

Main Challenges and Past Work

Deterministic DNNs: MI degenerates or has $n^{-1 / d}$ sample complexity

- Past methods are heuristic and w/o accuracy guarantees

Goal: Meaningful MI \& Accurate and scalable (in d) estimators
Smoothing Inject (small) Gaussian noise to neurons' output
[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'19]

- Formally: $T_{\ell}=S_{\ell}+Z_{\ell}$, where $S_{\ell}:=f_{\ell}\left(T_{\ell-1}\right)$ and $Z_{\ell} \sim \mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$

\Longrightarrow Good proxy of det. DNN wrt performance \& learned representations
\Longrightarrow Mutual information can be efficiently estimated over noisy DNN!

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Estimator: Propagate samples \& Gaussian conv. w/ empirical measure

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Estimator: Propagate samples \& Gaussian conv. w/ empirical measure

- Optimal \& explicit: Parametric rate $n^{-1 / 2}$ \& concrete error bounds

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Estimator: Propagate samples \& Gaussian conv. w/ empirical measure

- Optimal \& explicit: Parametric rate $n^{-1 / 2}$ \& concrete error bounds
- Extensions: Readily adapted for $I\left(Y ; T_{\ell}\right)$ and $I\left(T_{k} ; T_{\ell}\right)$ estimation

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Estimator: Propagate samples \& Gaussian conv. w/ empirical measure

- Optimal \& explicit: Parametric rate $n^{-1 / 2} \&$ concrete error bounds
- Extensions: Readily adapted for $I\left(Y ; T_{\ell}\right)$ and $I\left(T_{k} ; T_{\ell}\right)$ estimation

Future Goals: Improve scalability in $d_{\ell} \&$ fast computational algorithm

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN $w /$ bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Estimator: Propagate samples \& Gaussian conv. w/ empirical measure

- Optimal \& explicit: Parametric rate $n^{-1 / 2} \&$ concrete error bounds
- Extensions: Readily adapted for $I\left(Y ; T_{\ell}\right)$ and $I\left(T_{k} ; T_{\ell}\right)$ estimation

Future Goals: Improve scalability in $d_{\ell} \&$ fast computational algorithm

* Scalability: Manifold hypothesis and/or lower dimensional embeddings

Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), $\sigma>0$, and $\ell=1, \ldots, L$:

$$
\inf _{\text {estimator } \hat{I}_{\sigma}} \sup _{P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)} \mathbb{E}\left|I\left(X ; T_{\ell}\right)-\hat{I}_{\sigma}\left(X^{n}, f_{1}, \ldots, f_{\ell}\right)\right| \leq C_{\sigma, d_{\ell}} \cdot n^{-\frac{1}{2}}
$$

where $X^{n}:=\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { i.i.d. }}{\sim} P_{X}$ and $C_{\sigma, d_{\ell}}=e^{\Theta\left(d_{\ell}\right)}$.

Estimator: Propagate samples \& Gaussian conv. w/ empirical measure

- Optimal \& explicit: Parametric rate $n^{-1 / 2} \&$ concrete error bounds
- Extensions: Readily adapted for $I\left(Y ; T_{\ell}\right)$ and $I\left(T_{k} ; T_{\ell}\right)$ estimation

Future Goals: Improve scalability in $d_{\ell} \&$ fast computational algorithm

* Scalability: Manifold hypothesis and/or lower dimensional embeddings
\circledast Algorithms: Integrate high dimensional Gaussian conv. into DNN arch.

MI Compression vs. Clustering of Representations
Noisy version of DNN from [Shwartz-Tishby'17]:

MI Compression vs. Clustering of Representations

 Noisy version of DNN from [Shwartz-Tishby'17]:- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

MI Compression vs. Clustering of Representations

 Noisy version of DNN from [Shwartz-Tishby'17]:- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

MI Compression vs. Clustering of Representations

 Noisy version of DNN from [Shwartz-Tishby'17]:- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

MI Compression vs. Clustering of Representations

 Noisy version of DNN from [Shwartz-Tishby'17]:- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP

* weight orthonormality regularization

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple experiments

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

Consequences and Future Goals: $I\left(X ; T_{\ell}\right)$ quantifies rep. complexity

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

Consequences and Future Goals: $I\left(X ; T_{\ell}\right)$ quantifies rep. complexity
\circledast Prove gen. bounds: $\mathbb{P}\left(\operatorname{gen}\left(X^{n}, Y^{n}, \mathcal{L}\right)>\frac{2^{O\left(I\left(X ; T_{\ell}\right)\right)}+\delta}{\sqrt{n}}\right) \lesssim e^{-O\left(\delta^{2}\right)}$

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

Consequences and Future Goals: $I\left(X ; T_{\ell}\right)$ quantifies rep. complexity
\circledast Prove gen. bounds: $\mathbb{P}\left(\operatorname{gen}\left(X^{n}, Y^{n}, \mathcal{L}\right)>\frac{2^{O\left(I\left(X ; T_{\ell}\right)\right)}+\delta}{\sqrt{n}}\right) \lesssim e^{-O\left(\delta^{2}\right)}$

* Regularization and prunning: Algorithmic \& architectural advances

MI Compression vs. Clustering of Representations

Noisy version of DNN from [Shwartz-Tishby'17]:

- Binary Classification: 12-bit input \& 12-10-7-5-4-3-2 tanh MLP
- Verified in multiple experiments
\Longrightarrow Compression of $I\left(X ; T_{\ell}\right)$ driven by clustering of representations

Consequences and Future Goals: $I\left(X ; T_{\ell}\right)$ quantifies rep. complexity
\circledast Prove gen. bounds: $\mathbb{P}\left(\operatorname{gen}\left(X^{n}, Y^{n}, \mathcal{L}\right)>\frac{2^{O\left(I\left(X ; T_{\ell}\right)\right)}+\delta}{\sqrt{n}}\right) \lesssim e^{-O\left(\delta^{2}\right)}$

* Regularization and prunning: Algorithmic \& architectural advances
* Visualization and interpretability: Heatmap of DNN neural activity

Mutual Information Heatmap Example

Noisy CNN for MNIST: Classification of hand-written digits

Mutual Information Heatmap Example

Noisy CNN for MNIST: Classification of hand-written digits

$I\left(Y ; T_{2}(k) \mid Y=y\right)$

$$
I\left(Y ; T_{3}(k)\right)
$$

Part II:

Smooth Statistical Distances for High-Dimensional Learning and Inference

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution
Method: Complicated transformation of a simple latent variable

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution
Method: Complicated transformation of a simple latent variable

- Latent variable $Z \sim Q_{Z} \in \mathcal{P}\left(\mathbb{R}^{p}\right)$, $p \ll d$

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution
Method: Complicated transformation of a simple latent variable

- Latent variable $Z \sim Q_{Z} \in \mathcal{P}\left(\mathbb{R}^{p}\right)$, $p \ll d$
- Expand Z to \mathbb{R}^{d} space via (random) transformation $Q_{X \mid Z}^{(\theta)}$

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution
Method: Complicated transformation of a simple latent variable

- Latent variable $Z \sim Q_{Z} \in \mathcal{P}\left(\mathbb{R}^{p}\right)$, $p \ll d$
- Expand Z to \mathbb{R}^{d} space via (random) transformation $Q_{X \mid Z}^{(\theta)}$
\Longrightarrow Generative model: $Q_{\theta}(\cdot):=\int_{\mathbb{R}^{p}} Q_{X \mid Z}^{(\theta)}(\cdot \mid z) \mathrm{d} Q_{Z}(z)$

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution
Method: Complicated transformation of a simple latent variable

- Latent variable $Z \sim Q_{Z} \in \mathcal{P}\left(\mathbb{R}^{p}\right)$, $p \ll d$
- Expand Z to \mathbb{R}^{d} space via (random) transformation $Q_{X \mid Z}^{(\theta)}$
\Longrightarrow Generative model: $Q_{\theta}(\cdot):=\int_{\mathbb{R}^{p}} Q_{X \mid Z}^{(\theta)}(\cdot \mid z) \mathrm{d} Q_{Z}(z)$

Implicit (Latent Variable) Generative Models

Goal: Learn a model $Q_{\theta} \approx P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ to approximate data distribution
Method: Complicated transformation of a simple latent variable

- Latent variable $Z \sim Q_{Z} \in \mathcal{P}\left(\mathbb{R}^{p}\right)$, $p \ll d$
- Expand Z to \mathbb{R}^{d} space via (random) transformation $Q_{X \mid Z}^{(\theta)}$ \Longrightarrow Generative model: $Q_{\theta}(\cdot):=\int_{\mathbb{R}^{p}} Q_{X \mid Z}^{(\theta)}(\cdot \mid z) \mathrm{d} Q_{Z}(z)$

Minimum Distance Estimation: Solve

$$
\theta^{\star} \in \underset{\theta}{\operatorname{argmin}} \delta\left(P, Q_{\theta}\right)
$$

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1 st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: $\mathrm{W}_{1}(P, Q):=\inf _{\pi_{X, Y} \in \Pi(P, Q)} \mathbb{E}_{\pi}\|X-Y\|$

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: $\mathrm{W}_{1}(P, Q):=\inf _{\pi_{X, Y} \in \Pi(P, Q)} \mathbb{E}_{\pi}\|X-Y\|$

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: $\mathrm{W}_{1}(P, Q):=\inf _{\pi_{X, Y} \in \Pi(P, Q)} \mathbb{E}_{\pi}\|X-Y\|$

Comments:

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1 st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: $\mathrm{W}_{1}(P, Q):=\inf _{\pi_{X, Y} \in \Pi(P, Q)} \mathbb{E}_{\pi}\|X-Y\|$

Comments:

- Robustness to Supp. Mismatch: $\mathrm{W}_{1}(P, Q)<\infty, \forall P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: $\mathrm{W}_{1}(P, Q):=\inf _{\pi_{X, Y} \in \Pi(P, Q)} \mathbb{E}_{\pi}\|X-Y\|$

Comments:

- Robustness to Supp. Mismatch: $\mathrm{W}_{1}(P, Q)<\infty, \forall P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$
- Metric: $\left(\mathcal{P}_{1}\left(\mathbb{R}^{d}\right), W_{1}\right)$ is metric space (metrizes weak convergence)

The 1-Wasserstein Distance

Setup: $P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ (subscript for finite 1st moments)

- Coupling: $\Pi(P, Q)=\left\{\pi_{X, Y} \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \pi_{X}=P \& \pi_{Y}=Q\right\}$
- Cost: $c(x, y)=\|x-y\|$ for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein distance: $\mathrm{W}_{1}(P, Q):=\inf _{\pi_{X, Y} \in \Pi(P, Q)} \mathbb{E}_{\pi}\|X-Y\|$

Comments:

- Robustness to Supp. Mismatch: $\mathrm{W}_{1}(P, Q)<\infty, \forall P, Q \in \mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$
- Metric: $\left(\mathcal{P}_{1}\left(\mathbb{R}^{d}\right), W_{1}\right)$ is metric space (metrizes weak convergence)
- Duality: $\mathrm{W}_{1}(P, Q)=\sup \mathbb{E}_{P}[f]-\mathbb{E}_{Q}[f] \Longrightarrow \mathbf{W}$-GAN (minimax)

From Duality to Generative Adversarial Networks

$\underline{\text { Dual Representation: }} \quad \mathrm{W}_{1}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{P} f(X)-\mathbb{E}_{Q} f(Y)$

From Duality to Generative Adversarial Networks

$\underline{\text { Dual Representation: }} \quad \mathrm{W}_{1}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{P} f(X)-\mathbb{E}_{Q} f(Y)$
GANs [Goodfellow et al'14]:

From Duality to Generative Adversarial Networks

$\underline{\text { Dual Representation: }} \mathrm{W}_{1}(\boldsymbol{P}, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X})-\mathbb{E}_{Q} f(Y)$
GANs [Goodfellow et al'14]:

- P (X (real) data sample)

From Duality to Generative Adversarial Networks

Dual Representation: $\quad \mathrm{W}_{1}(\boldsymbol{P}, \boldsymbol{Q})=\sup \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X})-\mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$ $f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)$

GANs [Goodfellow et al'14]:

- P (X (real) data sample)
- $Q=Q_{\theta} \quad\left(Y=g_{\theta}(Z)\right.$ gen. sample $)$

From Duality to Generative Adversarial Networks

$\underline{\text { Dual Representation: }} \mathrm{W}_{1}(\boldsymbol{P}, \boldsymbol{Q})=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X})-\mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$
GANs [Goodfellow et al 14]:

- P (X (real) data sample)
- $Q=Q_{\theta} \quad\left(Y=g_{\theta}(Z)\right.$ gen. sample $)$
- $f=d_{\varphi} \quad\left(L i p_{1}\right.$ constraint $)$

From Duality to Generative Adversarial Networks

$\underline{\text { Dual Representation: }} \mathrm{W}_{1}(\boldsymbol{P}, \boldsymbol{Q})=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X})-\mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$
GANs [Goodfellow et al'14]:

- P (X (real) data sample)
- $Q=Q_{\theta} \quad\left(Y=g_{\theta}(Z)\right.$ gen. sample $)$
- $f=d_{\varphi} \quad\left(L_{i p}\right.$ constraint $)$

From Duality to Generative Adversarial Networks

$\underline{\text { Dual Representation: }} \quad \mathrm{W}_{1}(\boldsymbol{P}, \boldsymbol{Q})=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X})-\mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$
GANs [Goodfellow et al'14]:

- P (X (real) data sample)
- $Q=Q_{\theta} \quad\left(Y=g_{\theta}(Z)\right.$ gen. sample $)$
- $f=d_{\varphi} \quad\left(L i p_{1}\right.$ constraint $)$

$$
\inf _{\theta} \mathbb{W}_{1}\left(P, Q_{\theta}\right) \cong \inf _{\theta} \sup _{\varphi: d_{\varphi} \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E} d_{\varphi}(X)-\mathbb{E} d_{\varphi}\left(g_{\theta}(Z)\right)
$$

Generative Adversarial Networks

NVIDIA's ProGAN 2.0 [Karras et al'19]

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find $\left.\theta^{\star}\right)$

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find θ^{\star})
Estimation: We don't have P but data

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find $\left.\theta^{\star}\right)$
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find $\left.\theta^{\star}\right)$
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Empirical distribution $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find θ^{\star})
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Empirical distribution $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
\Longrightarrow Inherently we work with $\mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find θ^{\star})
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Empirical distribution $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
\Longrightarrow Inherently we work with $\mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$

Optimization: Can solve $\inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$ approximately

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find $\left.\theta^{\star}\right)$
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Empirical distribution $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
\Longrightarrow Inherently we work with $\mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$

Optimization: Can solve $\inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$ approximately
Find $\hat{\theta}_{n}$ s.t. $\mathrm{W}_{1}\left(P_{n}, Q_{\hat{\theta}_{n}}\right) \leq \inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)+\epsilon$

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find $\left.\theta^{\star}\right)$
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Empirical distribution $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
\Longrightarrow Inherently we work with $\mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$

Optimization: Can solve $\inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$ approximately
Find $\hat{\theta}_{n}$ s.t. $\mathrm{W}_{1}\left(P_{n}, Q_{\hat{\theta}_{n}}\right) \leq \inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)+\epsilon$
Generalization: $\quad \mathrm{W}_{1}\left(P, Q_{\hat{\theta}_{n}}\right)-\mathrm{OPT} \leq 2 \mathrm{~W}_{1}\left(P_{n}, P\right)+\epsilon$

Implicit Generative Models: Generalization

Goal: Solve OPT $:=\inf _{\theta} \mathrm{W}_{1}\left(P, Q_{\theta}\right)$ exactly (find $\left.\theta^{\star}\right)$
Estimation: We don't have P but data

- $\left\{X_{i}\right\}_{i=1}^{n}$ are i.i.d. samples from $P \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Empirical distribution $P_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}$
\Longrightarrow Inherently we work with $\mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$

Optimization: Can solve $\inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)$ approximately
Find $\hat{\theta}_{n}$ s.t. $\mathrm{W}_{1}\left(P_{n}, Q_{\hat{\theta}_{n}}\right) \leq \inf _{\theta} \mathrm{W}_{1}\left(P_{n}, Q_{\theta}\right)+\epsilon$
Generalization: $\quad \mathrm{W}_{1}\left(P, Q_{\hat{\theta}_{n}}\right)-\mathrm{OPT} \leq 2 \mathrm{~W}_{1}\left(P_{n}, P\right)+\epsilon$
\Longrightarrow Boils down to empirical approximation question under $\mathbf{W}_{\mathbf{1}}$

Empirical Approximation in High Dimensions

Question: What can we say about $\mathrm{W}_{1}\left(P_{n}, P\right)$?

Empirical Approximation in High Dimensions

Question: What can we say about $\mathrm{W}_{1}\left(P_{n}, P\right)$?

Theorem (Dudley'69)

For $d \geq 3$ and $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \ni P \ll \operatorname{Leb}\left(\mathbb{R}^{d}\right): \mathbb{E W}_{1}\left(P_{n}, P\right) \asymp n^{-\frac{1}{d}}$

Empirical Approximation in High Dimensions

Question: What can we say about $\mathrm{W}_{1}\left(P_{n}, P\right)$?

Theorem (Dudley'69)
For $d \geq 3$ and $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \ni P \ll \operatorname{Leb}\left(\mathbb{R}^{d}\right): \mathbb{E W}_{1}\left(P_{n}, P\right) \asymp n^{-\frac{1}{d}}$

Empirical Approximation in High Dimensions

Question: What can we say about $\mathrm{W}_{1}\left(P_{n}, P\right)$?

Theorem (Dudley'69)
For $d \geq 3$ and $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \ni P \ll \operatorname{Leb}\left(\mathbb{R}^{d}\right): \mathbb{E W}_{1}\left(P_{n}, P\right) \asymp n^{-\frac{1}{d}}$

* Implication: Too slow given dimensionality of real-world data

Empirical Approximation in High Dimensions

Question: What can we say about $\mathrm{W}_{1}\left(P_{n}, P\right)$?

Theorem (Dudley'69)
For $d \geq 3$ and $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right) \ni P \ll \operatorname{Leb}\left(\mathbb{R}^{d}\right): \mathbb{E W}_{1}\left(P_{n}, P\right) \asymp n^{-\frac{1}{d}}$

* Implication: Too slow given dimensionality of real-world data
* Question: Can smoothing help alleviates CoD?

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ is a d-dimensional isotropic Gaussian.

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right),
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$
Properties: Preserves structure but enhances statistical convergence

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$
Properties: Preserves structure but enhances statistical convergence

- Retain duality: $\mathrm{W}_{1}^{(\sigma)}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}[f(X+Z)]-\mathbb{E}[f(Y+Z)]$

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} \mathrm{I}_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$
Properties: Preserves structure but enhances statistical convergence

- Retain duality: $\mathrm{W}_{1}^{(\sigma)}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}[f(X+Z)]-\mathbb{E}[f(Y+Z)]$
- Inherit metric structure: Topologically equivalent to unsmooth W_{1}

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$
Properties: Preserves structure but enhances statistical convergence

- Retain duality: $\mathrm{W}_{1}^{(\sigma)}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}[f(X+Z)]-\mathbb{E}[f(Y+Z)]$
- Inherit metric structure: Topologically equivalent to unsmooth W_{1}
- Stability: $\left|\mathrm{W}_{1}^{(\sigma)}(P, Q)-\mathrm{W}_{1}(P, Q)\right| \leq 2 \sigma \sqrt{d}$ for all P, Q

Smooth 1-Wasserstein Distance

Definition (Goldfeld-Greenewald'19)

For $\sigma \geq 0$, the smooth 1-Wasserstein distance between P and Q is

$$
\mathrm{W}_{1}^{(\sigma)}(P, Q):=\mathrm{W}_{1}\left(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}\right)
$$

where $\mathcal{N}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$ is a d-dimensional isotropic Gaussian.

Interpretation: $X \sim P, Y \sim Q$ and $Z_{1}, Z_{2} \sim \mathcal{N}_{\sigma}$
$X \perp Z_{1} \Longrightarrow X+Z_{1} \sim P * \mathcal{N}_{\sigma} \quad \& \quad Y \perp Z_{2} \Longrightarrow Y+Z_{2} \sim Q * \mathcal{N}_{\sigma}$
Properties: Preserves structure but enhances statistical convergence

- Retain duality: $\mathrm{W}_{1}^{(\sigma)}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}\left(\mathbb{R}^{d}\right)} \mathbb{E}[f(X+Z)]-\mathbb{E}[f(Y+Z)]$
- Inherit metric structure: Topologically equivalent to unsmooth W_{1}
- Stability: $\left|\mathrm{W}_{1}^{(\sigma)}(P, Q)-\mathrm{W}_{1}(P, Q)\right| \leq 2 \sigma \sqrt{d}$ for all P, Q
- Fast emp. convergence: $\mathrm{W}_{1}^{(\sigma)}\left(P_{n}, P\right) \asymp n^{-1 / 2}$ in all dimensions!

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances
\Longrightarrow Compatible for high-dimensional learning and inference!

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances
\Longrightarrow Compatible for high-dimensional learning and inference!
Future Goals: More distances, kernel, and efficient algorithms

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances
\Longrightarrow Compatible for high-dimensional learning and inference!
Future Goals: More distances, kernel, and efficient algorithms

* More distances: p-Wasserstein distances, f-divergences, and IPMs

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances
\Longrightarrow Compatible for high-dimensional learning and inference!
Future Goals: More distances, kernel, and efficient algorithms

* More distances: p-Wasserstein distances, f-divergences, and IPMs
* More kernels: Optimize over choice of smoothing kernel

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances
\Longrightarrow Compatible for high-dimensional learning and inference!
Future Goals: More distances, kernel, and efficient algorithms

* More distances: p-Wasserstein distances, f-divergences, and IPMs
* More kernels: Optimize over choice of smoothing kernel
* Efficient algorithms: Fast computational methods

Smooth Distances for Generative Modeling

Smooth Generative Models: MDE wrt smooth distance
(1) Generalization: $\mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\hat{\theta}_{n}}\right)-\inf _{\theta} \mathrm{W}_{1}^{(\sigma)}\left(P, Q_{\theta}\right) \lesssim n^{-\frac{1}{2}}, \quad \forall d$
(2) Limit distributions: Asymptotic dist. of MDE and empirical error
(3) Inequalities: Web of relationships between smooth distances
\Longrightarrow Compatible for high-dimensional learning and inference!
Future Goals: More distances, kernel, and efficient algorithms

* More distances: p-Wasserstein distances, f-divergences, and IPMs
* More kernels: Optimize over choice of smoothing kernel
* Efficient algorithms: Fast computational methods

Next-generation systems: benchmark performance \& resource efficiency

Additional Research Topics

Neural Estimation:

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

- Distill storage question from particular tech. \& incorporate physics

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

- Distill storage question from particular tech. \& incorporate physics
- Study information capacity (systems size, storage time, temp.)

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

- Distill storage question from particular tech. \& incorporate physics
- Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

- Distill storage question from particular tech. \& incorporate physics
- Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

- Beneficial properties but impractical assumptions (known channel)

Additional Research Topics

Neural Estimation:

- Approx. discriminator by a NN \& optimize via gradient methods
- Performance guarantees? Approximation vs. estimation tradeoffs

Learning under privacy:

- Adapt classic learning setup to incorporate privacy constraints
- Theory: Bound the risk when compared to non-privatized learner
- Algorithms: Key-based schemes, Hadamard codes, etc.

Data Storage in Interacting Particle Systems:

- Distill storage question from particular tech. \& incorporate physics
- Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

- Beneficial properties but impractical assumptions (known channel)
- Bridge gaps via adversarial models \& connect to adversarial learning

Want to know more?

Website: http://people.ece.cornell.edu/zivg/

Email: goldfeld@cornell.edu

Office: 322 Rhodes Hall

Spring 2021: ECE 6970 Statistical Distances for Machine Learning

Thank you!

