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‘Learning’ Objective: Loss, info. measure, distance...

Estimation: We don’t have P but i.i.d. data {Xi}n
i=1

=⇒ Estimate objective based on Pn := 1
n

n
∑

i=1
δXi

⊛⊛⊛ Estimation error is typically n−1/d

Smoothing: Use P ∗Nσ and Pn∗Nσ, Nσ = N (0,σ2Id) (X+Z replaces X)

Unsmoothed ( = 0) Large  Small  

Alleviates CoD: Enhancing empirical convergence to n−1/2 ∀d
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Part I:

Measuring Information Flows in

Smoothed Deep Neural Networks
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Unprecedented practical success

Lacking Theory: Macroscopic understanding of deep learning

Label Feature/Image Input Layer

Cat

Dog

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Output Layer

C%

D%

Internal

Representation

What drives the evolution of internal representations?

What are properties of learned representations?

How fully trained networks process information?
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[

I(A; B) = DKL(PA,B||PA ⊗ PB)
Discrete
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Information Flows: I(X;Tℓ), I(Y ;Tℓ), and I(Tk; Tℓ).

Data Processing Inequality: I(Y ;Tℓ) ≤ I(X;Tℓ)

 

(Label)

  

(Feature/Image)

=

(Input Layer)

Cat

Dog

  

(Hidden Layer 1)

  

(Hidden Layer )

  

(Hidden Layer )

=

(Output Layer)

5/20



Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

 

(Label)

  

(Feature/Image)

=

(Input Layer)

Cat

Dog

  

(Hidden Layer 1)

  

(Hidden Layer )

  

(Hidden Layer )

=

(Output Layer)

6/20



Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

 

(Label)

  

(Feature/Image)

=

(Input Layer)

Cat

Dog

  

(Hidden Layer 1)

  

(Hidden Layer )

  

(Hidden Layer )

=

(Output Layer)

6/20



Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

 

(Label)

  

(Feature/Image)

=

(Input Layer)

Cat

Dog

  

(Hidden Layer 1)

  

(Hidden Layer )

  

(Hidden Layer )

=

(Output Layer)

6/20



Information Flows in DNNs: Empirical Observations

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)

Training: Track
(

I(Y ; Tℓ), I(X; Tℓ)
)

dynamics

1 Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

2 Compression: I(X; Tℓ) slowly drops (long)

[Shwartz-Tishby’17]
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Smoothing Inject (small) Gaussian noise to neurons’ output

[Goldfeld-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’19]

Formally: Tℓ = Sℓ + Zℓ, where Sℓ := fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

=⇒ Good proxy of det. DNN wrt performance & learned representations

=⇒ Mutual information can be efficiently estimated over noisy DNN!

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·
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Mutual Information Estimation - Convergence Rate

Theorem (Goldfeld-Greenewald-Weed-Polyanskiy’20)

For a DNN w/ bdd. activations (tanh/sigmoid), σ > 0, and ℓ = 1, . . . , L:

inf
estimator Îσ

sup
PX∈P(Rd)

E

∣

∣

∣I(X; Tℓ) − Îσ(Xn, f1, . . . , fℓ)
∣

∣

∣ ≤ Cσ,dℓ
· n− 1

2

where Xn := (X1, . . . , Xn)
i.i.d.∼ PX and Cσ,dℓ

= eΘ(dℓ).
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Extensions: Readily adapted for I(Y ; Tℓ) and I(Tk; Tℓ) estimation

Future Goals: Improve scalability in dℓ & fast computational algorithm

⊛⊛⊛ Scalability: Manifold hypothesis and/or lower dimensional embeddings

⊛⊛⊛ Algorithms: Integrate high dimensional Gaussian conv. into DNN arch.
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Metric:
(

P1(Rd), W1

)

is metric space (metrizes weak convergence)

Duality: W1(P, Q) = sup
f∈Lip1(Rd)

EP [f ] −EQ[f ] =⇒ W-GAN (minimax)
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Generative Adversarial Networks
NVIDIA’s ProGAN 2.0 [Karras et al’19]
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Generalization: W1
(
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=⇒ Boils down to empirical approximation question under W1
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Empirical Approximation in High Dimensions

Question: What can we say about W1(Pn, P )?

⊛⊛⊛ Implication: Too slow given dimensionality of real-world data

⊛⊛⊛ Question: Can smoothing help alleviates CoD?

Theorem (Dudley’69)
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Stability:
∣
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Fast emp. convergence: W
(σ)
1 (Pn, P ) ≍ n−1/2 in all dimensions!
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Next-generation systems: benchmark performance & resource efficiency
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Distill storage question from particular tech. & incorporate physics

Study information capacity (systems size, storage time, temp.)

Physical Layer Security:

Beneficial properties but impractical assumptions (known channel)

Bridge gaps via adversarial models & connect to adversarial learning
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Want to know more?

Website: http://people.ece.cornell.edu/zivg/

Email: goldfeld@cornell.edu

Office: 322 Rhodes Hall

Spring 2021: ECE 6970 Statistical Distances for Machine Learning

Thank you!
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