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Rich IT literature
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Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al’15, Wei-Lee-Ma’18]

◮ Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio’14, Poggio-Mhaskar-Rosasco-Miranda-Liao’17]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky1’15, Shwartz-Tishby’17, Saxe et al.’18]

⋆ Goal: Explain ‘compression’ in Information Bottleneck framework
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IB Theory: Track MI pairs
(
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Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

Compression: I(X; Tℓ) slowly drops (long)

[Shwartz-Tishby’17]
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Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

Past Works:

[Shwartz-Tishby’17,

Saxe et al.’18]
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Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

⊛⊛⊛ Real Problem: I(X; Tℓ) is meaningless in det. DNNs
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Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Operational Perspective:

Performance & learned representations similar to det. DNNs (β ≈ 10−1)
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Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations
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(
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)
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(
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)
compresses

✗ Incapable of accurately estimating MI values

✓ Does track clustering!

=⇒ Past works were not showing MI but clustering (via binned-MI)!
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Noisy DNN Framework: Studying IT quantities over DNNs

◮ Developed estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

=⇒ Clustering is the common phenomenon of interest!
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Interactions =⇒ Stochastic dynamics

Setup: Design initial configuration and recover data after t time
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[G.-Bresler-Polyanskiy’18] Performance benchmarks & hard-drive designs
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Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Stochastic connectivity patterns (random / small-world / free-scale)

Local interactions distilled from primitive results

Q: Reliable (& secure) information passing protocols? Fundamental limits?
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∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi
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ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)
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ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P ) , h(P ∗ ϕ)

Mixture: ĥSP is the diff. entropy of a known Gaussian mixture

Computing: Can be efficiently computed via MC integration
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∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.



The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n− αs
βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P ) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)
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Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

=⇒ Past works were not showing MI but clustering (via binned-MI)!


