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Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’'14, Choromanska-et al’15, Wei-Lee-Ma'18]

> Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]

> Information Bottleneck Theory
[Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe et al.’18]

% Goal: Explain ‘compression’ in Information Bottleneck framework e
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IB Theory Claim: Training comprises 2 phases
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Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
= I(X;Ty) is independent of the DNN parameters

Why?

o Continuous X:

[(X;Ty) = MTy) — h(fo(X)|X) = oo

o Discrete X: The map X +— Ty is injective* — I(X;T;) = H(X)

Past Works:

[Shwartz-Tishby'17, 5o
Saxe et al.'18] Sos
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o Smaller bins = Closer to truth: I(X;T;) = In(2'?) ~ 8.31
o Binning introduces “noise” into estimator (not present in the DNN)
o Plots showing estimation errors

@ Real Problem: I(X;Ty) is meaningless in det. DNNs
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[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

o Formally: T, = fo(T,_1) + Zs, where Z, ~ N(0, %)

Ty_q

L (W) Sp(k) Ty (k)

Zﬂ(k‘) ~ N(0a62)
= X +— Ty is a parametrized channel that depends on DNN param.!

= I(X;Ty) is a function of weights and biases!

o Operational Perspective:

Performance & learned representations similar to det. DNNs (3 ~ 1071)
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o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X = )

m
o Structure: S, 1 7, = T;=S;+Z;~Pxyp

@ Know the distribution ¢ of Z, (noise injected by design)

® Ps, and Pg, x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass
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Mutual Information Estimation in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)
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Differential Entropy Estimation under Gaussian Convolutions
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class) and knowledge of ¢ (PDF of N(0, 5%1,)).

9/14



Mutual Information Estimation in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7‘1—} f2 —VSQH?—P T2

Z1 Z2

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

9/14



Mutual Information Estimation in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X—> f1 —7814}?—?111—} f2 —VSQAP?—P Ty -

Z1 Z2

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

» Efficient & parallelizable estimator h(P, * ) =~ h(P * )

9/14



Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy 2 f(T;_1)

= Ty=S/+2Zsy Zy~N(0,3)

X —>

f1

f2

—»Sla%ﬂ—»

A

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

» Efficient & parallelizable estimator h(P, * ) =~ h(P * )

» Guarantees: Estimation risk is O(1/y/n) (all constants explicit)*

* Exponentially large in d though constants, which is provably necessary.
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Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—rﬂ—» fa —VSQAP?—P Ty -

Zl Z2

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

» Efficient & parallelizable estimator h(P, * ) =~ h(P * )
» Guarantees: Estimation risk is O(1/y/n) (all constants explicit)*
> Faster Rate: kNN/KDE est. via ‘noisy’ samples attain O (n_ﬁ‘d>
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Back to Noisy DNNs
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X S .
tanh(wX + b)|2w:b
o Input: X ~ Unif{#1,43} —ftanh(wX +b)
Xy 2{-3,-1,1} , X, £ {3}
Y Y Z ~ N(07 182)

@ Center & sharpen transition ( <= increase w and keep b = —2w)
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I(X;T,) Dynamics - lllustrative Minimal

Single Neuron Classification:

o Input: X ~ Unif{£1, £3}
Xye1 2 {-3,-1,1}, X,=1 = {3}

X—»tanh(wX +0b)

L] Correct classification performance
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o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1} , X, £ {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

Z ~N(0,5%)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
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Single Neuron Classification:
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o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1} , X, £ {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

Z ~N(0,5%)
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I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif{+£1,£3}

Xye1 2 {-3,-1,1} , X, £ {3}

|

tanh(wX + b)

Z ~N(0,5%)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols

Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}
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o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

o Noise std.: Set to § = 0.01
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
o Noise std.: Set to § = 0.01

o Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations

11/14
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Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7y) and H(Bin(T})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(T;)) compresses
[l Incapable of accurately estimating MI values

L] Does track clustering!

= Past works were not showing MI but clustering (via binned-MI)!
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o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

> Developed estimator for accurate MI estimation over this framework

> Clustering of the learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

——> Clustering is the common phenomenon of interest!
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Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

@ Hard-drive topology = Graph

@ Interactions = Stochastic dynamics

Setup: Design initial configuration and recover data after ¢ time

m ﬁ Xo t time
ﬁ( Enc system

dynamics
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|G.-Bresler-Polyanskiy’18| Performance benchmarks & hard-drive designs
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Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

@ Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks
@ Stochastic connectivity patterns (random / small-world / free-scale)

@ Local interactions distilled from primitive results

Q: Reliable (& secure) information passing protocols? Fundamental limits?



Mutual Information in Noisy DNNs

Noisy DNN:

X — > f1 —»Sla?—»ﬂ—» fz —VSQH?—P T2

Zl Z2




Mutual Information in Noisy DNNs

Noisy DNN:

S —

X-‘-’: fi—>5 : Ti—>{ fo >S5 Ty ---
: !
| |
| |
|

Z1 Zy




Mutual Information in Noisy DNNs

Noisy DNN:

S S




Mutual Information in Noisy DNNs

Noisy DNN: Sg = fg(Tg_l)

S S




Mutual Information in Noisy DNNs

Noisy DNN: S, = fo(Ty—) = Ty=Se+2Zy, Zp~ N(O,,BZI)

S S




Mutual Information in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

S S

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset



Mutual Information in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

S S

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

& Py, and Pr,x are extremely complicated to compute/evaluate



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

o Assume: X ~ Unif(X), where X £ {x;}™, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)
& Py, and Pr,x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Z1 Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)
& Py, and Pr,x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -
I

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T to

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T to

L2 A 7o

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T to

T2 Z Zs to o

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T te1

11.32 Z Zs t{,z

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -
Lq

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; te

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values



Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; te

Li A 7o

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values



Mutual Information in Noisy DNNs
Zy ~ N(0, %)

Noisy DNN: Sy 2 fo(T)_1) = Ty=S¢+ Z,

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; 0
£+

Z; Zl

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values



Mutual Information in Noisy DNNs
Zy ~ N(0, %)

Noisy DNN: Sy 2 fo(T)_1) = Ty=S¢+ Z,

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; 0
£+

Z; Zl

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values



General-Purpose Differential Entropy Estimators

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7'1—} fz —VSQH?—P T2

Zl Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:



General-Purpose Differential Entropy Estimators

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7‘1—} f2 —VSQH?—P T2

Z1 Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density



General-Purpose Differential Entropy Estimators

Noisy DNN: Sg = fg(Tg_l)

X—Pfl

= Ty =50+ Zs Zy~N(0,pB)

f2

—»Sla%ﬂ—»

A

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable



General-Purpose Differential Entropy Estimators

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X—> f1 —7814}?—?111—} f2 —VSQAP?—P Ty -

Z1 Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable

@ 2 Works Drop Assumption:



General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Z1 Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]



General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]



General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

= Estimate I(X;T}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

o Assume: supp=1[0,1]¢ & Periodic BC & s€(0,2]



General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —7514}?—le—> fa —PSQAP?—P Ty -

Zl Z2

= Estimate I(X;T}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

o Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*

* Except sub-Gaussian result from [Han-Jiao-Weissman-Wu'17]
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= Estimate I(X;T}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
o Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*

o Rate: Risk <O (n_ﬁ), w/ a, 3 € N, s smoothness, d dimension
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@ Exploit structure: We know Ty = Sy + Z; ~ P * ¢ and:
o Geniel: Sample P = Ps, and P = Pg,|x—,, (sample T;_; & apply f)

o Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of o (PDF of N(0, 31y)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)
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Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeF,

WP x ) = h(S",3)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =

3=
AMS

s,

i=1

hsp(S™, B) £ h(Py * ¢)

Comments:

o Plug-in: hsp is just plug-in est. for the functional To(P) £ h(Px o)
o Mixture: hgp is the diff. entropy of a known Gaussian mixture

o Computing: Can be efficiently computed via MC integration
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Theorem (ZG-Greenewald-Polyanskiy '18)
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The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

& ogn)4/
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0,/clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

9 Qutside R: Chi-squared distribution tail bounds

Comments:

o Faster rate than O (n_ﬁ) for kKNN/KDE est. via ‘noisy’ samples
o Explicit expression enables concrete error bounds in simulations

o Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)
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The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy:  hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, * )| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for z — xlogz & Jensen's ineq.
— Focus on analyzing IE‘(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
— E[P+p)@) - Bard@)] <er/E2E, 5= N (0,57)
» Plug back in & Convex analysis
= supE|hr(P*¢) — hR(P x )| <colog (M(R)) AMR)

n

o Qutside R: O (%) decay via Chi-squared distribution tail bounds
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Binning vs True Mutual Information

Comparing to Previously Shown Ml Plots:
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= Past works were not showing MI but clustering (via binned-Ml)!



