
Estimating the Information Flow in
Deep Neural Networks

Ziv Goldfeld

MIT

Information in the Modern Age & Complex Systems

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Social

Networks

Physical

Matter

Economic

Networks

Human

Brain

Earth’s

Climate

Physical

nomic

works

n

Eart

CCCCCCCCCCClim

Complex

Systems

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing
2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing
2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing

Emerging Technologies:

Shrink magnetic region per bit

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing

Emerging Technologies:

Shrink magnetic region per bit

Challenges:

Stabilization of written data

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing

Emerging Technologies:

Shrink magnetic region per bit

Challenges:

Stabilization of written data

Model & Study:

Interacting particle sys.

⇓

Storage capacity &

HDD designs

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing
2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing

Emerging Networks (IoT):

1) Decentralized & ad hoc

2) Varying connectivity

3) Cooperative components

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing

Emerging Networks (IoT):

1) Decentralized & ad hoc

2) Varying connectivity

3) Cooperative components

Building Blocks:

Rich IT literature

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing

Emerging Networks (IoT):

1) Decentralized & ad hoc

2) Varying connectivity

3) Cooperative components

Building Blocks:

Rich IT literature

Network Modeling:

Random graphs &

Actions based

on primitives

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

CommunicationProcessing
2/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al’15, Wei-Lee-Ma’18]

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al’15, Wei-Lee-Ma’18]

◮ Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio’14, Poggio-Mhaskar-Rosasco-Miranda-Liao’17]

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al’15, Wei-Lee-Ma’18]

◮ Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio’14, Poggio-Mhaskar-Rosasco-Miranda-Liao’17]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky1’15, Shwartz-Tishby’17, Saxe et al.’18]

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al’15, Wei-Lee-Ma’18]

◮ Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio’14, Poggio-Mhaskar-Rosasco-Miranda-Liao’17]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky1’15, Shwartz-Tishby’17, Saxe et al.’18]

3/14

Deep Neural Networks

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al’15, Wei-Lee-Ma’18]

◮ Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio’14, Poggio-Mhaskar-Rosasco-Miranda-Liao’17]

◮ Information Bottleneck Theory
[Tishby-Zaslavsky1’15, Shwartz-Tishby’17, Saxe et al.’18]

⋆ Goal: Explain ‘compression’ in Information Bottleneck framework
3/14

Setup and Preliminaries

Feedforward DNN for Classification:

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

IB Theory: Track MI pairs
(
I(X; Tℓ), I(Y ; Tℓ)

)
(information plane)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

Compression: I(X; Tℓ) slowly drops (long)

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

Compression: I(X; Tℓ) slowly drops (long)

[Shwartz-Tishby’17]

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

4/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X:

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h(Tℓ|X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h(Tℓ|X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

︸ ︷︷ ︸

=−∞

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X:

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆

⋆ For almost all weight matrices and bias vectors
5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

⋆ For almost all weight matrices and bias vectors
5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

Past Works:

[Shwartz-Tishby’17,

Saxe et al.’18]

5/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

)

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ)

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

6/14

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

⊛⊛⊛ Real Problem: I(X; Tℓ) is meaningless in det. DNNs

6/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’18]

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’18]

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’18]

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’18]

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’18]

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Operational Perspective:

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy’18]

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Operational Perspective:

Performance & learned representations similar to det. DNNs (β ≈ 10−1)
7/14

Mutual Information in Noisy DNNs

Mutual Information Estimation in Noisy DNNs

Noisy DNN:

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN:

X f1f1 S1S1

Z1Z1

T1 f2 S2

Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN:

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sℓ , fℓ(Tℓ−1)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

⊛⊛⊛ Know the distribution ϕ of Zℓ (noise injected by design)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

⊛⊛⊛ Know the distribution ϕ of Zℓ (noise injected by design)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

⊛⊛⊛ Know the distribution ϕ of Zℓ (noise injected by design)

⊛⊛⊛ PSℓ
and PSℓ|X are extremely complicated to compute/evaluate

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Structure: Sℓ ⊥ Zℓ =⇒ Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ

⊛⊛⊛ Know the distribution ϕ of Zℓ (noise injected by design)

⊛⊛⊛ PSℓ
and PSℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

8/14

Mutual Information Estimation in Noisy DNNs

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

9/14

Mutual Information Estimation in Noisy DNNs

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Estimation Results [G.-Greenewald-Polyanskiy’18]:

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

9/14

Mutual Information Estimation in Noisy DNNs

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Estimation Results [G.-Greenewald-Polyanskiy’18]:

◮ Efficient & parallelizable estimator h(P̂n ∗ ϕ) ≈ h(P ∗ ϕ)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

9/14

Mutual Information Estimation in Noisy DNNs

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Estimation Results [G.-Greenewald-Polyanskiy’18]:

◮ Efficient & parallelizable estimator h(P̂n ∗ ϕ) ≈ h(P ∗ ϕ)

◮ Guarantees: Estimation risk is O
(
1/

√
n
)

(all constants explicit)⋆

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

⋆ Exponentially large in d though constants, which is provably necessary.
9/14

Mutual Information Estimation in Noisy DNNs

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Estimation Results [G.-Greenewald-Polyanskiy’18]:

◮ Efficient & parallelizable estimator h(P̂n ∗ ϕ) ≈ h(P ∗ ϕ)

◮ Guarantees: Estimation risk is O
(
1/

√
n
)

(all constants explicit)⋆

◮ Faster Rate: kNN/KDE est. via ‘noisy’ samples attain O
(

n− a
b+d

)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

9/14

Back to Noisy DNNs

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:
X tanh(wX + b)

Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0

⊛⊛⊛ Center & sharpen transition (⇐⇒ increase w and keep b = −2w)
10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0 S5,−10

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0 S5,−10

✓ Correct classification performance
10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information:

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{
tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)

}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{
tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)

} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{
tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)

} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10/14

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Single Neuron Classification:

Input: X ∼ Unif{±1, ±3}
Xy=−1 , {−3, −1, 1} , Xy=1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN with symbols

Sw,b,
{
tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)

} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10
0

10
2

10
4

10
6

Epoch

0

0.5

1

1.5

M
u
tu

a
l
in

fo
rm

a
ti
o
n

ln(3)

ln(2)

ln(4)

10/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

⊛⊛⊛ weight orthonormality regularization
11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Verified in multiple additional experiments

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

11/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)
↑

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)
↓

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

⋆ When bin size chosen ∝ noise std. 12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

⋆ When bin size chosen ∝ noise std. 12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

✓ Does track clustering!

12/14

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(
Bin(Tℓ)

)
highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

✓ Does track clustering!

=⇒ Past works were not showing MI but clustering (via binned-MI)!

12/14

Summary

Reexamined Information Bottleneck Compression:

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Developed estimator for accurate MI estimation over this framework

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Developed estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Developed estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

13/14

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented (binned) I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ Developed estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

=⇒ Clustering is the common phenomenon of interest!

13/14

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

14/14

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

14/14

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

14/14

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

Feature Space Layer 4, Final epoch
Layer 6, Final epoch

DNN

Layer 5, Final epoch

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

◮ Design tool for DNN architectures

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

◮ Better understanding of internal representation evolution & final state

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

◮ Better understanding of internal representation evolution & final state

◮ Enhanced DNN training alg. (regularize intermediate layers wrt I(Y ; T))

14/14

[Czumaj-Peng-Sohler’15]

Future/Ongoing Clustering Inspired Research

Track Clustering in High-Dimensions:

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability

Role of Compression/Clustering:

◮ Is it necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

◮ Better understanding of internal representation evolution & final state

◮ Enhanced DNN training alg. (regularize intermediate layers wrt I(Y ; T))

(;)

14/14

[Czumaj-Peng-Sohler’15]

References

[1] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B.
Kingsbury and Y. Polyanskiy, “Estimating information flow in neural
networks,” Arxiv preprint https://arxiv.org/abs/1810.05728,
October 2018.

[2] Z. Goldfeld, K. Greenewald and Y. Polyanskiy, “Estimating differential
entropy under Gaussian convolutions,” Submitted to the IEEE
Transactions on Information Theory, October 2018.
Arxiv: https://arxiv.org/abs/1810.11589

[3] Z. Goldfeld, G. Bresler and Y. Polyanskiy, “Information storage in the
stochastic Ising model,” Submitted to the IEEE Transactions on
Information Theory, May 2018.
Arxiv: https://arxiv.org/abs/1805.03027

https://arxiv.org/abs/1810.05728
https://arxiv.org/abs/1810.11589
https://arxiv.org/abs/1805.03027

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach:

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Interactions

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Interactions =⇒ Stochastic dynamics

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Interactions =⇒ Stochastic dynamics

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Interactions =⇒ Stochastic dynamics

Setup: Design initial configuration and recover data after t time

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Interactions =⇒ Stochastic dynamics

Setup: Design initial configuration and recover data after t time

m
Enc

X0
t time
system

dynamics

Xt
Dec

m̂

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Emerging technologies drastically shrink magnetic region per bit

Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Hard-drive topology =⇒ Graph

Interactions =⇒ Stochastic dynamics

Setup: Design initial configuration and recover data after t time

m
Enc

X0
t time
system

dynamics

Xt
Dec

m̂

[G.-Bresler-Polyanskiy’18] Performance benchmarks & hard-drive designs

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Public vs. private vs. confidential transmissions

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Stochastic connectivity patterns (random / small-world / free-scale)

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Stochastic connectivity patterns (random / small-world / free-scale)

Local interactions distilled from primitive results

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Most devices are simple & low-complexity

Nodes constantly join and leave the network

Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks =⇒ Entire network

P2P, feedback, relay, uplink, downlink channels

Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Stochastic connectivity patterns (random / small-world / free-scale)

Local interactions distilled from primitive results

Q: Reliable (& secure) information passing protocols? Fundamental limits?

Mutual Information in Noisy DNNs

Noisy DNN:

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Noisy DNN:

X f1f1 S1S1

Z1Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Noisy DNN:

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Noisy DNN: Sℓ , fℓ(Tℓ−1)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1 tℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

x2

tℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

x2

tℓ,1

tℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

x2

...
...

tℓ,1

tℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi t
(i)
ℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

xi

t
(i)
ℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

xi

t
(i)
ℓ,1

t
(i)
ℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

xi
...

...

t
(i)
ℓ,1

t
(i)
ℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2]

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2] =⇒Inapplicable*

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

⋆ Except sub-Gaussian result from [Han-Jiao-Weissman-Wu’17]

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2] =⇒Inapplicable*

Rate: Risk ≤ O
(

n− αs
βs+d

)

, w/ α, β ∈ N, s smoothness, d dimension

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P) , h(P ∗ ϕ)

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P) , h(P ∗ ϕ)

Mixture: ĥSP is the diff. entropy of a known Gaussian mixture

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P) , h(P ∗ ϕ)

Mixture: ĥSP is the diff. entropy of a known Gaussian mixture

Computing: Can be efficiently computed via MC integration

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣

≤ 1

2(4πβ2)
d

4

log






n
(

2 + 2β
√

(2 + ǫ) log n
)d

(πβ2)
d

2






(

2+2β
√

(2 + ǫ) log n
)d

2 1√
n

+

(

c2

β,d +
2cβ,dd(1 + β2)

β2
+

8d(d + 2β4 + dβ4)

β4

)
2

n

where cβ,d , d
2

log(2πβ2) + d
β2 .

The Sample Propagation Estimator - Convergence

Pf. Technique:

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n− αs
βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n− αs
βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Explicit expression enables concrete error bounds in simulations

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n− αs
βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Explicit expression enables concrete error bounds in simulations

Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R: ◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R: ◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R: ◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R: ◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R: ◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

◮ Plug back in & Convex analysis

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R: ◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

◮ Plug back in & Convex analysis

=⇒ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)| ≤ c2 log
(

nλ(R)
c3

)√
λ(R)

n

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Outside R: O
(

1
n

)

decay via Chi-squared distribution tail bounds

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

◮ Plug back in & Convex analysis

=⇒ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)| ≤ c2 log
(

nλ(R)
c3

)√
λ(R)

n

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

=⇒ Past works were not showing MI but clustering (via binned-MI)!

