Estimating the Information Flow in

Deep Neural Networks

Ziv Goldfeld

MIT

Information in the Modern Age & Complex Systems

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Complex
Systems |

Social
Networks

Economic
Networks

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

<P

Processing Communication

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

: ™ N
Processing Communication

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

Emerging Technologies:

Shrink magnetic region per bit

|
Processing Communication

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

Emerging Technologies:

Shrink magnetic region per bit

Challenges:

Stabilization of written data

: \ SN
Processing Communication

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

Emerging Technologies:

Shrink magnetic region per bit

Challenges:

Stabilization of written data

Model & Study:
Interacting particle sys.
I
Storage capacity &

HDD designs

% ‘\ \ Sk
Processing Communication

2/14

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

AN

Processing Communication

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage
Emerging Networks (loT):

1) Decentralized & ad hoc
2) Varying connectivity

3) Cooperative components

Processing Communication

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage
Emerging Networks (loT):

1) Decentralized & ad hoc

2) Varying connectivity

3) Cooperative components
Building Blocks:

Rich IT literature

Processing Communication

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage
Emerging Networks (loT):

1) Decentralized & ad hoc

2) Varying connectivity
3) Cooperative components
Building Blocks:

Rich IT literature

Network Modeling:

Random graphs &
Actions based

N on primitives
N\

| Se “{ ‘\\‘ \
Processing Communication

Information in the Modern Age & Complex Systems

Complex System: Multi-component system driven by local interactions

Storage

processing Communication

2/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:

> What drives the evolution of hidden representations?

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?

> What are properties of learned representations?

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’14, Choromanska-et al'15, Wei-Lee-Ma'18]

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’'14, Choromanska-et al’15, Wei-Lee-Ma'18]

> Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’'14, Choromanska-et al’15, Wei-Lee-Ma'18]

> Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]

> Information Bottleneck Theory
[Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe et al.’18]

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’'14, Choromanska-et al’15, Wei-Lee-Ma'18]

> Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]

> Information Bottleneck Theory
[Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe et al.’18]

3/14

Deep Neural Networks

o Unprecedented practical success in hosts of tasks

o Lacking theory:
> What drives the evolution of hidden representations?
> What are properties of learned representations?

> How fully trained networks process information?

@ Some past attempts to understand effectiveness of deep learning

> Optimization dynamics in parameter space
[Saxe-McClelland-Ganguli’'14, Choromanska-et al’15, Wei-Lee-Ma'18]

> Classes of efficiently representable functions
[Montufar-Pascanu-Cho-Bengio'14, Poggio-Mhaskar-Rosasco-Miranda-Liao'17]

> Information Bottleneck Theory
[Tishby-Zaslavsky1'15, Shwartz-Tishby'17, Saxe et al.’18]

% Goal: Explain ‘compression’ in Information Bottleneck framework e

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

Dog

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

o Deterministic DNN: T, = fg(Tg_l) (MLP: T, = O‘(Wng_l —|—bg))

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

Dog

o Deterministic DNN: T, = fg(Tg_l) (MLP: T, = U(W@Tg_l —|—b5))

o Joint Distribution: Pxy

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

Dog

o Deterministic DNN: T, = fg(Tg_l) (MLP: Ty =o(WiTy_1 —|—b5))

o Joint Distribution: Pxy =— Pxy - Pp .1 |x

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

o Deterministic DNN: T, = fg(Tg_l) (MLP: Ty =o(WiTy_1 —|—b5))
o Joint Distribution: Pxy =— Pxy - Pp .1 |x

o IB Theory: Track Ml pairs (I(X;Ty),I(Y;Ty)) (information plane)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, Ty
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

Cat

Dog

IB Theory Claim: Training comprises 2 phases

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

IB Theory Claim: Training comprises 2 phases

o Fitting: I(Y;T;) & I(X;Ty) rise (short)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T, T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

Dog

IB Theory Claim: Training comprises 2 phases

o Fitting: I(Y;T;) & I(X;Ty) rise (short)

o Compression: I(X;Ty) slowly drops (long)

4/14

Setup and Preliminaries

Feedforward DNN for Classification:

Y X To=X T T, T,
(Label) (Feature/lmage) (InputLayer) (Hidden Layer 1) (Hidden Layer 1) (Hidden Layer 1)

T, -7
(Output Layer)
Cat

Dog

08

IB Theory Claim: Training comprises 2 phases

o Fitting: I(Y;Ty) & I(X;Ty) rise (short) B

o Compression: I(X;Ty) slowly drops (long) o

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?

o Continuous X:

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(Ty| X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(Te| X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = W(Ty) — h(fo(X)|X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = W(Ty) — h(fo(X)|X)
—_— —

=—00

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(fe(X)]|X) =

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(fe(X)]|X) =

o Discrete X:

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(fe(X)]|X) =
o Discrete X: The map X — Ty is injective*

* For almost all weight matrices and bias vectors 5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= [(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: [(X;Ty) = WTy) — h(fo(X)|X) = o0
o Discrete X: The map X +— Ty is injective* — I(X;Ty) = H(X)

* For almost all weight matrices and bias vectors 5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

= I(X;Ty) is independent of the DNN parameters

Why?
o Continuous X: I(X;Ty) = h(Ty) — h(fo(X)|X) = o0
o Discrete X: The map X — T} is injective* — I(X;Ty) = H(X)

5/14

Vacuous Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)
= I(X;Ty) is independent of the DNN parameters

Why?

o Continuous X:

[(X;Ty) = MTy) — h(fo(X)|X) = oo

o Discrete X: The map X +— Ty is injective* — I(X;T;) = H(X)

Past Works:

[Shwartz-Tishby'17, 5o
Saxe et al.'18] Sos

02

10

08

0.6

04

0.2

0.0

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(7}))

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(T)) ~ I(X;T})

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(Ty)) ~ I(X;T;) No!

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(Ty)) ~ I(X;T;) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1
~8" { 1 1
27— wayert O\ \/\/_\ T~——"
E — Layer2
c
& 4- — Layer3 1 1 T
% —— Layer 4
= —— Layer5
LTt I RPT T

O R T T L R R L R R KLLLT SRRt

S R AL o
10 10t 102 10° 10*
Epoch

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(Ty)) ~ I(X;T;) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1

~8" { 1 1
27— wayert O\ \/\/_\ T~——"
E — Layer2
c
& 4- — Layer3 1 1 T
g — tayer:
= —— Layer

0 LTt I RPT T

B e T e S R ST R T L R R L R R KLLLT SRRt

T oo
10 10t 102 10° 10*
Epoch

o Smaller bins = Closer to truth: I(X;T;) = In(2'?) ~ 8.31

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(Ty)) ~ I(X;T;) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1

~ 8- { 1 1
:I e \ \/\/‘\ v—
= — Layer2
g 4 - — Layer3 T 1 1
g f— tayer:
= — Layer

0 T T S S R T

R R B R R SRR S AL B B B L B L SR B)
10 10t 102 10° 10*
Epoch

o Smaller bins = Closer to truth: I(X;T;) = In(2'?) ~ 8.31

o Binning introduces “noise” into estimator (not present in the DNN)

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(Ty)) ~ I(X;T;) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1

~ 8- { 1 1
:I e \ \/\/‘\ V
= — Layer2
g 4 - — Layer3 T 1 1
g f— tayer:
= — Layer

0 T T R T

R R B R R SRR L L Bl e AL B L B AL B R A
10 10t 102 10° 10*
Epoch

o Smaller bins = Closer to truth: I(X;T;) = In(2'?) ~ 8.31

o Binning introduces “noise” into estimator (not present in the DNN)

o Plots showing estimation errors

6/14

What is going on here?

o Plots via binning-based estimator of I(X;7}), for X ~ Unif(dataset)

— Plotted values are I(X;Bin(Ty)) ~ I(X;T;) No!

bin size = 0.0001 bin size = 0.001 bin size = 0.01 bin size = 0.1

~ 8" 1 1 1
:I e \ \/\/‘\ V
= — Layer2
-c% 4 - — Llayer3 1 1 T
g — tayer:
= — Layer

0 T T S S R T

R R B R R SRR S AL B B B L B L SR B)
10 10t 102 10° 10*
Epoch

o Smaller bins = Closer to truth: I(X;T;) = In(2'?) ~ 8.31
o Binning introduces “noise” into estimator (not present in the DNN)
o Plots showing estimation errors

@ Real Problem: I(X;Ty) is meaningless in det. DNNs

6/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons' output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

o Formally: T, = fo(T,_1) + Zs, where Z, ~ N(0, %)

Ty_q

—>U<W§k)Tg_1+b[(k)) Sé(k) Té(k)

Zy(k) ~ N(0,5%)

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

o Formally: T, = fo(T,_1) + Zs, where Z, ~ N(0, %)

Ty_q

—>g<wgk)Tg_1+bg(k)) Se(k) Té(k)

Zy(k) ~ N(0,5%)

= X +— Ty is a parametrized channel that depends on DNN param.!

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

o Formally: T, = fo(T,_1) + Zs, where Z, ~ N(0, %)

Ty_q

oo (WL, 0,0) Se(k) Ty (k)

Zy(k) ~ N(0,5%)

= X +— Ty is a parametrized channel that depends on DNN param.!

= I(X;Ty) is a function of weights and biases!

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

o Formally: T, = fo(T,_1) + Zs, where Z, ~ N(0, %)

Ty_q

Temr w2 TR)

Zy(k) ~ N(0,5%)

= X +— Ty is a parametrized channel that depends on DNN param.!

= I(X;Ty) is a function of weights and biases!

o Operational Perspective:

7/14

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

[G.-Berg-Greenewald-Melnyk-Nguyen-Kingsbury-Polyanskiy'18]

o Formally: T, = fo(T,_1) + Zs, where Z, ~ N(0, %)

Ty_q

L (W) Sp(k) Ty (k)

Zﬂ(k‘) ~ N(0a62)
= X +— Ty is a parametrized channel that depends on DNN param.!

= I(X;Ty) is a function of weights and biases!

o Operational Perspective:

Performance & learned representations similar to det. DNNs (3 ~ 1071)
7/14

Mutual Information in Noisy DNNs

Mutual Information Estimation in Noisy DNNs

Noisy DNN:

X —>

f1

f2

—»Sla%ﬂ—»

A

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN:

S —

f2

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN:

S S

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sg = fg(Tg_l)

S S

8/14

Mutual Information Estimation in Noisy DNNs

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sg fg(Tg 1) = Ty =S/+2y, Zp~ N(O,,BZI)

X-‘-’: fi —»51 : Tl—'_>: fo />S5 : Ty ---
| : | :
| | | |
| | | |
| |

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sg fg(Tg 1) = Ty =S/+2y, Zp~ N(O,,BZI)

S S

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m

X—E—» f1—>»51 : T1—5—> fo —>»S5 : Ty ---
: l : :
| | | |
| | | |
| |

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy £ fo(Ty—1) = T, =S+ Zs, Zy ~N(0,5%)

S S

X—E—» f1—>»51 : T1—5—> fo —>»S5 : Ty ---
: l : :
| | | |
| | | |
| |

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m

o Structure: S, 1 7, = T;=S;+Z;~Pxyp

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy £ fo(Ty—1) = T, =S+ Zs, Zy ~N(0,5%)

S S

X—E—» f1—>»51 : T1—5—> fo —>»S5 : Ty ---
: l : :
| | | |
| | | |
| |

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m

o Structure: Sy 1 7, = T;,=Sy+7Zy~Pxyp

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy £ fo(Ty—1) = T, =S+ Zs, Zy ~N(0,5%)

S S

X—E—» f1—>»51 : T1—5—> fo —>»S5 : Ty ---
: l : :
| | | |
| | | |
| |

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m

o Structure: Sy 1 7, = T;,=S/+Zy~Pxyp

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy £ fo(Ty—1) = T, =S+ Zs, Zy ~N(0,5%)

S S

X—E—» f1—>»51 : T1—5—> fo —>»S5 : Ty ---
: l : :
| | | |
| | | |
| |

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m

o Structure: S, 1 7, = T;=S;+Z;~Pxyp

@ Know the distribution ¢ of Z, (noise injected by design)

8/14

Mutual Information Estimation in Noisy DNNs

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m

o Structure: Sel Zy = Ty=8S+Zy~Pxp

@ Know the distribution ¢ of Z, (noise injected by design)

8/14

Mutual Information Estimation in Noisy DNNs

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m
o Structure: S, 1 7, = T;=S;+Z;~Pxyp
@ Know the distribution ¢ of Z, (noise injected by design)

® Ps, and Pg, x are extremely complicated to compute/evaluate

8/14

Mutual Information Estimation in Noisy DNNs

o Assume: X ~ Unif(X), where X & {z;}™, is empirical dataset

= Mutual Information: [(X;7Ty) = h(1y) — (T X =)

m
o Structure: S, 1 7, = T;=S;+Z;~Pxyp

@ Know the distribution ¢ of Z, (noise injected by design)

® Ps, and Pg, x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass

8/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7‘1—} f2 —VSQH?—P T2

Z1 Z2

Differential Entropy Estimation under Gaussian Convolutions
Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric

class) and knowledge of ¢ (PDF of N(0, 5%1,)).

9/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7‘1—} f2 —VSQH?—P T2

Z1 Z2

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

9/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X—> f1 —7814}?—?111—} f2 —VSQAP?—P Ty -

Z1 Z2

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

» Efficient & parallelizable estimator h(P, *) =~ h(P *)

9/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy 2 f(T;_1)

= Ty=S/+2Zsy Zy~N(0,3)

X —>

f1

f2

—»Sla%ﬂ—»

A

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

» Efficient & parallelizable estimator h(P, *) =~ h(P *)

» Guarantees: Estimation risk is O(1/y/n) (all constants explicit)*

* Exponentially large in d though constants, which is provably necessary.

9/14

Mutual Information Estimation in Noisy DNNs

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—rﬂ—» fa —VSQAP?—P Ty -

Zl Z2

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of ¢ (PDF of N(0, 5%1,)).

Estimation Results [G.-Greenewald-Polyanskiy'18]:

» Efficient & parallelizable estimator h(P, *) =~ h(P *)
» Guarantees: Estimation risk is O(1/y/n) (all constants explicit)*
> Faster Rate: kNN/KDE est. via ‘noisy’ samples attain O (n_ﬁ‘d>

9/14

Back to Noisy DNNs

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

tanh(wX + b)

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X

o Input: X ~ Unif{£1, £3}

tanh(wX + b)

Xye1 2 {-3,-1,1}, X,=1 = {3}

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X

o Input: X ~ Unif{£1, £3}

tanh(wX + b)

Xye1 2 {-3,-1,1}, X,=1 = {3}

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X S .
tanh(wX + b)|2w:b
o Input: X ~ Unif{#1,43} —ftanh(wX +b)
Xy 2{-3,-1,1} , X, £ {3}
Y Y Z ~ N(07 182)

@ Center & sharpen transition (<= increase w and keep b = —2w)
10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

|

o Input: X ~ Unif{£1, £3}
Xye1 2 {-3,-1,1}, X,=1 = {3}

tanh(wX + b)

10/14

ETNIIE

I(X;T,) Dynamics - lllustrative Minimal

Single Neuron Classification:

o Input: X ~ Unif{£1, £3}
Xye1 2 {-3,-1,1}, X,=1 = {3}

X—»tanh(wX +0b)

L] Correct classification performance

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

|

o Input: X ~ Unif{£1, £3}

tanh(wX + b)

Xye1 2 {-3,-1,1}, X,=1 = {3}

@ Mutual Information:

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X S .
tanh(wX + b)|2w:b
o Input: X ~ Unif{#1,43} —ftanh(wX +b)
Xy 2{-3,-1,1} , X, £ {3}
Y Y Z ~ N(07 182)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification: X S .
tanh(wX + b)|2w:b
o Input: X ~ Unif{#1,43} —ftanh(wX +b)
Xym 1 2{-3,-1,1}, X 2 {3}
Y Y Z ~ N((), 182)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh (Bw+b) }

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +0b)

o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1} , X, £ {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

Z ~N(0,5%)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}

10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

X—»tanh(wX +0b) S T

o Input: X ~ Unif{+£1,£3}
Xye1 2 {-3,-1,1} , X, £ {3}
o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

Z ~N(0,5%)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols
Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}

1
& 05
(a
% Merge 1 Merge 2
2 0
E
©
£-05

-1

10%0" 102 108 10* 10°

Epoch 10/14

I(X;T,) Dynamics - lllustrative Minimal Example

Single Neuron Classification:

o Input: X ~ Unif{+£1,£3}

Xye1 2 {-3,-1,1} , X, £ {3}

|

tanh(wX + b)

Z ~N(0,5%)

o Mutual Information: I(X;T) = I(Syp; Swp+ Z)

= I(X;T) is # bits (nats) transmittable over AWGN with symbols

Swp = {tanh(—3w+b), tanh(—w+b), tanh(w+b), tanh Bw+b) } — {£1}

1

Heatmap of PDF
o
o (3]

o
o

2

Merge 1

Merge 2

10%0"

102

10°
Epoch

10*

10°

Mutual information

1.5

0.5

" n(4

In(3)

In(2)

0
10°

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
o Noise std.: Set to § = 0.01

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

o Noise std.: Set to § = 0.01

Ep28 Ep 80 Ep 541 Ep 8976
10 10 ‘|-7 I 10 10
00 0.0 "I"‘ 00 0.0
1.0 1.0 ﬂ -\n 1.0
10 10 O. 10 10
10 P 00 1.0) 00 10 i 00 10 ” 00
. 10 1.0 : 10 -1.0 : 10 1.0 : 10 -1.0
8 — Layer 1 s —
f2) —— Layer 2 /___/—\
g e Layer 3
= - Layer 4
= — La;ers
0.5 1 f—=Tra]
& Train
S — Test
0.0 v e e e e e e N S
10° 10 10° 10

102
Epoch
11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
o Noise std.: Set to § = 0.01

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:

o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.

o Noise std.: Set to § = 0.01

Ep22 Ep64 Ep 275 Ep 7230
1.0 1.0 —‘!.Q 1.0 —‘!>.> 1.0
o0 o0 ﬂ' :. a0 ﬂ— <. 00
1 PR *“”“ e B
00 0.0 00 00 00 00 00 00
10 10 10 10 10 10 10 10
8 = — Layer 1
% = Layer 2
S 4 Layer 3
= ~—— Layer 4 *
= = Layer 5 2 7
0.5 7 f e
2 Train
o — Test
0.0 =5 e e et ey B e
10° 10t 102 10% 10*
Epoch

@ weight orthonormality regularization
11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
o Noise std.: Set to § = 0.01

o Verified in multiple additional experiments

11/14

Clustering of Representations - Larger Networks

Noisy version of DNN from [Shwartz-Tishby’17]:
o Binary Classification: 12-bit input & 12-10-7-5-4-3-2 MLP arch.
o Noise std.: Set to § = 0.01

o Verified in multiple additional experiments

= Compression of I(X;Ty) driven by clustering of representations

11/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering

o Alternative measures for clustering (det. and noisy DNNs):

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T)) 1t

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T)) {

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):
> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7;) and H(Bin(1})) highly correlated!*

*x When bin size chosen o noise std. 12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):
> Scatter plots (up to 3D layers)

> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7;) and H(Bin(1})) highly correlated!*

8- = Layer 1 —————
T —ee — N
34_ =~ Layer 3
=

0 ; : 28 80 : 541 i 8796, H
= 8- : : ;
e —
E4' _’——_’__/\
<) —A/_"""'//\
T 0-venr T e

}00 10t 102 103 104

*x When bin size chosen o noise std. 12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7y) and H(Bin(T})) highly correlated!*

o Det. DNNs: H (Bin(T})) = I(X;Bin(T;)) compresses

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7y) and H(Bin(T})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(T;)) compresses

[l Incapable of accurately estimating MI values

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7y) and H(Bin(T})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(T;)) compresses
[l Incapable of accurately estimating MI values

L] Does track clustering!

12/14

Circling back to Deterministic DNNs

o I(X;Ty) is constant = Doesn't measure clustering
o Alternative measures for clustering (det. and noisy DNNs):

> Scatter plots (up to 3D layers)
> Binned entropy H (Bin(T%))

o Noisy DNNs: I(X;7y) and H(Bin(T})) highly correlated!*
o Det. DNNs: H (Bin(T})) = I(X;Bin(T;)) compresses
[l Incapable of accurately estimating MI values

L] Does track clustering!

= Past works were not showing MI but clustering (via binned-MI)!

12/14

o Reexamined Information Bottleneck Compression:

13/14

o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible

13/14

o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

13/14

o Reexamined Information Bottleneck Compression:
P I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

13/14

o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible
> Yet, past works presented (binned) I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

> Developed estimator for accurate MI estimation over this framework

13/14

o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs
> Developed estimator for accurate MI estimation over this framework

> Clustering of the learned representations is the source of compression

13/14

o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

> Developed estimator for accurate MI estimation over this framework

> Clustering of the learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

13/14

o Reexamined Information Bottleneck Compression:

P I(X;T) fluctuations in det. DNNs are theoretically impossible

> Yet, past works presented (binned) I(X;T) dynamics during training

@ Noisy DNN Framework: Studying IT quantities over DNNs

> Developed estimator for accurate MI estimation over this framework

> Clustering of the learned representations is the source of compression

o Clarify Past Observations of Compression: in fact show clustering

——> Clustering is the common phenomenon of interest!

13/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding

P Summarizing statistics

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:
> Lower-dimensional embedding
P Summarizing statistics

> Graph clusterability [Czumaj-Peng-Sohler'15]

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

> Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

> Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

P Is it necessary? Desirable?

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

> Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

P Is it necessary? Desirable?

Layer 6, Final epoch

Feature Space Layer 4, Final epoch Layer 5, Final epoch 10

0.5

n o ¥
2108 1005 i
10-1.0 10-1.0 0.0

05 10

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

> Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

P Is it necessary? Desirable?

> Design tool for DNN architectures

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

> Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

P Is it necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

P Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

P Is it necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:

> Better understanding of internal representation evolution & final state

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding
P Summarizing statistics

P Graph clusterability [Czumaj-Peng-Sohler'15]

o Role of Compression/Clustering:

P Is it necessary? Desirable?

> Design tool for DNN architectures

o Algorithmic Perspective:

> Better understanding of internal representation evolution & final state

> Enhanced DNN training alg. (regularize intermediate layers wrt I(Y;T))

14/14

Future/Ongoing Clustering Inspired Research

o Track Clustering in High-Dimensions:

> Lower-dimensional embedding

P Summarizing statistics

P Graph clusterability [Czumaj-Peng-Sohler'15] I(Y 1

4/ '\
04///!\\,, A},/

‘\\?? }\Il/
N VN "/ W

o Role of Compression/Clustering:

P Is it necessary? Desirable?

"'A ' "‘ 4"\
> Design tool for DNN architectures "'Xk\'/ ‘X‘l
\\‘,?u\\
R Q‘\V/’
o Algorithmic Perspective: LJ

> Better understanding of internal representation evolution & final state
> Enhanced DNN training alg. (regularize intermediate layers wrt I(Y;T))

14/14

References

[1] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B.
Kingsbury and Y. Polyanskiy, “Estimating information flow in neural
networks,” Arxiv preprint https://arxiv.org/abs/1810.05728,
October 2018.

[2] Z. Goldfeld, K. Greenewald and Y. Polyanskiy, “Estimating differential
entropy under Gaussian convolutions,” Submitted to the /EEE
Transactions on Information Theory, October 2018.

Arxiv: https://arxiv.org/abs/1810.11589

[3] Z. Goldfeld, G. Bresler and Y. Polyanskiy, “Information storage in the
stochastic Ising model,” Submitted to the IEEE Transactions on
Information Theory, May 2018.

Arxiv: https://arxiv.org/abs/1805.03027

https://arxiv.org/abs/1810.05728
https://arxiv.org/abs/1810.11589
https://arxiv.org/abs/1805.03027

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

@ Emerging technologies drastically shrink magnetic region per bit

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach:

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

@ Hard-drive topology

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

@ Hard-drive topology = Graph

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:
@ Hard-drive topology = Graph

@ Interactions

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:
@ Hard-drive topology = Graph

@ Interactions = Stochastic dynamics

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:
@ Hard-drive topology = Graph

@ Interactions = Stochastic dynamics

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:
@ Hard-drive topology = Graph

@ Interactions = Stochastic dynamics

Setup: Design initial configuration and recover data after ¢ time

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices
@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:
@ Hard-drive topology = Graph

@ Interactions = Stochastic dynamics

Setup: Design initial configuration and recover data after ¢ time

m X, A X m
Enc 0 system Dec
dynamics

Information Storage in Interacting Particle Systems

Motivation: Demand for high-capacity data storage devices

@ Emerging technologies drastically shrink magnetic region per bit

@ Challenges in stabilizing stored data (interparticle interactions)

Approach: View storage medium as Interacting Particle System:

@ Hard-drive topology = Graph

@ Interactions = Stochastic dynamics

Setup: Design initial configuration and recover data after ¢ time

m ﬁ Xo t time
ﬁ(Enc system

dynamics

Dec

|G.-Bresler-Polyanskiy’18| Performance benchmarks & hard-drive designs

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

) a5

: & 0
bt ‘ @ Bk ~
INTERNET | = g »

1] = THINGS
2 & G Q)

= P e

0’3 A =) % o

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc

@ Most devices are simple & low-complexity

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity

@ Nodes constantly join and leave the network

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

@ Public vs. private vs. confidential transmissions

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

@ Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

@ Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks

@ Stochastic connectivity patterns (random / small-world / free-scale)

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

@ Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks
@ Stochastic connectivity patterns (random / small-world / free-scale)

@ Local interactions distilled from primitive results

Cooperative Communication Networks

Motivation: Modern networks are large, decentralized and ad hoc
@ Most devices are simple & low-complexity
@ Nodes constantly join and leave the network

o Cooperation for long-distance communication (mitigate interference)

Modus Operandi: Primitive building blocks = Entire network

@ P2P, feedback, relay, uplink, downlink channels

@ Public vs. private vs. confidential transmissions

Next Steps: Model & study large-scale networks
@ Stochastic connectivity patterns (random / small-world / free-scale)

@ Local interactions distilled from primitive results

Q: Reliable (& secure) information passing protocols? Fundamental limits?

Mutual Information in Noisy DNNs

Noisy DNN:

X — > f1 —»Sla?—»ﬂ—» fz —VSQH?—P T2

Zl Z2

Mutual Information in Noisy DNNs

Noisy DNN:

S —

X-‘-’: fi—>5 : Ti—>{ fo >S5 Ty ---
: !
| |
| |
|

Z1 Zy

Mutual Information in Noisy DNNs

Noisy DNN:

S S

Mutual Information in Noisy DNNs

Noisy DNN: Sg = fg(Tg_l)

S S

Mutual Information in Noisy DNNs

Noisy DNN: S, = fo(Ty—) = Ty=Se+2Zy, Zp~ N(O,,BZI)

S S

Mutual Information in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

S S

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

Mutual Information in Noisy DNNs

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

S S

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

& Py, and Pr,x are extremely complicated to compute/evaluate

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

o Assume: X ~ Unif(X), where X £ {x;}™, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)
& Py, and Pr,x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Z1 Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset
= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)
& Py, and Pr,x are extremely complicated to compute/evaluate

@ But both are easily sampled via the DNN forward pass

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -
I

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T to

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T to

L2 A 7o

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T to

T2 Z Zs to o

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
T te1

11.32 Z Zs t{,z

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -
Lq

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; te

Zl Z2

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values

Mutual Information in Noisy DNNs

Noisy DNN: Sy £ fi(Ty—y) = Ty =S¢+ 2y, Zy ~N(0,5%)

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; te

Li A 7o

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) (T X =)

1
T m
& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass
y p P

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values

Mutual Information in Noisy DNNs
Zy ~ N(0, %)

Noisy DNN: Sy 2 fo(T)_1) = Ty=S¢+ Z,

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; 0
£+

Z; Zl

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values

Mutual Information in Noisy DNNs
Zy ~ N(0, %)

Noisy DNN: Sy 2 fo(T)_1) = Ty=S¢+ Z,

X—> f1 —»5 Ti—>» fo —»S5, Ty -
z; 0
£+

Z; Zl

o Assume: X ~ Unif(X), where X £ {z;}7, is empirical dataset

= Mutual Information: I(X;T}) = h(T}) — 2 37 MT)|X = ;)

& Py, and Pr,x are extremely complicated to compute/evaluate
@ But both are easily sampled via the DNN forward pass

> Sampling Pr,: Feed randomly chosen x;'s & read T} values

> Sampling Pr, x—,: Feed x; multiples times & read T} values

General-Purpose Differential Entropy Estimators

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7'1—} fz —VSQH?—P T2

Zl Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

General-Purpose Differential Entropy Estimators

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7‘1—} f2 —VSQH?—P T2

Z1 Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density

General-Purpose Differential Entropy Estimators

Noisy DNN: Sg = fg(Tg_l)

X—Pfl

= Ty =50+ Zs Zy~N(0,pB)

f2

—»Sla%ﬂ—»

A

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable

General-Purpose Differential Entropy Estimators

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X—> f1 —7814}?—?111—} f2 —VSQAP?—P Ty -

Z1 Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable

@ 2 Works Drop Assumption:

General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Z1 Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]

General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

= Estimate I(X;7}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Zl Z2

= Estimate I(X;T}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

o Assume: supp=1[0,1]¢ & Periodic BC & s€(0,2]

General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —7514}?—le—> fa —PSQAP?—P Ty -

Zl Z2

= Estimate I(X;T}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]

o Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*

* Except sub-Gaussian result from [Han-Jiao-Weissman-Wu'17]

General-Purpose Differential Entropy Estimators

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> fi —7514}?—le—> fa —PSQAP?—P Ty -

Zl Z2

= Estimate I(X;T}) from samples via general-purpose h(P) est.:

9@ Most results assume lower bounded density = Inapplicable
@ 2 Works Drop Assumption:
Q KDE + Best poly. approximation [Han-Jiao-Weissman-Wu'17]
Q Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han'17]
o Assume: supp=1[0,1]¢ & Periodic BC & s¢&(0,2] = Inapplicable*

o Rate: Risk <O (n_ﬁ), w/ a, 3 € N, s smoothness, d dimension

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sg = fg(Tg_l)

X —>

f1

= Ty=S/+2Zsy Zy~N(0,3)

f2

—»Sla%ﬂ—»

A

@ Exploit structure: We know Ty = Sy + Z; ~ P * ¢ and:

Exploit Structure - Ad Hoc Estimation

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7'1—} fz —VSQH?—P T2

Zl Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P * ¢ and:
o Geniel: Sample P = Ps, and P = Pg,|x—,, (sample T;_; & apply f)

Exploit Structure - Ad Hoc Estimation

Noisy DNN: S, = fg(Tg_l) = Ty =S/+2y, Zp~ N(O,,BZI)

X — > f1 —7814}?—?7‘1—} f2 —VSQH?—P T2

Z1 Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P * ¢ and:
o Geniel: Sample P = Ps, and P = Pg,|x—,, (sample T;_; & apply f)

o Genie2: Know the distribution ¢ of Z; (noise injected by design)

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—»ﬂ—» fa —VSQAP?—P Ty -

Z1 Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P * ¢ and:
o Geniel: Sample P = Ps, and P = Pg,|x—,, (sample T;_; & apply f)

o Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of o (PDF of N(0, 31y)).

Exploit Structure - Ad Hoc Estimation

Noisy DNN: Sy £ fy(Ty—y) = Ty =S¢+ Zs, Zy ~N(0,5%)

X—> f1 —»Sla?—rﬂ—» fa —VSQAP?—P Ty -

Zl Z2

@ Exploit structure: We know Ty = Sy + Z; ~ P * ¢ and:
o Geniel: Sample P = Ps, and P = Pg,|x—,, (sample T;_; & apply f)

o Genie2: Know the distribution ¢ of Z; (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P * @) based on n i.i.d. samples from P € Fy (nonparametric
class) and knowledge of o (PDF of N(0, 31y)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeFy

h(P % @) = h(S", B)|

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeFy

h(P % @) = h(S", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeFy

h(P % @) = h(S", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P, = %

s

3s,

i=1

hsp(S™, B) £ h(Py * ¢)

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeFy

h(P % @) = h(S", B)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P, = %

s

3s,

i=1

hsp(S™, B) £ h(Py * ¢)

Comments:

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeF,

WP x) = h(S",3)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, = %

s

s,

i=1

hsp(S™, B) £ h(Py * ¢)

Comments:

o Plug-in: hsp is just plug-in est. for the functional To(P) £ h(Px o)

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeF,

WP x) = h(S",3)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =

3=
AMz

s,

i=1

hsp(S™, B) £ h(Py * ¢)

Comments:

o Plug-in: hsp is just plug-in est. for the functional To(P) £ h(Px o)

o Mixture: hgp is the diff. entropy of a known Gaussian mixture

The Sample Propagation Estimator

Abs. Error Minimax Risk: S™ are n i.i.d. samples from P, define

RA(n, B) = inf sup Egn
h PeF,

WP x) = h(S",3)|

@ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution b, =

3=
AMS

s,

i=1

hsp(S™, B) £ h(Py * ¢)

Comments:

o Plug-in: hsp is just plug-in est. for the functional To(P) £ h(Px o)
o Mixture: hgp is the diff. entropy of a known Gaussian mixture

o Computing: Can be efficiently computed via MC integration

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

(log n)* 4)
|

sup Egn
PeFy

WP+) — hsp(S™,B)| < 05 (

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)

For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

: og)
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

sup B |h(P* ¢) — ESP(S",B)‘
PeFq
d
1 n(2+25 (2+e)1ogn> .
< S) (2+28v+0) logn> N

2 4 4
N <c%7d+ 2cﬂ,ddélz+ﬁ) N 8d(d+2§4 +dg)>

S

d
F.

where cg 4 2 4 log(278%) +

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

(log n)* 4)
|

sup Egn
PeFy

WP+) — hsp(S™,B)| < 05 (

Pf. Technique:

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)

For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

(log n)* 4)
|

sup Egn
PeFy

WP+) — hsp(S™,B)| < 05 (

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0, /clogn) and R¢

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)

For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

: og)
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0, /clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)

For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

: og)
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0,/clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

9 Qutside R: Chi-squared distribution tail bounds

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)

For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

: og)
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0,/clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

9 Qutside R: Chi-squared distribution tail bounds

Comments:

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

: og)
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0,/clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

9 Qutside R: Chi-squared distribution tail bounds

Comments:

o Faster rate than O (n_ﬁ) for kNN/KDE est. via ‘noisy’ samples

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

sup Egn
PeFy

: og)
WP o) — hsp (57, B)| < O (%) -

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0,/clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

9 Qutside R: Chi-squared distribution tail bounds
Comments:
o Faster rate than O (n_ﬁ) for kKNN/KDE est. via ‘noisy’ samples

o Explicit expression enables concrete error bounds in simulations

The Sample Propagation Estimator - Convergence

Theorem (ZG-Greenewald-Polyanskiy '18)
For Fy = {P|supp(P) C [—1,1]%} and any 8 > 0 and d > 1, we have

& ogn)4/
WP o) — hsp (57, B)| < O (%) -

sup Egn
PeFy

Pf. Technique: Split analysis to R £ [—1,1]? 4 B(0,/clogn) and R¢

9 Inside R: Modulus of cont. & Convex analysis & Functional opt.

9 Qutside R: Chi-squared distribution tail bounds

Comments:

o Faster rate than O (n_ﬁ) for kKNN/KDE est. via ‘noisy’ samples
o Explicit expression enables concrete error bounds in simulations

o Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]% 4+ B(0,+/clogn) and R¢

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]% 4+ B(0,+/clogn) and R¢

o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]% 4+ B(0,+/clogn) and R¢
o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]% 4+ B(0,+/clogn) and R¢
o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for x — zlogx & Jensen's ineq.

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]% 4+ B(0,+/clogn) and R¢
o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for x — zlogx & Jensen's ineq.

= Focus on analyzing IE’(P % @) (x) — (P, * go)(a:)‘

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]% 4+ B(0,+/clogn) and R¢
o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for x — zlogx & Jensen's ineq.
— Focus on analyzing E’(P s ©)(x) — (P, * go)(a:)‘

> Bias & variance analysis

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) ZE[—logp(X M ixery)

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for x — zlogx & Jensen's ineq.
— Focus on analyzing E’(P % o) (z) — (P, * go)(a:)‘

> Bias & variance analysis

— B|(P+9)@) ~ Borp)@)| <er /T2, 5= w0, 51)

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hR(p)éIE[—logp(X)]l{XeR}]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for x — zlogx & Jensen's ineq.
— Focus on analyzing E‘(P % o) (z) — (P, * go)(a:)‘
> Bias & variance analysis
= E|(P+9)@) — (Por)(@)] <er /20, 5 =N (0,51)

> Plug back in & Convex analysis

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for z — xlogz & Jensen's ineq.
— Focus on analyzing IE‘(P % o) (z) — (P, * go)(a:)‘
> Bias & variance analysis
— E|[Pr9)@) — (Purp)@)] <er/ L2, = N (0, 51)
> Plug back in & Convex analysis
— supE|hr(Px¢) — hr (P, *)| <czlog (nA(R)) AR)

n

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R £ [—1,1]¢ 4 B(0,+/clogn) and R®
o Restricted Entropy: hg(p) £E[—log p(X)1 xery]

SUpE|h(Pxp)—h(P,*¢)| < supE|hg (P * @) — hr (B, *)| +2sup |hge (P *¢)|

o Inside R: » —tlogt modulus of cont. for z — xlogz & Jensen's ineq.
— Focus on analyzing IE‘(P % o) (z) — (P, * go)(a:)‘
» Bias & variance analysis
— E[P+p)@) - Bard@)] <er/E2E, 5= N (0,57)
» Plug back in & Convex analysis
= supE|hr(P*¢) — hR(P x)| <colog (M(R)) AMR)

n

o Qutside R: O (%) decay via Chi-squared distribution tail bounds

Binning vs True Mutual Information

Comparing to Previously Shown Ml Plots:

AS' = Layer 1 e e —————————
£ "'L**’Z-——-———-—"’—“\\\‘___._——4”'-——-“——__-"‘—""“
[4o Layer3 H - H
= —— Layer4
= —— Layer5

0 : ; 28,80 ' 541 . 8796, ..,
=8 ; H
'_I __/\‘ —
Ear i N T
e ——n—
T o-rm : : |

10° 10* 10? 10% 10*

Epoch

Binning vs True Mutual Information

Comparing to Previously Shown Ml Plots:

8 = —— Layer 1 — ——
e ——
= —— Layer4
= —— Layer5

- H 28,80, . 541 H 879, ...,

oloo

H(BIin(T_l))

Epoch

Mi(nats)
e oo
HERR

o ©
N
>
2
N
)
P
o
B
8

H(BIin(T_l))
'T

Binning vs True Mutual Information

Comparing to Previously Shown Ml Plots:

8 = —— Layer 1 ——————

| LWEYZM

g e R
—— Layer4
—— Layer5

- H 28,80, .., 541 H 879, ...,

Mi(nats)

oloo

H(Bin(T_l))

Epoch

MI(nats)
I
1 I
AEYR
§e88¢

04 ; 22 64, 275, H 7230
= e i]
l:l
£ 47
o /\’\/\

T o | | | |
10° 10! 102 10° 10*
Epoch

= Past works were not showing MI but clustering (via binned-Ml)!

