ECE 5630 - Homework Assignment 1

January 31st, 2020

Due to: Thursday, February 13th, 2020 (at the beginning of the lecture)

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers.

Errata: Fixed typo in the definition of $\kappa(\cdot|\cdot)$ in Question 7.

- 1) Discrete probability spaces: Let Ω be a countable set.
 - a) Show that its power set 2^{Ω} is a σ -algebra.
 - b) Let $p: \Omega \to [0,1]$ be a probability mass function (PMF), i.e., satisfying $\sum_{\omega \in \Omega} p(\omega) = 1$. Define a function $\mathbb{P}_p: 2^{\Omega} \to [0,1]$ by $\mathbb{P}_p(A) \triangleq \sum_{\omega \in A} p(\omega)$, for $A \in 2^{\Omega}$. Show that $(\Omega, 2^{\Omega}, \mathbb{P}_p)$ is a probability space.
- 2) σ -algebra: Let Ω be an arbitrary set. All σ -algebras below are collections of subsets of Ω .
 - a) Consider a sequence of σ -algebras $\{\mathcal{F}_n\}_{n=1}^{\infty}$ such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$, for all $n \in \mathbb{N}$. Is $\mathcal{G} := \bigcup_{n=1}^{\infty} \mathcal{F}_n$ a σ -algebra? Either a proof (by showing it satisfies the required properties) or provide a counterexample.
 - b) Let $\{\mathcal{F}_i\}_{i \in I}$ be an arbitrary (possible uncountable) collection of σ -algebras. Show that $\mathcal{H} := \bigcap_{i \in I} \mathcal{F}_i$ is a σ -algebra.
 - c) Let \mathcal{F}_1 and \mathcal{F}_2 be arbitrary σ -algebras. Define their Cartesian product $\mathcal{F}_1 \times \mathcal{F}_2 := \{A_1 \times A_2 \mid A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\}$, where $A_1 \times A_2$, the Cartesian product of two sets A_1 and A_2 , is defined as $A_1 \times A_2 := \{(a_1, a_2) \mid a_1 \in A_1, a_2 \in A_2\}$. Either prove that $\mathcal{F}_1 \times \mathcal{F}_2$ is a σ -algebra or provide a counterexample.
- 3) **Properties of probability measures:** Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Prove the following properties of \mathbb{P} :
 - a) Law of complement probability: $\mathbb{P}(A) = 1 \mathbb{P}(A^c), \forall A \in \mathcal{F}$, where $A^c = \Omega \setminus A$ is the complement of A.
 - b) Monotonicity: If $A, B \in \mathcal{F}$ with $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$
 - c) Union bound: For any $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$, we have $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)$
 - d) Continuity of probability: Let $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a sequence of event increasing to $A \in \mathcal{F}$, i.e., $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ and $\bigcup_{n=1}^{\infty} A_n = A$. Similarly, let $\{B_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a sequence of event decreasing to $B \in \mathcal{F}$, i.e., $B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots$ and $\bigcap_{n=1}^{\infty} B_n = B$. Prove that:
 - i) lim_{n→∞} P(A_n) = P(A). Deduce that for any {A'_n}[∞]_{n=1} ⊆ F, we have lim_{m→∞} P(⋃^m_{n=1} A'_n) = P(⋃[∞]_{n=1} A'_n).
 ii) lim_{n→∞} P(B_n) = P(B). Deduce that for any {B'_n}[∞]_{n=1} ⊆ F, we have lim_{m→∞} P(⋂^m_{n=1} B'_n) = P(⋂[∞]_{n=1} B'_n).
 - e) Law of Total Probability: Let $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a partition of Ω (i.e., (i) $A_n \cap A_m = \emptyset$, $\forall n \neq m$; and (ii) $\bigcup_{n=1}^{\infty} A_n = \Omega$) and $B \in \mathcal{F}$. Then $\mathbb{P}(B) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)\mathbb{P}(B|A_n)$. Is your argument valid when $\mathbb{P}(A_{n'}) = 0$ for some $n' \in \mathbb{N}$?
- 4) Measurability of indicators: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For $A \in \mathcal{F}$, define the function $\mathbb{1}_A : \Omega \to \mathbb{R}$ by

$$\mathbb{1}_{A}(\omega) \triangleq \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$

Prove that $\mathbb{1}_A$ is a random variable over $(\Omega, \mathcal{F}, \mathbb{P})$.

- 5) Induced probability measure vs. probability law: Let $X : \Omega \to \mathbb{R}^d$ be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with probability law \mathbb{P}_X , i.e., $\mathbb{P}_X(B) := \mathbb{P}(X^{-1}(B))$, for $B \in \mathcal{B}(\mathbb{R}^d)$; \mathbb{P}_X is a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.
 - a) Assume X is a discrete random variable, i.e., supp(P_X) is countable, and let p_X : supp(P_X) → [0,1] be its PMF, defined by p_X(x) := P_X({x}), x ∈ supp(P_X). Prove that the probability measure P_{pX} that is induced by the PMF p_X (see Question 1) coincides with the law of X, P_X. In other words, show that P_{pX}(B) = P_X(B), for all B ∈ B(R^d), where P_{pX}(B) := ∑_{x∈supp(P_X)∩B} p_X(x), for B ∈ B(R^d), is the trivial extension of P_{pX} from supp(P_X) to the entire Borel σ-algebra on R^d.

Hint: Reduce your analysis from the continuous space $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ to the discrete space $(\operatorname{supp}(\mathbb{P}_X), 2^{\operatorname{supp}(\mathbb{P}_X)})$. Why is it suffices to consider only subsets of the form $B \cap \operatorname{supp}(\mathbb{P}_X)$, where $B \in \mathcal{B}(\mathbb{R}^d)$?

b) Assume X is continuous with probability density function (PDF) f_X : ℝ^d → ℝ_{≥0}, i.e., f_X is the derivative of the cumulative distribution function (CDF) F_X of X. Recall that any PDF f (a nonnegative integrable function with ∫_{ℝ^d} f(x) dx = 1) induces a measure ℙ_f on (ℝ^d, B(ℝ^d)) by defining ℙ_f(B) := ∫_B f(x) dx, for all B ∈ B(ℝ^d). Prove that ℙ_{f_X} coincides with ℙ_X on the generating set of the Borel σ-algebra, i.e.,

$$\mathbb{P}_{f_X}\big((-\infty, a_1] \times \cdots \times (-\infty, a_d]\big) = \mathbb{P}_X\big((-\infty, a_1] \times \cdots \times (-\infty, a_d]\big), \quad \forall a_1, \dots, a_d \in \mathbb{R}.$$

Comment: In your proof, you may assume d = 1.

- 6) Generation of samples with arbitrary distribution: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : \Omega \to \mathbb{R}$ be random variable on it. Denote the probability law of X by \mathbb{P}_X , and let $F_X : \mathbb{R} \to [0, 1]$ be the CDF, i.e., $F_X(x) = \mathbb{P}_X((-\infty, x])$, for all $x \in \mathbb{R}$.
 - a) Show that $Y := F_X(X)$ is a random variable.
 - b) Prove that Y is uniformly distributed on [0, 1]. It suffices to show that F_Y , the CDF of Y, is given by $F_Y(y) = y$, for all $y \in [0, 1]$, and then explain how the CDF argument extends to the entire probability law \mathbb{P}_Y .
 - c) Let $U \sim \text{Unif}[0,1]$ be a uniformly distributed random variable. Propose a measurable function $T : [0,1] \to \mathbb{R}$, such that T(U) has distribution \mathbb{P}_X (or, equivalently, CDF F_X). Prove your answer, but you are not require to establish measurability of T.

Hint: The function T depends on F_X .

- 7) Transition kernels: Let Ω = {0,1} and consider the following construction of a transition kernel κ(·|·) from (Ω, 2^Ω) to itself. For ω ∈ {0,1}, let Ber(α_ω) be a Bernoulli distribution with parameter α_ω ∈ [0,1], i.e., as defined by the PMF p_ω(1) = 1 − p_ω(0) = α_ω. Set κ(·|0) = Ber(α₀) and κ(·|1) = Ber(1 − α₁). This construction of κ(·|·) is called the *binary channel with flip parameters* (α₀, α₁) ∈ [0,1]². Prove the following claims:
 - i) $\kappa(\cdot|\cdot)$ is a transition kernel (verify the conditions in the definition).
 - ii) Let $P_X = \text{Ber}(0.5)$ and define $P_Y(B) := \mathbb{E}[\kappa(B|X)]$, for $B \in 2^{\Omega}$. Show that whenever $\alpha_0 = \alpha_1$, we have $P_Y = \text{Ber}(0.5)$.
 - iii) Give a counterexample to the symmetry of P_Y when $\alpha_0 \neq \alpha_1$.