ECE 5630 - Solutions to Homework Assignment 1

- a) The statements A ∈ 2^Ω and A ⊂ Ω are equivalent. Clearly Ø ∈ 2^Ω. If A ∈ 2^Ω, i.e., A ⊆ Ω, then A^c = Ω \ A ⊂ Ω and thus A^c ∈ 2^Ω. Finally, for A₁, A₂,... subsets of Ω consider the set A = ⋃_{n=1}[∞] A_n. To show that A ⊆ Ω it suffices to show that for any x ∈ A we have x ∈ Ω. Let x ∈ A, by definition of countable unions we x ∈ A_n, for some n ∈ N. Since A_n ⊂ Ω this implies x ∈ Ω, as needed.
 - b) We need to show that \mathbb{P}_p is a probability measure. Recall $\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega)$, for all $A \subseteq \Omega$. First

$$\mathbb{P}_p(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1.$$

Next, let A_1, A_2, \ldots be disjoint subsets of Ω . Then:

$$\mathbb{P}_p\left(\bigcup_{i=1}^{\infty} A_n\right) = \sum_{a \in \bigcup_{n=1}^{\infty} A_n} p(\omega) = \sum_{n=1}^{\infty} \sum_{\omega \in A_n} p(\omega) = \sum_{n=1}^{\infty} \mathbb{P}_p(A_n),$$

where the second equality follows because $\{A_n\}$ are disjoint.

- 2) a) Consider Ω = N and define F_n := σ (2^{1,...,n}) as the σ-algebra (of subsets of Ω) generated by the power set of {1,...,n}. This construction satisfies F₁ ⊆ F₂ ⊆ ... by the inclusion of the generating sets. Let F = ∪_{n=1}[∞] F_n and consider the singleton sets A_n := {2n}. Clearly A_n ∈ F since A_n ∈ F_{2n}. However, the countable union A := ∪_{n=1}[∞] A_n = {2,4,6,...} does not belong to any of the F_n σ-algebras, and therefore, A ∉ F. As σ-algebras are closed under countable unions, F cannot be a σ-algebra.
 - b) Since Ø ∈ F_i, for all i ∈ I, we have Ø ∈ H, by definition of intersection. Let A ∈ H, i.e., A ∈ F_i, for all i ∈ I, which implies A^c ∈ F_i, for all i ∈ I (since F_i are all σ-algebras), and thus A ∈ H. Finally, if A₁, A₂, ... ∈ H, we have A₁, A₂, ... ∈ F_i, for all i ∈ I, and because F_i are σ-algebras we have ⋃_{k=1}[∞] A_k ∈ F_i, for all i ∈ I, which in turn gives ⋃_{k=1}[∞] A_k ∈ H, as desired.
 - c) No. Let $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{B}(\mathbb{R})$. The Cartesian product $\mathcal{F}_1 \times \mathcal{F}_2$ is not a σ -algebra on \mathbb{R}^2 since sets such as $(-\infty, a] \times (-\infty, b]$ are in $\mathcal{F}_1 \times \mathcal{F}_2$, but not their complements.
- 3) **Properties of probability measures:** Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Prove the following properties of \mathbb{P} :
 - a) $1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c)$, where the last equality is due to σ -additivity (noting that $A \cap A^c = \emptyset$).
 - b) Let $C = B \setminus A$, and so $B = A \cup C$ where A and C are disjoint. Then $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(C) \ge \mathbb{P}(A)$, where the last inequality uses non-negativity of probability.
 - c) Define $B_1 = A_1$ and $B_n = A_n \setminus \left\{ \bigcup_{i=1}^{n-1} A_i \right\}$, for $n \ge 2$. By definition $\{B_n\}_{n=1}^{\infty}$ are disjoint and $B_n \subseteq A_n$, for all $n \in \mathbb{N}$. Noting that $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$, we have

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(B_n) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

where the 2nd equality is by σ -additivity and the 3rd equality is by monotonocity.

d) We prove only the claim for increasing events and union. The proof for decreasing event and intersection is similar.

Let $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$, for $n \ge 2$. Since $A_1 \subseteq A_2 \subseteq ...$ then the B_n are disjoint. Also, $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i = A_n$, for all $n \in \mathbb{N}$. Similarly, $\bigcup_{i=1}^\infty B_i = \bigcup_{i=1}^\infty A_i = A$, by definition. Since the $\{B_n\}$ are disjoint we have

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(B_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(B_i) = \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{i=1}^{n} B_i\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

To see that this implies $\lim_{m\to\infty} \mathbb{P}\left(\bigcup_{n=1}^{m} A'_n\right) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} A'_n\right)$, define $A_m = \bigcup_{n=1}^{m} A'_n$ (which is an increasing sequence of events), note that $\bigcup_{n=1}^{\infty} A'_n = \bigcup_{n=1}^{\infty} A_n$, and apply the previous claim

e) Consider the following:

$$\mathbb{P}(B) = \mathbb{P}\left(B \cap \left\{\bigcup_{n=1}^{\infty} A_n\right\}\right) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} \left\{B \cap A_n\right\}\right) = \sum_{n=1}^{\infty} \mathbb{P}(B \cap A_n) = \sum_{n=1}^{\infty} \mathbb{P}(B)\mathbb{P}(B|A_n),$$

where the last equality follows by definition of conditional probability. The derivation still holds when $\mathbb{P}(A_{n'}) = 0$ for some $n' \in \mathbb{N}$ since then $\mathbb{P}(B \cap A_{n'}) = 0$ and we can remove this summand from the series.

- 4) We need to show that $\mathbb{1}_A^{-1}(B) \in \mathcal{F}$, for any $B \in \mathcal{B}(\mathbb{R})$. There are only 4 cases to considers:
 - If $\{0,1\} \cap B = \emptyset$, then $\mathbb{1}_A^{-1}(B) = \emptyset \in \mathcal{F}$;
 - If $\{0,1\} \cap B = \{1\}$, then $\mathbb{1}_A^{-1}(B) = A \in \mathcal{F}$;
 - If $\{0,1\} \cap B = \{0\}$, then $\mathbb{1}_A^{-1}(B) = A^c \in \mathcal{F}$;
 - If $\{0,1\} \cap B = \{0,1\}$, then $\mathbb{1}_A^{-1}(B) = \Omega \in \mathcal{F}$.

This concludes the proof.

5) a) It suffices to establish that P_X(B∩supp(P_X)) = P_{p_X}(B∩supp(P_X)), for all B ∈ B(R^d), since both measures nullify outside of supp(P_X). Thus, let B ∈ 2^{supp(P_X)} and because supp(P_X) is discrete, we can represent B = U[∞]_{n=1}{b_n} as a countable union of singletons. We have

$$\mathbb{P}_{p_X}(B) = \sum_{b \in B} p_X(b) = \sum_{n=1}^{\infty} \mathbb{P}_X(\{b_n\}) = \mathbb{P}_X\left(\bigcup_{n=1}^{\infty} \{b_n\}\right) = \mathbb{P}_X(B).$$

b) Let $A = (-\infty, a_1] \times \cdots \times (\infty, a_d]$ and consider

$$\mathbb{P}_{f_X}(A) = \int_{-\infty}^{a_1} \cdots \int_{-\infty}^{a_d} f_X(x_1, \dots, x_d) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_d = F_X(A) = \mathbb{P}_X(A),$$

where the last equality is since the CDF F_X is the restriction of the law \mathbb{P}_X to the generating set of the Borel σ -algebra.

6) a) Note that Y is a mapping from Ω = ℝ to Y = [0, 1]. Endow each space with the its Borel σ-algebra (for Y the Borel σ-algebra is generated by, e.g., {(0, a]}_{a∈(0,1]}). We first verify measurability of generating sets: Fix B ∈ B_a = (0, a] and note that Y⁻¹(B_a) = (0, F_X⁻¹(a)], where F_X⁻¹ := inf {x ∈ ℝ : a ≤ F_X(x)} is the generalized inverse (also known as quantile function) of F_X. Clearly Y⁻¹(B_a) ∈ B(ℝ). This, in turn, implies measurability of any B ∈ B((0, 1]), since Borel sets can be represented through a countable number of unions, intersections and complements, all of which commute with the inverse map.

b) For the CDF of Y, we have

$$F_Y(y) = \mathbb{P}_Y\left((-\infty, y]\right) = \mathbb{P}_X\left(Y^{-1}\left((-\infty, y]\right)\right) = \mathbb{P}_X\left(\left(-\infty, F_X^{-1}(y)\right)\right) = F_X\left(F_X^{-1}(y)\right) = y$$

The extension of F_Y above to the uniform probability measure on [0,1] follows from Carathéodory's extension theorem.

- c) This holds for $T(u) = F_X^{-1}(u)$, where F_X^{-1} is the generalized inverse defined above. This is known as the inverse transform sampling method. Denoting the law of U by \mathbb{P}_U , we have $F_T(t) = \mathbb{P}_U([0, F_X(t)]) = F_X(t)$, i.e., T and X are equal in distribution (since a CDF uniquely defines the probability law).
- 7) i) We begin by noting that κ(·|ω), for any ω ∈ Ω, is a Bernoulli measure, as the first condition requires. Next, fixing A ⊆ Ω, we need to show that κ(A|·) : Ω → ℝ is a measurable function (random variable). This is trivial since any function is measurable with respect to the power set σ-algebra, which establishes κ(·|·) as a valid transition kernel. Still, as a further clarification, notice that there are 4 functions to consider in the second step, namely,
 - $\kappa_{\emptyset}(\cdot) := \kappa(\emptyset|\cdot)$, which equals 0 for all inputs, i.e., $\kappa_{\emptyset}(0) = \kappa_{\emptyset}(1) = 0$;
 - $\kappa_{\Omega}(\cdot) := \kappa(\Omega|\cdot)$, which equals 1 for all inputs, i.e., $\kappa_{\emptyset}(0) = \kappa_{\emptyset}(1) = 1$;
 - $\kappa_0(\cdot) := \kappa(\{0\}|\cdot)$, which equals $\kappa_0(0) = 1 \alpha_0$ and $\kappa_0(1) = \alpha_1$ (this is not a probability measure, but is a measurable function);
 - $\kappa_1(\cdot) := \kappa(\{1\} | \cdot)$, which equals $\kappa_0(1) = \alpha_0$ and $\kappa_1(1) = 1 \alpha_1$.
 - ii) Since supp $(P_Y) = \{0, 1\}$ it is enough to show that $P_Y(\{0\}) = 0.5$. Denote $\alpha = \alpha_0 = \alpha_1$ and consider:

$$P_Y(\{0\}) = \mathbb{E}[\kappa(\{0\}|X)] = \frac{1}{2}\kappa(\{0\}|0) + \frac{1}{2}\kappa(\{0\}|1) = \frac{1}{2}(1-\alpha) + \frac{1}{2}\alpha = \frac{1}{2}.$$

iii) Let $\alpha_0 = 0$ and $\alpha_1 = \frac{1}{2}$. Repeating the above calculation gives

$$P_Y(\{0\}) = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}.$$