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ECE 5630 - Solutions to Homework Assignment 1

1) a) The statements A ∈ 2Ω and A ⊂ Ω are equivalent. Clearly ∅ ∈ 2Ω. If A ∈ 2Ω, i.e., A ⊆ Ω, then Ac = Ω \A ⊂ Ω and

thus Ac ∈ 2Ω. Finally, for A1, A2, . . . subsets of Ω consider the set A =
⋃∞

n=1An. To show that A ⊆ Ω it suffices to

show that for any x ∈ A we have x ∈ Ω. Let x ∈ A, by definition of countable unions we x ∈ An, for some n ∈ N.

Since An ⊂ Ω this implies x ∈ Ω, as needed.

b) We need to show that Pp is a probability measure. Recall Pp(A) =
∑

ω∈A p(ω), for all A ⊆ Ω. First

Pp(Ω) =
∑
ω∈Ω

p(ω) = 1.

Next, let A1, A2, . . . be disjoint subsets of Ω. Then:

Pp

( ∞⋃
i=1

An

)
=

∑
a∈∪∞

n=1An

p(ω) =

∞∑
n=1

∑
ω∈An

p(ω) =

∞∑
n=1

Pp(An),

where the second equality follows because {An} are disjoint.

2) a) Consider Ω = N and define Fn := σ
(
2{1,...,n}

)
as the σ-algebra (of subsets of Ω) generated by the power set of

{1, . . . , n}. This construction satisfies F1 ⊆ F2 ⊆ . . . by the inclusion of the generating sets. Let F =
⋃∞

n=1 Fn

and consider the singleton sets An := {2n}. Clearly An ∈ F since An ∈ F2n. However, the countable union

A :=
⋃∞

n=1An = {2, 4, 6, . . .} does not belong to any of the Fn σ-algebras, and therefore, A /∈ F . As σ-algebras

are closed under countable unions, F cannot be a σ-algebra.

b) Since ∅ ∈ Fi, for all i ∈ I , we have ∅ ∈ H, by definition of intersection. Let A ∈ H, i.e., A ∈ Fi, for all i ∈ I ,

which implies Ac ∈ Fi, for all i ∈ I (since Fi are all σ-algebras), and thus A ∈ H. Finally, if A1, A2, . . . ∈ H, we

have A1, A2, . . . ∈ Fi, for all i ∈ I , and because Fi are σ-algebras we have
⋃∞

k=1Ak ∈ Fi, for all i ∈ I , which in

turn gives
⋃∞

k=1Ak ∈ H, as desired.

c) No. Let F1 = F2 = B(R). The Cartesian product F1×F2 is not a σ-algebra on R2 since sets such as (−∞, a]×(−∞, b]

are in F1 ×F2, but not their complements.

3) Properties of probability measures: Let (Ω,F ,P) be a probability space. Prove the following properties of P:

a) 1 = P(Ω) = P(A ∪Ac) = P(A) + P(Ac), where the last equality is due to σ-additivity (noting that A ∩Ac = ∅).

b) Let C = B \A, and so B = A ∪ C where A and C are disjoint. Then P(B) = P(A) + P(C) ≥ P(A), where the last

inequality uses non-negativity of probability.

c) Define B1 = A1 and Bn = An \
{⋃n−1

i=1 Ai

}
, for n ≥ 2. By definition {Bn}∞n=1 are disjoint and Bn ⊆ An, for all

n ∈ N. Noting that
⋃∞

n=1An =
⋃∞

n=1Bn, we have

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn) ≤
∞∑

n=1

P(An),

where the 2nd equality is by σ-additivity and the 3rd equality is by monotonocity.

d) We prove only the claim for increasing events and union. The proof for decreasing event and intersection is similar.
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Let B1 = A1 and Bn = An \ An−1, for n ≥ 2. Since A1 ⊆ A2 ⊆ . . . then the Bn are disjoint. Also,
⋃n

i=1Bi =⋃n
i=1Ai = An, for all n ∈ N. Similarly,

⋃∞
i=1Bi =

⋃∞
i=1Ai = A, by definition. Since the {Bn} are disjoint we have

P(A) = P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn) = lim
n→∞

n∑
i=1

P(Bi) = lim
n→∞

P

(
n⋃

i=1

Bi

)
= lim

n→∞
P(An).

To see that this implies limm→∞ P (
⋃m

n=1A
′
n) = P (

⋃∞
n=1A

′
n), define Am =

⋃m
n=1A

′
n (which is an increasing

sequence of events), note that
⋃∞

n=1A
′
n =

⋃∞
n=1An, and apply the previous claim

e) Consider the following:

P(B) = P

(
B ∩

{ ∞⋃
n=1

An

})
= P

( ∞⋃
n=1

{
B ∩An

})
=

∞∑
n=1

P(B ∩An) =

∞∑
n=1

P(B)P(B|An),

where the last equality follows by definition of conditional probability. The derivation still holds when P(An′) = 0 for

some n′ ∈ N since then P(B ∩An′) = 0 and we can remove this summand from the series.

4) We need to show that 1−1
A (B) ∈ F , for any B ∈ B(R). There are only 4 cases to considers:

• If {0, 1} ∩B = ∅, then 1−1
A (B) = ∅ ∈ F ;

• If {0, 1} ∩B = {1}, then 1−1
A (B) = A ∈ F ;

• If {0, 1} ∩B = {0}, then 1−1
A (B) = Ac ∈ F ;

• If {0, 1} ∩B = {0, 1}, then 1−1
A (B) = Ω ∈ F .

This concludes the proof.

5) a) It suffices to establish that PX

(
B∩supp(PX)

)
= PpX

(
B∩supp(PX)

)
, for all B ∈ B(Rd), since both measures nullify

outside of supp(PX). Thus, let B ∈ 2supp(PX) and because supp(PX) is discrete, we can represent B =
⋃∞

n=1{bn}

as a countable union of singletons. We have

PpX
(B) =

∑
b∈B

pX(b) =

∞∑
n=1

PX({bn}) = PX

( ∞⋃
n=1

{bn}

)
= PX(B).

b) Let A = (−∞, a1]× · · · × (∞, ad] and consider

PfX (A) =

∫ a1

−∞
· · ·
∫ ad

−∞
fX(x1, . . . , xd) dx1 · · · dxd = FX(A) = PX(A),

where the last equality is since the CDF FX is the restriction of the law PX to the generating set of the Borel

σ-algebra.

6) a) Note that Y is a mapping from Ω = R to Y = [0, 1]. Endow each space with the its Borel σ-algebra (for Y the Borel σ-

algebra is generated by, e.g., {(0, a]}a∈(0,1]). We first verify measurability of generating sets: Fix B ∈ Ba =
(
0, a
]

and

note that Y −1(Ba) =
(
0, F−1

X (a)
]
, where F−1

X := inf
{
x ∈ R : a ≤ FX(x)

}
is the generalized inverse (also known

as quantile function) of FX . Clearly Y −1(Ba) ∈ B(R). This, in turn, implies measurability of any B ∈ B
(
(0, 1]

)
,

since Borel sets can be represented through a countable number of unions, intersections and complements, all of

which commute with the inverse map.
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b) For the CDF of Y , we have

FY (y) = PY

(
(−∞, y]

)
= PX

(
Y −1

(
(−∞, y]

))
= PX

((
−∞, F−1

X (y)
])

= FX

(
F−1
X (y)

)
= y.

The extension of FY above to the uniform probability measure on [0, 1] follows from Carathéodory’s extension

theorem.

c) This holds for T (u) = F−1
X (u), where F−1

X is the generalized inverse defined above. This is known as the inverse

transform sampling method. Denoting the law of U by PU , we have FT (t) = PU

([
0, FX(t)

])
= FX(t), i.e., T and

X are equal in distribution (since a CDF uniquely defines the probability law).

7) i) We begin by noting that κ(·|ω), for any ω ∈ Ω, is a Bernoulli measure, as the first condition requires. Next, fixing

A ⊆ Ω, we need to show that κ(A|·) : Ω→ R is a measurable function (random variable). This is trivial since any

function is measurable with respect to the power set σ-algebra, which establishes κ(·|·) as a valid transition kernel.

Still, as a further clarification, notice that there are 4 functions to consider in the second step, namely,

• κ∅(·) := κ(∅|·), which equals 0 for all inputs, i.e., κ∅(0) = κ∅(1) = 0;

• κΩ(·) := κ(Ω|·), which equals 1 for all inputs, i.e., κ∅(0) = κ∅(1) = 1;

• κ0(·) := κ({0}|·), which equals κ0(0) = 1 − α0 and κ0(1) = α1 (this is not a probability measure, but is a

measurable function);

• κ1(·) := κ({1}|·), which equals κ0(1) = α0 and κ1(1) = 1− α1.

ii) Since supp(PY ) = {0, 1} it is enough to show that PY

(
{0}
)

= 0.5. Denote α = α0 = α1 and consider:

PY

(
{0}
)

= E
[
κ
(
{0}
∣∣X)] =

1

2
κ
(
{0}
∣∣0)+

1

2
κ
(
{0}
∣∣1) =

1

2
(1− α) +

1

2
α =

1

2
.

iii) Let α0 = 0 and α1 = 1
2 . Repeating the above calculation gives

PY

(
{0}
)

=
1

2
+

1

2
· 1

2
=

3

4
.


