ECE 5630 - Homework Assignment 2

February 21st 2020

Due to: Tuesday, March 5th, 2020 (at the beginning of the lecture) **Instructions:** Submission in pairs is allowed. Prove and explain every step in your answers.

1) **Properties of** *f*-divergences: For any $P, Q \in \mathcal{P}(\mathcal{X})$ probability measures on the same probability space, dominated by a common measure $P, Q \ll \lambda$, recall that

$$D_f(P||Q) := \mathbb{E}_Q f\left(\frac{\mathrm{d}P/\mathrm{d}\lambda}{\mathrm{d}Q/\mathrm{d}\lambda}\right)$$

where f is a convex function satisfying the assumption given in class and $d\mu/d\lambda$ is the Radon-Nikodym derivative of μ with respect to λ . Prove the following properties:

- a) Non-negativity: $D_f(P||Q) \ge 0$ with equality if and only if P = Q.
- b) <u>Joint convexity</u>: The map $(P,Q) \mapsto D_f(P||Q)$ is (jointly) convex. **Hint:** Use the 'perspective' of f, defined by $g(x,y) = yf\left(\frac{x}{y}\right)$, which is convex in (x,y) if and only if f is convex.
- c) Conditioning increases f-divergence: For $P_X \in \mathcal{P}(\mathcal{X})$ and two transition kernels (channels) $P_{Y|X}$ and $Q_{Y|X}$ from \mathcal{X} to \mathcal{Y} , consider the probability measures $P_{X,Y} := P_X P_{Y|X}$ and $Q_{X,Y} := P_X Q_{Y|X}$ on $\mathcal{X} \times \mathcal{Y}$. Denoting by P_Y and Q_Y their marginals on \mathcal{Y} , show that

$$D_f(P_Y \| Q_Y) \le D_f(P_{Y|X} \| Q_{Y|X} | P_X) =: \int D_f(P_{Y|X=x} \| Q_{Y|X=x}) \mathsf{d} P_X(x).$$
(1)

d) <u>Joint vs. marginal</u>: For $P_X, Q_X \in \mathcal{P}(\mathcal{X})$ and a transition kernel $P_{Y|X}$, define $P_{X,Y} := P_X P_{Y|X}$ and $Q_{X,Y} := Q_X P_{Y|X}$ (measures on the product space, as before). Show that

$$D_f(P_X || Q_X) = D_f(P_{X,Y} || Q_{X,Y}).$$

2) Example of Data Processing Inequality: Let $(\mathcal{X}, \mathcal{F})$ be a measurable space $(\mathcal{X} \text{ is the sample set and } \mathcal{F} \text{ the } \sigma\text{-algebra})$. Use the Data Processing Inequality to show that for any two probability measures P, Q on $(\mathcal{X}, \mathcal{F})$ and any $E \in \mathcal{F}$:

$$D_f(P||Q) \ge \sup_{A \in \mathcal{F}} \left\{ \left(1 - Q(A)\right) f\left(\frac{1 - P(A)}{1 - Q(A)}\right) + Q(A) f\left(\frac{P(A)}{Q(A)}\right) \right\}$$

- 3) *f*-divergences, metrics, and mismatched support: Recall the definitions of Kullback-Leibler (KL) divergence $D_{KL}(\cdot \| \cdot)$ and χ^2 -divergence $\chi^2(\cdot \| \cdot)$ provided in class. Show that:
 - a) $\delta_{\mathsf{TV}}(\cdot, \cdot)$ is a metric on $\mathcal{P}(\mathcal{X})$.

Hint: Use relation to L^1 norm. You may assume probability measures have densities, but a general proof is preferable.

- b) $D_{\mathsf{KL}}(P,Q) = \chi^2(P,Q) = \infty$ whenever $P \not\ll Q$ (i.e., P is not absolutely continuous with respect to Q).
- c) $\delta_{\mathsf{TV}}(P,Q)$ attains its maximal value of 1, whenever $\operatorname{supp}(P) \cap \operatorname{supp}(Q) = \emptyset$.
- d) Explain why the previous property is undesired when performing generative modeling $\inf_{\theta \in \Theta} \delta(P, Q_{\theta})$ of a data distribution P via a parametrized family $\{Q_{\theta}\}_{\theta \in \Theta}$ under divergence δ .
- 4) Jensen-Shannon divergence: Let $f(x) = x \log\left(\frac{2x}{x+1}\right) + \log\left(\frac{2}{x+1}\right)$. Show that:
 - a) Shown that $f:(0,\infty) \to \mathbb{R}$ is a convex function, with f(1) = 0, which is strictly convex around 1.
 - b) Let JSD(P||Q) be the *f*-divergence induced by the above *f*. This is known as the *Jensen-Shannon divergence* (JSD). Prove that
 - i) $JSD(P||Q) = \frac{1}{2}D_{KL}\left(P\left\|\frac{P+Q}{2}\right) + \frac{1}{2}D_{KL}\left(Q\left\|\frac{P+Q}{2}\right)\right)$

Note: This is why JSD is sometimes referred to as symmetrized KL divergence.

- ii) JSD(P||Q) is maximized at 2 log 2 but pairs (P,Q) with supp(P) ∩ supp(Q) = Ø.
 Note: It can be shown that √JSD(P||Q) is a metric on the space of probability measures. This is non-trivial.
- 5) *f*-divergences variational formula: The convex conjugate of a function $f : I \to \mathbb{R}$ is $f^{\star}(y) = \sup_{x \in I} yx f(x)$. We saw the following variational representation of *f*-divergences:

$$D_f(P||Q) = \sup_{g:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[g(X)] - \mathbb{E}_Q[f^*(g(X))],$$

where the supremum is over all measurable g for which the expectations are finite. Show that

a) $D_f(P||Q) \ge \sup_{g:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[g(X)] - \mathbb{E}_Q[f^*(g(X))]$, when supremising over all g as above.

Note: You may follow the argument given in class but must precisely justify each step.

- b) Derive the following variational formulas by computing convex conjugates:
 - i) $D_{\mathsf{KL}}(P||Q) = 1 + \sup_{g:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[g(X)] \mathbb{E}_Q[e^{g(X)}]$ ii) $\delta_{\mathsf{TV}}(P,Q) = \sup_{\|g\|_{\infty} \leq 1} \frac{1}{2} (\mathbb{E}_P[g(X)] - \mathbb{E}_Q[g(X)])$ iii) $\chi^2(P||Q) = \sup_{g:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[g(X)] - \mathbb{E}_Q\left[g(X) + \frac{g^2(x)}{4}\right]$ **Hint:** Consider the change of variables $h(x) = \frac{g(x)}{2} + 1$.
- 6) Inequalities between f-divergences: We examine how some f-divergences relate to one another. Prove the following:
 - a) For any distributions $P, Q \in \mathcal{P}(\mathcal{X})$, it holds that

$$D_{\mathsf{KL}}(P||Q) \le \log\left(1 + \chi^2(P||Q)\right) \le \chi^2(P||Q)$$

Hint: For all x > -1, it holds that $x \ge \log(1 + x)$.

b) Assume that P = Ber(p) and Q = Ber(q) where $p, q \in (0, 1)$. Show that

$$\delta_{\mathsf{TV}}(P,Q)^2 \le \frac{\ln(2)}{2} D_{\mathsf{KL}}(P \| Q).$$

Hint: Define $g(p,q) := D_{\mathsf{KL}}(P || Q) - \frac{2}{\ln(2)} \delta_{\mathsf{TV}}(P,Q)^2$ and consider its derivative.

c) Assume that \boldsymbol{P} and \boldsymbol{Q} have finite supports. Show that

$$\delta_{\mathsf{TV}}(P,Q)^2 \le \frac{1}{2} D_{\mathsf{KL}}(P \| Q).$$

This results is known as Pinker's Inequality.

Hint: Define $h(x) = x \log(x) - x + 1$. Start by showing that $(4 + 2x)h(x) \ge 3(x - 1)^2$, $\forall x \ge 0$.