ECE 5630 - Solutions Homework Assignment 2

1) a) Using Jensen’s inequality

D/(PIQ) = Bof (§oay ) = £ (Eadorsy ) =0

where the last equality follows from the fact that f(1) = 0 and

o[iaim]) = Lo [ mo -t

Clearly, if P = @Q then D;(P||Q) = 0. By strong convexity of f at 1, it follows that if D;(P||@Q) = 0 then ggéii‘\ =1

or equivalently P = @. To see why these two notions are equivalent, one can use the definition of Radon-Nikodym

derivative. That is, for any measurable set A,

d@
—d\ = —d\ =
N = [ G- [ Ga-aw.

b) By convexity of the perspective function of f, for any Py, P2, Q1, Q2 € P(X) and any « € [0, 1] it follows that
dP dP, dQl Q2 dPy d@: dP,  d@Q2
=1 1— 1— 2 T2
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Thus by taking the integral of both sides, we get
Dy(aPy 4+ (1 - a)PllaQr + (1 — 2)Q2) < aDs(P1[|Q1) + (1 — a) Dy (P ||Q2).
c) Using Jensen’s inequality
D¢(Pyx||Qy|x | Px) =Ep,D(Pyx||Qy|x) > Dy (Epy Py|x||[Epc Qy|x) = D¢ (P||Q).

d) Px,Qx < A Letv = APy |x. Then, Pxy,Qx,y < v. We first show that d Py y /dv = d Px /d\. For all measurable
A=A, x A, where A, € X and A, € Y, we have

/dPX’YdV:/dPX,Y:/ (/ dPX>dPYX:/ </ dPXd)\)dPYX: dPXd
a dv A A A, Ay A, dA a4 dA

Y

Then,

o dPX7y/dI/ _ dP)(/dA dpx/d/\
Df(PX7Y||QX7Y)_/X><yf<dQX,Y/dV> dQX,Y—/ <dQX/d)\>/dQXY / (de/d/\) dQX.

2) Let A € F. Define the transition kernel as Py |x(Alr) = 0.(A). Let Pxy = PPxjy and Qxy = QPx|y. Then
Py =EpPy|x = Bern(P(4)) and Qy = EqgPy|x = Bern(Q(A)). By data processing inequality, we get
1-— P(A)) (P(A))
D:(P > D (P = D(Bern(P(A))||Bern(Q(A))) = (1 — Q(A — 2 )+ Q(A —Z .
1(PIQ) = D(Py[|Qy) = Dy (Bern(P(4))][Bern(Q(A)) = (1 = Q(A)) f (1 —o0) e (g
The above inequality holds for all measurable sets A. By taking the supremum over all measurable sets, we get the

desired inequality.



3) a) Recall the definition of Total Variation distance
1
sv(P.Q) = 5 [ 14P-dal.

Clearly, dtv(P,Q) > 0 with equality if and only if P = @ and d1v(P, Q) = drv(Q, P). We show the triangle
inequality for P, Py, P3 € P(X):

brv(Py, Py) = / dPy — dPy|
:7/ AP — dPy + dP, — dPy|
2 X
1 1
< 7/ |dP17dP2|+7/ 4P, — dPy|
2 X 2 X
= 01v(P1, P2) + d1v(Po, Ps).

b) If P is not absolutely continuous with respect to @, then there exists a measurable set A such that Q(A) = 0 while

P(A) > 0. The KL-Divergence is then given by

i = (S5 o (28) =

It holds that
DiL(P(Q) < log (14 x*(P,Q)) .

Thus, if Dk (P]|Q) = oo then x*(P,Q) =

¢) We have
Srv(PQ) = /\dP do| < (/ dP+/ dQ)

with equality if supp(P) N supp(Q) = 0.

d) We approximate the statistical distance between P and (y using samples from the respective distributions. Thus,
supp(ﬁ) N Supp(éjg) = (). As a result, the statistical divergence between the two (empirical) distributions is not
informative, which, in turn, makes the optimization problem infgcg o (13, @9) challenging. For example, one cannot
rely on gradient descent methods for the optimization problem as the gradient is 0 a.s.

4) a) Clearly, f(1) = 0. Also, f"(x) = x(x_H) > 0 for all x > 0. So f is strictly convex.

b) We use the shorthand notation % = %.

JSD(PHQ):/X%log <gggil> dQ+/Xlog<g2+ >dQ
:/ng( (Pd+PQ)/2)dP + [ 1o ( <Pd+QQ>/2>dQ

o (5) e (]239).

where we have used the fact that dP/d\ + dQ/dX\ = d(Q + P)/dA, which follows from the definition of the

i) Consider:

Radon-Nikodym derivative and linearity of the expectation operator.



ii) We have

P+Q\ dP B dP
Prt (P H 2 )‘/ng<dp/2+d@/2>dp ‘/suppm 10g<dP/2+d@/2)‘”D

dP
< / log () dP = log(2),
supp(P) dp/2

with equality if Q(supp(P)) = 0. Similarly, Dk (QHPLJQ) < log(2) with equality if P(supp(Q)) = 0. So,

JSD(P||Q) is maximized at 2log(2) if supp(P) N supp(Q) = 0.
5) We use the shorthand notation % = jgéjﬁ.
a) f** = f by convexity of f. Thus,
_ dP(z) ., > ( dP(z) ., )
D¢(P = — d - d
WP = [ (vg55 - rw)dew = [ (6055 - o)) o),

for all measurable g : X — R. Notice that for each = the suprimizer y may be different. Finally, for all g : X — R,
it holds that

Df(PHQ)2/Xg(w)dP(ﬂc)—/Xf*(g(w))dQ(r)ZEP[Q(X)]—]EQU*(Q(X))]-

Thus,

Dy(PllQ) > g:S)?EREP[g(X)} —Eqlf*(9(X))]-

b) We need to find convex conjugate of respective f functions. Let h(z,y) = xy — f(x). Notice that h(z,y) is concave
in 2 as f(x) is convex. So we can use the first-order optimality condition to find f*(y) = sup, h(z,y).

i) f(z) = xlog(z) and h(z,y) = zy — xlog(z). From the first order optimality condition dh/dz = 0 it follows

that & = argmax, . h(z,y) = e~ and
fy) =yt —(y—1)ev ' = eVl
Then,

Dy(P|Q) = sup_Ep[g(X)] ~Eq[e/™ ] =1+ sup Ep[g(X)] —Eq[e?™],
g:X—R g:X—>R
where the last equation follows from a change of variable of the form g(z) = g(x) — 1.
¢ f(z) = 3l — 1] and h(z,y) = vy — 3|z — 1]. So,
N y, if |yl < 3,
fy) =
oo, if [y| > 3.
Then,

(P.Q)= s (Eplg(X)] ~Eelo(X)]) = sy 3 (Erlg(X)] ~ Eqls(X))

where the uniform norm (sup norm) [|g[|o is defined as [|g[|occ = SUPycqom(q) [9(¥)]-

d) f(z) = (x —1)? and h(z,y) = 2y — (z — 1)%. From the first order optimality condition dh/dz = 0 it follows that



6) a)

b)

r* = argmax, ., h(z,y) = § +1 and

So,

By Jensen’s inequality

o (5] v e [25]) - (o ()] - (25

So DiL(P||Q) < log (1+x*(P||Q)) < Xx*(P||Q). The last inequality follows from the hint and the fact that
X*(P[|Q) > 0 for all p,Q € P(X).

First notice that

9(p,q) = DL (P|Q) — —=d1v(P,Q)* = (1 — p) log (H;) + plog (Z) - ni(p -q)*.

2
In(2)

Then,

&=te )

It follows that < 0if p > ¢ and dq > 0 otherwise. Notice that g(p,q) =0 at p = ¢. So g(p, q) > 0, which implies
the desired 1nequa11ty.

Let g(z) = (x — 1)> — (3 + 2) h(z). Notice that g(1) =0, ¢’(1) = 0, g"(z) = —4h(z)/(3z). By convexity of A it
follows that g”(x) < 0 for all = > 0. By Taylor’s theorem, there exists z such that |z — 1| < |z — 1|

o@) =) + g -1+ L@ -1 <o
Thus, for all x > 0
|z — 1| < (;l + gx) h(z). (1)

Using inequality (1), we get

orv(P,Q) = /|p —q(z 5/

— x)dx < = / ( q(z)dz
TR \/ a@)) "\ )"
Using Cauchy-Schwarz inequality, we get

s L G2y (2 ot < 3y [ (3 22 ) o o (B2 awrar = 1o Bl

where the last equality follows from the definition of KL divergence and h.




