ECE 5630 - Solutions Homework Assignment 3

1) a) Using the fact that $p_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} p_{X_{i} \mid X_{1}, \ldots, X_{i-1}}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$ for all $\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{X}^{k}$, and the linearity of expectation, we get

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{k}\right) & =\mathbb{E}_{P_{X_{1}, \ldots, X_{k}}}\left[\log \left(\frac{1}{p_{X_{1}, \ldots, X_{k}}\left(X_{1}, \ldots, X_{k}\right)}\right)\right] \\
& =\mathbb{E}_{P_{X_{1}, \ldots, X_{k}}}\left[\log \left(\frac{1}{\prod_{i=1}^{k} p_{X_{i} \mid X_{1}, \ldots, X_{i-1}}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)}\right)\right] \\
& =\sum_{i=1}^{k} \mathbb{E}_{P_{X_{1}, \ldots, X_{k}}}\left[\log \left(\frac{1}{p_{X_{i} \mid X_{1}, \ldots, X_{i-1}}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)}\right)\right] \\
& =\sum_{i=1}^{k} \mathbb{E}_{P_{X_{1}, \ldots, X_{i}}}\left[\log \left(\frac{1}{p_{X_{i} \mid X_{1}, \ldots, X_{i-1}}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)}\right)\right]
\end{aligned}
$$

where the last equality follows from the marginalization of the joint PMF, i.e.,

$$
\sum_{\left(x_{i+1}, \ldots, x_{k}\right) \in \mathcal{X}^{k-i}} p_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)=p_{X_{1}, \ldots, X_{i}}\left(x_{1}, \ldots, x_{i}\right)
$$

Thus, using the definition of conditional entropy we get

$$
H\left(X_{1}, \ldots, X_{k}\right)=\sum_{i=1}^{k} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

b) Chain rule for differential entropy follows from a similar argument, and the marginalization of the joint PDF, i.e.,

$$
\int_{\left(x_{i+1}, \ldots, x_{k}\right) \in \mathcal{X}^{k-i}} p_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right) \mathrm{d} x_{i+1} \ldots \mathrm{~d} x_{k}=p_{X_{1}, \ldots, X_{i}}\left(x_{1}, \ldots, x_{i}\right)
$$

2) a) Using Radon-Nikodym chain rule, we get

$$
D_{\mathrm{KL}}\left(P_{X, Y} \| Q_{X, Y}\right)=\mathbb{E}_{P_{X, Y}}\left[\log \left(\frac{\mathrm{~d} P_{X, Y}}{\mathrm{~d} Q_{X, Y}}\right)\right]=\mathbb{E}_{P_{X, Y}}\left[\log \left(\frac{\mathrm{~d} P_{X} \mathrm{~d} P_{Y \mid X}}{\mathrm{~d} Q_{X} \mathrm{~d} Q_{Y \mid X}}\right)\right]
$$

Then,

$$
\begin{aligned}
D_{\mathrm{KL}}\left(P_{X, Y} \| Q_{X, Y}\right) & =\mathbb{E}_{P_{X, Y}}\left[\log \left(\frac{\mathrm{~d} P_{X}}{\mathrm{~d} Q_{X}}\right)\right]+\mathbb{E}_{P_{X, Y}}\left[\log \left(\frac{\mathrm{~d} P_{Y \mid X}}{\mathrm{~d} Q_{Y \mid X}}\right)\right] \\
& =\mathbb{E}_{P_{X}}\left[\log \left(\frac{\mathrm{~d} P_{X}}{\mathrm{~d} Q_{X}}\right)\right]+\mathbb{E}_{P_{X}}\left[D_{\mathrm{KL}}\left(P_{Y \mid X}(\cdot \mid X) \| Q_{Y \mid X}(\cdot \mid X)\right)\right] \\
& =D_{\mathrm{KL}}\left(P_{X} \| Q_{X}\right)+D_{\mathrm{KL}}\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right) .
\end{aligned}
$$

b) Using the definition of mutual information and part (a), we have

$$
I(X ; Y)=D_{\mathrm{KL}}\left(P_{X, Y} \| P_{X} \otimes P_{Y}\right)=D_{\mathrm{KL}}\left(P_{X} \| P_{X}\right)+D_{\mathrm{KL}}\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)=D_{\mathrm{KL}}\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)
$$

where the last equality follows from the fact that $D_{\mathrm{KL}}\left(P_{X} \| P_{X}\right)=\mathbb{E}_{P_{X}}[\log (1)]=0$.
c) Using the fact that $\mathrm{d} P_{X, Y}=\mathrm{d} P_{Y, X}$, we get

$$
I(Y ; X)=D_{\mathrm{KL}}\left(P_{Y, X} \| P_{Y} \otimes P_{X}\right)=D_{\mathrm{KL}}\left(P_{X, Y} \| P_{X} \otimes P_{Y}\right)=I(X ; Y)
$$

d) Using part (b) and (a), we get

$$
I(X ; Y, Z)=D_{\mathrm{KL}}\left(P_{Y, Z \mid X} \| P_{Y, Z} \mid P_{X}\right)=D_{\mathrm{KL}}\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)+D_{\mathrm{KL}}\left(P_{Z \mid X, Y} \| P_{Z \mid Y} \mid P_{X, Y}\right) \geq D_{\mathrm{KL}}\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)
$$

where the last step follows from the non-negativity of the KL-divergence. Thus, $I(X ; Y, Z) \geq I(X ; Y)$.
e) Consider the transition kernel induced by mapping (Id, f). We obtain $P_{X, f(Y)}$ and $P_{X, f(Y)}$ by passing $P_{X, Y}$ and $P_{X} \otimes P_{Y}$ through this kernel, respectively. Using the f-divergence DPI, we get

$$
D_{\mathrm{KL}}\left(P_{X, Y} \| P_{X} \otimes P_{Y}\right) \geq D_{\mathrm{KL}}\left(P_{X, f(Y)} \| P_{X} \otimes P_{f(Y)}\right)
$$

Thus, $I(X ; Y) \geq I(X ; f(Y))$. If f is one-to-one, then for discrete X, we have

$$
I(X ; f(X))=H(f(X))-H(f(X) \mid X)=H(f(X))=H(X)
$$

where the last equality follows from the fact that f is a bijection and because entropy is invariant to relabeling. For the continuous case, we show that $I(X ; X)=\infty$. Assume $P_{X} \ll \lambda$ where λ is the Lebesgue measure. From the definition $I(X ; X)=D_{\mathrm{KL}}\left(P_{X X} \| P_{X} \otimes P_{X}\right)$. We will show that $P_{X X} \nless P_{X} \otimes P_{X}$, thereby implying that KL divergence diverges, as claimed. Define the diagonal set $\Delta:=\{(x, x): x \in \mathcal{X}\}$. Then,

$$
\begin{aligned}
P_{X X}(\Delta) & =\int_{\Delta} \mathrm{d} P_{X X}(x, x)=\int_{\mathcal{X}} \int_{\mathcal{X}} \mathbb{1}_{\left\{x=x^{\prime}\right\}} \mathrm{d} P_{X X}(x, x)=\int_{\mathcal{X}} \mathrm{d} P_{X}(x) \int_{\mathcal{X}} \mathbb{1}_{\left\{x=x^{\prime}\right\}} \mathrm{d} P_{X \mid X}\left(x^{\prime} \mid x\right) \\
& =\int_{\mathcal{X}} \mathrm{d} P_{X}(x) \int_{\mathcal{X}} \mathbb{1}_{\left\{x=x^{\prime}\right\}} \mathrm{d} \delta_{x}\left(x^{\prime}\right)=\int_{\mathcal{X}} \delta_{x}(x) \mathrm{d} P_{X}(x)=1
\end{aligned}
$$

However,

$$
\begin{aligned}
P_{X} \otimes P_{X}(\Delta) & =\int_{\Delta} \mathrm{d} P_{X} \otimes P_{X}\left(x, x^{\prime}\right)=\int_{\mathcal{X}} \int_{\mathcal{X}} \mathbb{1}_{\left\{x=x^{\prime}\right\}} \mathrm{d} P_{X} \otimes P_{X} \\
& =\int_{\mathcal{X}} \mathrm{d} P_{X}(x) \int_{\mathcal{X}} \mathbb{1}_{\left\{x=x^{\prime}\right\}} \mathrm{d} P_{X}\left(x^{\prime}\right)=\int_{\mathcal{X}} P_{X}(x) \mathrm{d} P_{X}(x)=0
\end{aligned}
$$

where the last equality follows from the fact that $P_{X}(x)=0$ for all $x \in \mathcal{X}$ because $P_{X} \ll \lambda$. Thus, $P_{X X} \nless P_{X} \otimes P_{X}$ as $P_{X X}(\Delta)>0$ while $P_{X} \otimes P_{X}(\Delta)=0$.
3) a)

$$
H(Z) \leq H(Z, X)=H(X)+H(X+Y \mid X)=H(X)+\sum_{x \in \mathcal{X}} P_{X}(x) H(x+Y \mid X=x)
$$

Using the fact that entropy is invariant to relabeling, we have $H(x+Y \mid X=x)=H(Y \mid X=x)$ for all $x \in \mathcal{X}$. Then,

$$
H(Z) \leq H(X)+\sum_{x \in \mathcal{X}} P_{X}(x) H(Y \mid X=x)=H(X)+H(Y \mid X) \leq H(X)+H(Y)
$$

where the last equality follows from the fact that conditioning cannot increase entropy. The inequality
$\max \{H(X), H(Y)\} \leq H(Z)$ follows from part (b).
b) Using the fact that entropy is invariant to relabeling, we have

$$
H(Z \mid X)=\sum_{x \in \mathcal{X}} P_{X}(x) H(x+Y \mid X=x)=\sum_{x \in \mathcal{X}} P_{X}(x) H(Y \mid X=x)=H(Y \mid X)
$$

If X and Y are independent, we have $H(Y \mid X)=H(Y)$. Using the fact that conditioning cannot increase entropy, we get

$$
H(Z) \geq H(Z \mid X)=H(Y \mid X)=H(Y)
$$

Similarly, we get

$$
H(Z) \geq H(Z \mid Y)=H(X \mid Y)=H(X)
$$

c) Let X be an arbitrary random variable with $H(X)>0$ and define $Y=-X$. Then, $Z=0$ and $H(Z)=0$.
4) a)

$$
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z) \geq H(X \mid Z)
$$

The equality holds if and only if $H(Y \mid X, Z)=0$. That is, Y is a function of X and Z.
b)

$$
I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X) \geq I(X ; Z)
$$

The equality holds if and only if $I(Y ; Z \mid X)=0$, i.e., Y and Z are conditionally independent given X.
c) We have $H(X, Y, Z)-H(X, Y)=H(Z \mid X, Y)$. Also, $H(X, Z)-H(X)=H(Z \mid X)$. Using the fact that conditioning cannot increase entropy, we get

$$
H(X, Y, Z)-H(X, Y)=H(Z \mid X, Y) \leq H(Z \mid X)=H(X, Z)-H(X)
$$

The equality holds if $H(Z \mid X, Y)=H(Z \mid X)$, i.e., Y and Z are conditionally independent given X.
d) We have $I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)=I(Y ; Z)+I(X ; Z \mid X)$. Then,

$$
I(X ; Z \mid X)=I(X ; Z)+I(Y ; Z \mid X)-I(Y ; Z)
$$

The equality always holds.
5) a) Define $Q \in \mathcal{P}(\mathbb{N})$ with PMF $q(n)=6 /\left(\pi^{2} n^{2}\right)$ for all $n \in \mathbb{N}$. Then,

$$
H(P)=\mathbb{E}_{P}\left[\log \left(\frac{1}{p(X)}\right)\right]=\mathbb{E}_{P}\left[\log \left(\frac{q(X)}{p(X)}\right)\right]+\mathbb{E}_{P}\left[\log \left(\frac{1}{q(X)}\right)\right]=-D_{\mathrm{KL}}(P \| Q)+\mathbb{E}_{P}\left[\log \left(\frac{1}{q(X)}\right)\right]
$$

Using the facct that $D_{\mathrm{KL}}(P \| Q) \geq 0$, we get

$$
H(P) \leq \mathbb{E}_{P}\left[\log \left(\frac{\pi^{2} X^{2}}{6}\right)\right]=\log \left(\frac{\pi^{2}}{6}\right)+2 \mathbb{E}_{P}[\log (X)]
$$

b) Define $P \in \mathcal{P}(\mathbb{N})$ with PMF $p(n)=c /\left(n(\log n)^{2}\right)$ for all $n \in\{2,3, \ldots\}$ where $c:=\sum_{n=2}^{\infty} 1 /\left(n(\log n)^{2}\right)$. We show
that p is a valid PMF by proving that c is finite.

$$
c \leq \int_{2}^{\infty} \frac{1}{x(\log x)^{2}} \mathrm{~d} x=-\left.\frac{1}{\log (x)}\right|_{2} ^{\infty}=\log 2
$$

Then,

$$
H(P)=\sum_{n=2}^{\infty} \frac{c}{n(\log n)^{2}} \log \left(n(\log n)^{2} / c\right)=\sum_{n=2}^{\infty} \frac{c}{n \log n}-\log c+2 c \sum_{n=2}^{\infty} \frac{\log \log n}{n(\log n)^{2}} \geq \sum_{n=2}^{\infty} \frac{c}{n \log n}-\log 2
$$

$H(P)=\infty$ since $\sum_{n=2}^{\infty} 1 /(n \log n)=\infty$.
6) a) The convexity follows from the fact that $(P, Q) \rightarrow D_{\mathrm{KL}}(P \| Q)$ is convex in (P, Q) and that $I\left(P_{X}, P_{Y \mid X}\right)=$ $D_{\mathrm{KL}}\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)$.
b) (i) By the total probability law, we get $P_{X}=\alpha P_{X}^{(2)}+(1-\alpha) P_{X}^{(1)}$.
(ii) We have $P_{X, Y, \Theta}=P_{\Theta} P_{X \mid \Theta} P_{Y \mid X, \Theta}=P_{\Theta} P_{X \mid \Theta} P_{Y \mid X}$ where the equality follows from the fact that Y is obtained by passing X through the kernel $P_{Y \mid X}$.
(iii) Using part (b), we have

$$
I(X ; Y)=I(X, \Theta ; Y)=I(\Theta ; Y)+I(X ; Y \mid \Theta) \geq I(X ; Y \mid \Theta)
$$

Thus, for all $\alpha \in[0,1]$

$$
I\left(\alpha P_{X}^{(2)}+(1-\alpha) P_{X}^{(1)}, P_{Y \mid X}\right) \geq \alpha I\left(P_{X}^{(2)}, P_{Y \mid X}\right)+(1-\alpha) I\left(P_{X}^{(1)}, P_{Y \mid X}\right)
$$

7) Using chain rule, we get

$$
I\left(X_{1} ; X_{2}, \ldots, X_{n}\right)=I\left(X_{1} ; X_{2}\right)+\sum_{k=3}^{n} I\left(X_{k} ; X_{1} \mid X_{2}, \ldots, X_{k-1}\right)
$$

Using the fact that $\left\{Z_{i}\right\}_{i=1}^{\infty}$ is a sequence of i.i.d. random variables, we get $X_{1} \rightarrow X_{2} \ldots \rightarrow X_{n}$. Thus, for all $k \geq 3$, we have

$$
I\left(X_{k} ; X_{1} \mid X_{2}, \ldots, X_{k-1}\right)=0
$$

Then,

$$
I\left(X_{1} ; X_{2}, \ldots, X_{n}\right)=I\left(X_{1} ; X_{2}\right)=I\left(Z_{1}+Z_{2} ; Z_{1}\right)=H\left(X_{2}\right)-H\left(Z_{2}\right)
$$

We have

$$
p_{X_{2}}(x)= \begin{cases}1 / 2, & x=1 \\ 1 / 4, & x=0,2\end{cases}
$$

Then, $H\left(X_{2}\right)=3 / 2$. Also, $H\left(Z_{2}\right)=1$ as $Z_{2} \sim \operatorname{Ber}(1 / 2)$. Thus,

$$
I\left(X_{1} ; X_{2}, \ldots, X_{n}\right)=I\left(X_{1} ; X_{2}\right)=\frac{1}{2}
$$

8) Using the bounds on the PDFs, for all $x \in[0,1]$. we have

$$
0<\frac{c_{1}}{c_{2}} \leq \frac{q(x)}{p(x)} \leq \frac{c_{2}}{c_{1}}<\infty
$$

Note that $c_{1} / c_{2}<1<c_{2} / c_{1}$. Using Taylor's theorem, for all $y \in\left[c_{1} / c_{2}, c_{2} / c_{1}\right]$ there exists a $\varepsilon(y)$ such that $|\varepsilon(y)-1| \leq$ $|y-1|$ for which it holds that

$$
\begin{equation*}
\log (y)=y-1-\frac{1}{2 \varepsilon(y)^{2}}(y-1)^{2} \tag{1}
\end{equation*}
$$

Then, for all $y \in\left[c_{1} / c_{2}, c_{2} / c_{1}\right]$, we have

$$
\begin{equation*}
y-1-\frac{c_{2}^{2}}{2 c_{1}^{2}}(y-1)^{2} \leq \log (y) \leq y-1-\frac{c_{1}^{2}}{2 c_{2}^{2}}(y-1)^{2} . \tag{2}
\end{equation*}
$$

Let $y=q(x) / p(x)$. Then, using the definition of KL-divergence, we get

$$
\begin{aligned}
D_{\mathrm{KL}}(P \| Q) & =-\int_{0}^{1} p(x) \frac{q(x)}{p(x)} \mathrm{d} x \\
& \leq-\int_{0}^{1} p(x)\left(\frac{q(x)}{p(x)}-1-\frac{c_{2}^{2}}{2 c_{1}^{2}} \frac{(q(x)-p(x))^{2}}{p(x)^{2}}\right) \mathrm{d} x \\
& =-\int_{0}^{1} p(x) \mathrm{d} x+1+\frac{c_{2}^{2}}{2 c_{1}^{2}} \int_{0}^{1} \frac{(q(x)-p(x))^{2}}{p(x)} \mathrm{d} x \\
& \leq \frac{c_{2}^{2}}{2 c_{1}^{3}} \int_{0}^{1}(q(x)-p(x))^{2} \mathrm{~d} x .
\end{aligned}
$$

Setting $k_{2}=c_{2}^{2} /\left(2 c_{1}^{3}\right)$. The lower bound can be derived similarly using the upper bound in Inequality (2) with $k_{1}=$ $c_{1}^{2} /\left(2 c_{2}^{3}\right)$.

