ECE 5630 - Homework Assignment 4

April 14th 2020

Due to: Friday, April 24th, at 4pm.

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers. HW sheets are to be submitted via Canvas.

Assumption: In this homework sheet we assume that alphabets are countable throughout.

- Monotonicity of entropy for stationary processes: Let {X_i}[∞]_{i=1} be a stationary sequence of random variables, i.e., the joint distribution of any finite tuple is invariant to translations. Namely, stationarity means that for any indices 1 ≤ i₁ < i₂ < ... < i_k, where k ∈ N, and a shift s ∈ Z such that i₁ + s ≥ 1, we have P_{Xi1},...,Xik</sub> = P_{Xi1+s},...,Xik+s</sub>. Recall that for n ∈ N we denote Xⁿ := (X₁,...,X_n). Prove that:
 - a) For any $i, n \in \mathbb{N}$ with $1 \le i \le n$, we have $H(X_n | X^{n-1}) \le H(X_i | X^{i-1})$.
 - b) For any $n \in \mathbb{N}$, we have

$$\frac{H(X^n)}{n} \le \frac{H(X^{n-1})}{n-1}.$$

c) For any $n \in \mathbb{N}$, we have

$$\frac{H(X^n)}{n} \ge H(X_n | X^{n-1}).$$

- 2) Entropy in bytes: Let $P \in \mathcal{P}(\mathcal{X})$ and denote by p the associated PMF. The units of the entropy $H_a(P) = -\sum_{x \in \mathcal{X}} p(x) \log_a p(x)$ are bits if the logarithm is to the base of a = 2 and bytes if the base is a = 256. Express $H_{256}(P)$ in terms of $H_2(X)$.
- 3) A measure of correlation: Let X_1 and X_2 be identically distributed, but not necessarily independent. Assume that X_1 is not a constant, i.e., $H(X_1) > 0$. Define

$$\rho := 1 - \frac{H(X_2|X_1)}{H(X_1)}$$

and show that

- a) ρ = I(X₁;X₂)/H(X₁) (there is no typo in the definition of ρ above).
 b) 0 ≤ ρ ≤ 1.
- c) Find a necessary and sufficient condition for $\rho = 0$.
- d) Find a sufficient condition for $\rho = 1$.
- 4) Random questions: One wishes to learn the value of a random variable X ~ P_X ∈ P(X). A question Q ~ P_Q ∈ P(Q) is asked at random according to P_Q. This results in a answer A := a(X, Q), where a : X × Q → A is a deterministic answer function that attaches an answer a(x, q) to any value-question pair (x, q) ∈ X × Q. Suppose that X and the

- a) Show that I(X;Q,A) = H(A|Q) and interpret this result.
- b) Now suppose that two i.i.d. questions $Q_1, Q_2 \sim P_Q$ are asked, eliciting answers $A_1 := A(X, Q_1)$ and $A_2 := A(X, Q_2)$. Show that two questions are less valuable than twice the value of a single question in the sense that $I(X; Q_1, A_1, Q_2, A_2) \leq 2I(X; Q_1, A_1)$.
- 5) Joint letter-typical set: Let $P_{X,Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ be a distribution with $|\operatorname{supp}(P_{X,Y})| < \infty$ and denote by $p_{X,Y}$ its PMF. For $n \in \mathbb{N}$ and $\epsilon > 0$ recall the definition of the joint letter-typical set

$$\mathcal{T}_{\epsilon}^{(n)}(P_{X,Y}) := \big\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \big| \nu_{x^n, y^n}(a, b) - p_{X,Y}(a, b) \big| < \epsilon p_{X,Y}(a, b), \ \forall (a, b) \in \mathcal{X} \times \mathcal{Y} \big\},$$

where $\nu_{x^n,y^n}(a,b) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{(x_i,y_i)=(a,b)\}}$, for $(a,b) \in \mathcal{X} \times \mathcal{Y}$, is the empirical frequency of the pair $(x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n$. Prove the following properties:

- a) If $(x^n, y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X,Y})$ then $x^n \in \mathcal{T}_{\epsilon}^{(n)}(P_X)$ and $y^n \in \mathcal{T}_{\epsilon}^{(n)}(P_Y)$.
- b) For any $(x^n, y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X,Y})$, we have
 - (i) $2^{-n(1+\epsilon)H(P_{X,Y})} \le P_{X,Y}^{\otimes n}(\{x^n, y^n\}) \le 2^{-n(1-\epsilon)H(P_{X,Y})}.$
 - (ii) $2^{-n(1+\epsilon)H(P_X)} \le P_X^{\otimes n}(\{x^n\}) \le 2^{-n(1-\epsilon)H(P_X)}.$
 - (iii) $2^{-n(1+\epsilon)H(P_Y)} < P_V^{\otimes n}(\{y^n\}) < 2^{-n(1-\epsilon)H(P_Y)}.$
- c) If $(X_1, Y_1), (X_2, Y_2), \ldots$ are i.i.d. according to $P_{X,Y}$, then

$$\lim_{n \to \infty} P_{X,Y}^{\otimes n} \left(\mathcal{T}_{\epsilon}^{(n)}(P_{X,Y}) \right) = 1$$

d) The cardinality of $\mathcal{T}_{\epsilon}^{(n)}(P_{X,Y})$ is bounded as

$$(1-\delta)2^{n(1-\epsilon)H(P_{X,Y})} \le |\mathcal{T}_{\epsilon}^{(n)}(P_{X,Y})| \le 2^{n(1+\epsilon)H(P_{X,Y})}$$

where the lower bound holds for any $\delta > 0$ and n large enough.

6) Mismatch letter-typicality: Let $n \in \mathbb{N}$, $\epsilon > 0$, $X^n \sim P^{\otimes n}$ and $Q \ll P$.

a) Prove that

$$(1-\epsilon)2^{-n(\mathsf{D}_{\mathsf{KL}}(Q\|P)+\delta(\epsilon))} \le P^{\otimes n}\left(\mathcal{T}_{\epsilon}^{(n)}(Q)\right) \le 2^{-n(\mathsf{D}_{\mathsf{KL}}(Q\|P)-\delta(\epsilon))},$$

where $\lim_{\epsilon \to 0} \delta(\epsilon) = 0$ and the lower bound holds for any *n* large enough. In your answer, provide an explicit expression for $\delta(\epsilon)$.

b) Deduce that for $P_{X,Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ with marginals P_X and P_Y , we have

$$(1-\epsilon)2^{-n(I(X;Y)+\tilde{\delta}(\epsilon))} \le \left(P_X^{\otimes n} \otimes P_Y^{\otimes n}\right) \left(\mathcal{T}_{\epsilon}^{(n)}(P_{X,Y})\right) \le 2^{-n(I(X;Y)-\tilde{\delta}(\epsilon))}.$$

What is $\tilde{\delta}(\epsilon)$ in this case?

7) Discrete memoryless channel without feedback: Consider the communication over a noisy channel scenario as described by the induced distribution on $\mathcal{M} \times \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{M}$:

$$P_{M,X^n,Y^n,\hat{M}}^{(c_n)}(m,x^n,y^n,\hat{m}) = P_M(m)\mathbb{1}_{\{x^n = f_n(m)\}} P_{Y|X}^{\otimes n}(y^n|x^n)\mathbb{1}_{\{\hat{m} = g_n(y^n)\}},$$

where $P_M \in \mathcal{P}(\mathcal{M})$ is a message distribution and $c_n := (f_n, g_n)$ is a code (encoder-decoder pair). Assume that (henceforth we omit the subscripts of $P^{(c_n)}$ as they are merely uppercase versions of the arguments of the PMF):

- (i) The channel is memoryless, i.e., there exists a (single-letter) transition kernel $P_{Y|X}$ such that $P^{(c_n)}(y_i|m, x^i, y^{i-1}) = P_{Y|X}(y_i|x_i)$, for all i = 1..., n.
- (ii) The channel is without feedback, i.e., $P^{(c_n)}(x_i|m, x^{i-1}, y^{i-1}) = P^{(c_n)}(x_i|m, x^{i-1})$, for all i = 1..., n. Prove that $P^{(c_n)}(y^n|x^n) = \prod_{i=1}^n P_{Y|X}(y_i|x_i)$.
- 8) Capacity of binary erasure channel: Consider the binary erasure channel (BEC) in which a fraction α ∈ [0, 1] of the transmitted bits are lost (erased) as depicted in Figure 1. More precisely, the BEC of parameter α is specified by the tuple (X, Y, P_{Y|X}), where X = {0,1}, Y = {0,1,e} and P_{Y|X} is described by the relation:

$$Y = \begin{cases} X, & \text{w.p. } 1 - \alpha \\ e, & \text{w.p. } \alpha. \end{cases}$$

Find a closed form expression that depends only on α for the capacity $\max_{P_X} I(X;Y)$ of this BEC. **Hint:** Consider the function $E = \mathbb{1}_{\{Y=e\}}$ and show that I(X;Y) = I(X;Y,E) = I(X;Y|E).

Fig. 1: Binary erasure channel.

9) Capacity of noisy typewriter: Suppose we have a malfunctioning typewriter that we model as a channel from the keystroke X_{in} to the typed symbol Y_{out}. Specifically, let X_{in} = Y_{out} = {A, B, C, ..., Z} and define con : X_{in} → Y_{out} as the function that (circularly) maps any letter of the alphabet to the next one, e.g., con(A) = B and con(Z) = A. The noisy typewriter channel is described by the relation

$$Y_{\mathsf{out}} = \begin{cases} X_{\mathsf{in}}, & \text{w.p. } \frac{1}{2} \\ \mathsf{con}(X_{\mathsf{in}}), & \text{w.p. } \frac{1}{2} \end{cases}$$

Fig. 2: Noisy typewriter.