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ECE 5630 - Solutions Homework Assignment 4

1) a) Using the fact that conditioning cannot increase entropy, we get that

H(Xn|X1, . . . , Xn−1) ≤ H(Xn|Xn−i+1, . . . , Xn−1) = H(Xi|X1, . . . , Xi−1),

where the last equality follows from the stationarity property of the sequence {Xi}∞i=1.

b) From part (a), it follows that

H(Xn|Xn−1) ≤ 1

n− 1

n−1∑
i=1

H(Xi|Xi−1) =
1

n− 1
H(Xn−1),

where the last equality follows from the chain rule. Then,

H(Xn) = H(Xn−1) +H(Xn|Xn−1) ≤ n

n− 1
H(Xn−1).

c) Using the chain rule and part (a), we get

H(Xn) =

n∑
i=1

H(Xi|Xi−1) ≥
n∑
i=1

H(Xn|Xn−1) = nH(Xn|Xn−1).

2) We have

H256(P ) = −
∑
x∈X

p(x) log256 p(x) = −
∑
x∈X

p(x) log2 p(x) log256(2) =
1

8
H2(X).

3) a) We have that H(X1) = H(X2) as X1 and X2 are identically distributed. Then,

ρ = 1− H(X2|X1)

H(X1)
=
H(X1)−H(X2|X1)

H(X1)
=
H(X2)−H(X2|X1)

H(X1)
=
I(X1;X2)

H(X1)
.

b) From the non-negativity of Shannon entropy, it follows that ρ ≤ 1. Moreover, using the fact that conditioning cannot

increase entropy, we get H(X2|X1) ≤ H(X2) = H(X1). Then,

ρ = 1− H(X2|X1)

H(X1)
≥ 1− H(X1)

H(X1)
= 0.

c) If H(X2|X1) = 0, then ρ = 0. That is, a sufficient condition for ρ = 1 is that X2 = f(X1) for some deterministic

function f .

4) a) Using the independence of X and Q, we get

I(X;Q,A) = I(X;Q) + I(X;A|Q) = I(X;A|Q).

Using the fact that A = a(X,Q), we get H(A|X,Q) = 0. Thus,

I(X;A|Q) = H(A|Q)−H(A|X,Q) = H(A|Q).
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b) We have

I(X;Q1, A1, Q2, A2) = I(X;Q1, A1) + I(X;Q2, A2|Q1, A1).

In order to prove that I(X;Q1, A1, Q2, A2) ≤ 2I(X;Q1, A1), it suffices to show that I(X;Q2, A2|Q1, A1) ≤

I(X;Q2, A2). We have

I(X;Q2, A2|Q1, A1) = H(Q2, A2|Q1, A1)−H(Q2, A2|Q1, A1, X).

Using the fact that conditioning cannot increase entropy, we have H(Q2, A2|Q1, A1) ≤ H(Q2, A2). Moreover,

using the fact that (Q1, A1) and (Q2, A2) are conditionally independent given X , we have H(Q2, A2|Q1, A1, X) =

H(Q2, A2|X). Then,

I(X;Q2, A2|Q1, A1) ≤ H(Q2, A2)−H(Q2, A2|X) = I(X;Q2, A2) = I(X;Q1, A1).

5) See Theorem 1 from notes of Lecture 13.

6) a) We only prove the upper bound as the lower bound follows from a similar argument. For all xn ∈ T (n)
ε (Q), we have

P⊗n({xn}) =
n∏
i=1

p(xi) =
∏
a∈X

p(a)nνxn (a) ≤
∏
a∈X

p(a)n(1−ε)q(a),

where the last equality follows from the definition of letter typical sets. Then,

P⊗n({xn}) =
∏
a∈X

p(a)n(1−ε)q(a) = 2n(1−ε)
∑

a∈X q(a) log(p(a)).

Note that
∑
a∈X q(a) log(p(a)) =

∑
a∈X q(a) log(p(a)/q(a))−

∑
a∈X q(a) log(q(a)) = −DKL(P‖Q)−H(Q). Then,

P⊗n({xn}) = 2−n(1−ε)(DKL(P‖Q)+H(Q)).

Thus, using the union bound, we get

P⊗n(T (n)
ε (Q)) ≤ |T (n)

ε (Q)|2−n(1−ε)(DKL(P‖Q)+H(Q))

≤ 2n(1+ε)H(Q)−n(1−ε)(DKL(P‖Q)+H(Q))

= 2−n(DKL(P‖Q)+ε
∑

a∈X q(a) log(p(a)q(a))).

Using the fact that Q� P , we have µP , µQ > 0 where µQ = mina∈supp(Q) q(a) and µP = mina∈supp(Q) p(a). Thus,

by defining δ(ε), we get the desired upper bound.

δ(ε) = −ε log(µPµQ).

b) Let Q = PXY and P = Px ⊗ PY . Clearly, Q� P . Thus, the desired bounds follow from part (a) for

δ̃(ε) = −ε log(µXY µXµY ),

where µX , µY , µXY > 0 are defined as µX = mina∈supp(PX) pX(a), µY = mina∈supp(PY ) pY (a), and µXY =
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mina∈supp(PXY ) pXY (a).

7) Using the total probability theorem, we have

P (cn)(yn|xn) =
∑
m∈M

PM (m)P (cn)(yn|m,xn) =
∑
m∈M

PM (m)

n∏
i=1

P (cn)(yi|m,xn, yi−1).

We have

P (cn)(yi|m,xn, yi−1) =
P (cn)(xi+1, . . . , xn|m,xi, yi)P (cn)(yi|m,xi, yi−1)

P (cn)(xi+1, . . . , xn|m,xi, yi−1)
= P (cn)(yi|m,xi, yi−1).

where the equality follows from the fact that the channel is without feedback. Then, using the fact that the channel is

memoryless, we get

P (cn)(yi|m,xn, yi−1) = P (cn)(yi|m,xi, yi−1) = PY |X(yi|xi).

Thus,

P (cn)(yn|xn) =
∑
m∈M

PM (m)

n∏
i=1

PY |X(yi|xi) =
n∏
i=1

PY |X(yi|xi),

where the last equality follows from the fact that
∏n
i=1 PY |X(yi|xi) does not depend on m and that

∑
m∈M PM (m) = 1.

8) We have X → Y → E. Then, I(X;E|Y ) = 0 and I(X;Y ) = I(X;Y,E). Moreover,

I(X;Y,E) = I(X;E) + I(X;Y |E) = I(X;Y |E),

where the inequality follows from the fact that pE|X(1|x) = pE(1) = α for x = 0, 1. Then,

I(X;Y |E) = αI(X;Y |E = 1) + (1− α)I(X;Y |E = 0) = (1− α)I(X;Y |E = 0) = (1− α)H(X).

Thus,

max
PX

I(X;Y ) = max
PX

(1− α)H(PX) = 1− α,

where the maximum is achieved by pX = Unif(X ).

9) We have that

pY |X(y|x) =

1/2, y = x, y = con(x), x ∈ Xin,

0, otherwise.

Then, H(PY |X(·|X = x)) = 1 and H(Y |X) = E[H(PY |X(·|X)] = 1 for all PX . Thus,

max
PX

I(X;Y ) = max
PX

(H(Y )−H(Y |X)) = max
PX

H(Y )− 1.

To find the capacity, we need to find PX that maximizes H(Y ). From the fact that uniform distribution maximizes

Shannon entropy, we choose a PX that induces uniform distribution on Y . If X ∼ Unif(Xin), then for all y ∈ Yout, we
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have

pY (y) = pX(y)pY |X(y|y) + pX(con−1(y))pY |X(y|con−1(y)) = 1

|Xin|
1

2
+

1

|Xin|
1

2
=

1

26
.

That is, if X ∼ Unif(Xin), then Y ∼ Unif(Yout). Thus, the channel capacity is maxPX
I(X;Y ) = log(26)− 1 achieved

when the input distribution is uniform.


