ECE 5630 - Solutions Homework Assignment 4

1) a) Using the fact that conditioning cannot increase entropy, we get that

$$
H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \leq H\left(X_{n} \mid X_{n-i+1}, \ldots, X_{n-1}\right)=H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

where the last equality follows from the stationarity property of the sequence $\left\{X_{i}\right\}_{i=1}^{\infty}$.
b) From part (a), it follows that

$$
H\left(X_{n} \mid X^{n-1}\right) \leq \frac{1}{n-1} \sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)=\frac{1}{n-1} H\left(X^{n-1}\right)
$$

where the last equality follows from the chain rule. Then,

$$
H\left(X_{n}\right)=H\left(X^{n-1}\right)+H\left(X_{n} \mid X^{n-1}\right) \leq \frac{n}{n-1} H\left(X^{n-1}\right)
$$

c) Using the chain rule and part (a), we get

$$
H\left(X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right) \geq \sum_{i=1}^{n} H\left(X_{n} \mid X^{n-1}\right)=n H\left(X_{n} \mid X^{n-1}\right)
$$

2) We have

$$
H_{256}(P)=-\sum_{x \in \mathcal{X}} p(x) \log _{256} p(x)=-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x) \log _{256}(2)=\frac{1}{8} H_{2}(X)
$$

3) a) We have that $H\left(X_{1}\right)=H\left(X_{2}\right)$ as X_{1} and X_{2} are identically distributed. Then,

$$
\rho=1-\frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}=\frac{H\left(X_{1}\right)-H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}=\frac{H\left(X_{2}\right)-H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)}=\frac{I\left(X_{1} ; X_{2}\right)}{H\left(X_{1}\right)} .
$$

b) From the non-negativity of Shannon entropy, it follows that $\rho \leq 1$. Moreover, using the fact that conditioning cannot increase entropy, we get $H\left(X_{2} \mid X_{1}\right) \leq H\left(X_{2}\right)=H\left(X_{1}\right)$. Then,

$$
\rho=1-\frac{H\left(X_{2} \mid X_{1}\right)}{H\left(X_{1}\right)} \geq 1-\frac{H\left(X_{1}\right)}{H\left(X_{1}\right)}=0
$$

c) If $H\left(X_{2} \mid X_{1}\right)=0$, then $\rho=0$. That is, a sufficient condition for $\rho=1$ is that $X_{2}=f\left(X_{1}\right)$ for some deterministic function f.
4) a) Using the independence of X and Q, we get

$$
I(X ; Q, A)=I(X ; Q)+I(X ; A \mid Q)=I(X ; A \mid Q)
$$

Using the fact that $A=a(X, Q)$, we get $H(A \mid X, Q)=0$. Thus,

$$
I(X ; A \mid Q)=H(A \mid Q)-H(A \mid X, Q)=H(A \mid Q)
$$

b) We have

$$
I\left(X ; Q_{1}, A_{1}, Q_{2}, A_{2}\right)=I\left(X ; Q_{1}, A_{1}\right)+I\left(X ; Q_{2}, A_{2} \mid Q_{1}, A_{1}\right)
$$

In order to prove that $I\left(X ; Q_{1}, A_{1}, Q_{2}, A_{2}\right) \leq 2 I\left(X ; Q_{1}, A_{1}\right)$, it suffices to show that $I\left(X ; Q_{2}, A_{2} \mid Q_{1}, A_{1}\right) \leq$ $I\left(X ; Q_{2}, A_{2}\right)$. We have

$$
I\left(X ; Q_{2}, A_{2} \mid Q_{1}, A_{1}\right)=H\left(Q_{2}, A_{2} \mid Q_{1}, A_{1}\right)-H\left(Q_{2}, A_{2} \mid Q_{1}, A_{1}, X\right)
$$

Using the fact that conditioning cannot increase entropy, we have $H\left(Q_{2}, A_{2} \mid Q_{1}, A_{1}\right) \leq H\left(Q_{2}, A_{2}\right)$. Moreover, using the fact that $\left(Q_{1}, A_{1}\right)$ and $\left(Q_{2}, A_{2}\right)$ are conditionally independent given X, we have $H\left(Q_{2}, A_{2} \mid Q_{1}, A_{1}, X\right)=$ $H\left(Q_{2}, A_{2} \mid X\right)$. Then,

$$
I\left(X ; Q_{2}, A_{2} \mid Q_{1}, A_{1}\right) \leq H\left(Q_{2}, A_{2}\right)-H\left(Q_{2}, A_{2} \mid X\right)=I\left(X ; Q_{2}, A_{2}\right)=I\left(X ; Q_{1}, A_{1}\right)
$$

5) See Theorem 1 from notes of Lecture 13 .
6) a) We only prove the upper bound as the lower bound follows from a similar argument. For all $x^{n} \in \mathcal{T}_{\epsilon}^{(n)}(Q)$, we have

$$
P^{\otimes n}\left(\left\{x^{n}\right\}\right)=\prod_{i=1}^{n} p\left(x_{i}\right)=\prod_{a \in \mathcal{X}} p(a)^{n \nu_{x^{n}}(a)} \leq \prod_{a \in \mathcal{X}} p(a)^{n(1-\epsilon) q(a)},
$$

where the last equality follows from the definition of letter typical sets. Then,

$$
P^{\otimes n}\left(\left\{x^{n}\right\}\right)=\prod_{a \in \mathcal{X}} p(a)^{n(1-\epsilon) q(a)}=2^{n(1-\epsilon) \sum_{a \in \mathcal{X}} q(a) \log (p(a))}
$$

Note that $\sum_{a \in \mathcal{X}} q(a) \log (p(a))=\sum_{a \in \mathcal{X}} q(a) \log (p(a) / q(a))-\sum_{a \in \mathcal{X}} q(a) \log (q(a))=-D_{\mathrm{KL}}(P \| Q)-H(Q)$. Then,

$$
P^{\otimes n}\left(\left\{x^{n}\right\}\right)=2^{-n(1-\epsilon)\left(D_{\text {KL }}(P \| Q)+H(Q)\right)} .
$$

Thus, using the union bound, we get

$$
\begin{aligned}
P^{\otimes n}\left(\mathcal{T}_{\epsilon}^{(n)}(Q)\right) & \leq\left|\mathcal{T}_{\epsilon}^{(n)}(Q)\right| 2^{-n(1-\epsilon)\left(D_{\text {кL }}(P \| Q)+H(Q)\right)} \\
& \leq 2^{n(1+\epsilon) H(Q)-n(1-\epsilon)\left(D_{\text {кL }}(P \| Q)+H(Q)\right)} \\
& =2^{-n\left(D_{\text {кL }}(P \| Q)+\epsilon \sum_{a \in \mathcal{X}} q(a) \log (p(a) q(a))\right)} .
\end{aligned}
$$

Using the fact that $Q \ll P$, we have $\mu_{P}, \mu_{Q}>0$ where $\mu_{Q}=\min _{a \in \operatorname{supp}(Q)} q(a)$ and $\mu_{P}=\min _{a \in \operatorname{supp}(Q)} p(a)$. Thus, by defining $\delta(\epsilon)$, we get the desired upper bound.

$$
\delta(\epsilon)=-\epsilon \log \left(\mu_{P} \mu_{Q}\right)
$$

b) Let $Q=P_{X Y}$ and $P=P_{x} \otimes P_{Y}$. Clearly, $Q \ll P$. Thus, the desired bounds follow from part (a) for

$$
\tilde{\delta}(\epsilon)=-\epsilon \log \left(\mu_{X Y} \mu_{X} \mu_{Y}\right)
$$

where $\mu_{X}, \mu_{Y}, \mu_{X Y}>0$ are defined as $\mu_{X}=\min _{a \in \operatorname{supp}\left(P_{X}\right)} p_{X}(a), \mu_{Y}=\min _{a \in \operatorname{supp}\left(P_{Y}\right)} p_{Y}(a)$, and $\mu_{X Y}=$
$\min _{a \in \operatorname{supp}\left(P_{X Y}\right)} p_{X Y}(a)$.
7) Using the total probability theorem, we have

$$
P^{\left(c_{n}\right)}\left(y^{n} \mid x^{n}\right)=\sum_{m \in \mathcal{M}} P_{M}(m) P^{\left(c_{n}\right)}\left(y^{n} \mid m, x^{n}\right)=\sum_{m \in \mathcal{M}} P_{M}(m) \prod_{i=1}^{n} P^{\left(c_{n}\right)}\left(y_{i} \mid m, x^{n}, y^{i-1}\right)
$$

We have

$$
P^{\left(c_{n}\right)}\left(y_{i} \mid m, x^{n}, y^{i-1}\right)=\frac{P^{\left(c_{n}\right)}\left(x_{i+1}, \ldots, x_{n} \mid m, x^{i}, y^{i}\right) P^{\left(c_{n}\right)}\left(y_{i} \mid m, x^{i}, y^{i-1}\right)}{P^{\left(c_{n}\right)}\left(x_{i+1}, \ldots, x_{n} \mid m, x^{i}, y^{i-1}\right)}=P^{\left(c_{n}\right)}\left(y_{i} \mid m, x^{i}, y^{i-1}\right)
$$

where the equality follows from the fact that the channel is without feedback. Then, using the fact that the channel is memoryless, we get

$$
P^{\left(c_{n}\right)}\left(y_{i} \mid m, x^{n}, y^{i-1}\right)=P^{\left(c_{n}\right)}\left(y_{i} \mid m, x^{i}, y^{i-1}\right)=P_{Y \mid X}\left(y_{i} \mid x_{i}\right)
$$

Thus,

$$
P^{\left(c_{n}\right)}\left(y^{n} \mid x^{n}\right)=\sum_{m \in \mathcal{M}} P_{M}(m) \prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid x_{i}\right)=\prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid x_{i}\right)
$$

where the last equality follows from the fact that $\prod_{i=1}^{n} P_{Y \mid X}\left(y_{i} \mid x_{i}\right)$ does not depend on m and that $\sum_{m \in \mathcal{M}} P_{M}(m)=1$.
8) We have $X \rightarrow Y \rightarrow E$. Then, $I(X ; E \mid Y)=0$ and $I(X ; Y)=I(X ; Y, E)$. Moreover,

$$
I(X ; Y, E)=I(X ; E)+I(X ; Y \mid E)=I(X ; Y \mid E)
$$

where the inequality follows from the fact that $p_{E \mid X}(1 \mid x)=p_{E}(1)=\alpha$ for $x=0,1$. Then,

$$
I(X ; Y \mid E)=\alpha I(X ; Y \mid E=1)+(1-\alpha) I(X ; Y \mid E=0)=(1-\alpha) I(X ; Y \mid E=0)=(1-\alpha) H(X)
$$

Thus,

$$
\max _{P_{X}} I(X ; Y)=\max _{P_{X}}(1-\alpha) H\left(P_{X}\right)=1-\alpha
$$

where the maximum is achieved by $p_{X}=\operatorname{Unif}(\mathcal{X})$.
9) We have that

$$
p_{Y \mid X}(y \mid x)= \begin{cases}1 / 2, & y=x, y=\operatorname{con}(x), x \in \mathcal{X}_{\mathrm{in}} \\ 0, & \text { otherwise }\end{cases}
$$

Then, $H\left(P_{Y \mid X}(\cdot \mid X=x)\right)=1$ and $H(Y \mid X)=\mathbb{E}\left[H\left(P_{Y \mid X}(\cdot \mid X)\right]=1\right.$ for all P_{X}. Thus,

$$
\max _{P_{X}} I(X ; Y)=\max _{P_{X}}(H(Y)-H(Y \mid X))=\max _{P_{X}} H(Y)-1
$$

To find the capacity, we need to find P_{X} that maximizes $H(Y)$. From the fact that uniform distribution maximizes Shannon entropy, we choose a P_{X} that induces uniform distribution on Y. If $X \sim \operatorname{Unif}\left(\mathcal{X}_{\text {in }}\right)$, then for all $y \in \mathcal{Y}_{\text {out }}$, we
have

$$
p_{Y}(y)=p_{X}(y) p_{Y \mid X}(y \mid y)+p_{X}\left(\operatorname{con}^{-1}(y)\right) p_{Y \mid X}\left(y \mid \operatorname{con}^{-1}(y)\right)=\frac{1}{\left|\mathcal{X}_{\text {in }}\right|} \frac{1}{2}+\frac{1}{\left|\mathcal{X}_{\text {in }}\right|} \frac{1}{2}=\frac{1}{26} .
$$

That is, if $X \sim \operatorname{Unif}\left(\mathcal{X}_{\text {in }}\right)$, then $Y \sim \operatorname{Unif}\left(\mathcal{Y}_{\text {out }}\right)$. Thus, the channel capacity is $\max _{P_{X}} I(X ; Y)=\log (26)-1$ achieved when the input distribution is uniform.

