ECE 5630 - Homework Assignment 5

April 29th 2020

Due to: Tuesday, May 12th, at 2 pm .
Instructions: Submission in pairs is allowed. Prove and explain every step in your answers. HW sheets are to be submitted via Canvas.

Assumption: In this homework sheet we assume that alphabets are countable throughout.

1) Reproving Fano's inequality: Consider the Markov chain $X \rightarrow Y \rightarrow \hat{X}$, where X takes values in \mathcal{X} with $|\mathcal{X}|<\infty$, and define the probability of error $P_{e}:=\mathbb{P}(\hat{X} \neq X)$.
(a) Define the binary random variable $E:=\mathbb{1}_{\{\hat{X} \neq X\}}$ and show that $\mathbb{E}[E]=P_{e}$ and $\operatorname{var}(E)=P_{e}\left(1-P_{e}\right)$.
(b) Using chain rule of entropy to show $H(X \mid \hat{X})+H(E \mid X, \hat{X})=H(E \mid \hat{X})+H(X \mid E, \hat{X})$.
(c) Prove the following: $H(X \mid E, \hat{X}) \leq P_{e} \log |\mathcal{X}|$.
(d) Prove $H_{b}\left(P_{e}\right)+P_{e} \log |\mathcal{X}| \geq H(X \mid \hat{X})$, where H_{b} is the binary entropy function. Explain every step.
(e) Using the data processing inequality and the results above, show that $P_{e} \geq \frac{H(X \mid Y)-1}{\log |\mathcal{X}|}$.
2) General Fano's inequality: Let $X, Y \sim P_{X, Y} \in \mathcal{P}(\mathcal{X} \times \mathcal{X})$. Define $Q_{X Y}=P_{X} \otimes P_{Y}$ and let $p:=P_{X, Y}(X=Y)$ and $q:=Q_{X, Y}(X=Y)$. In words, p and q are the probabilities that $X=Y$ under the joint law $P_{X Y}$ or the product of marginals law $Q_{X Y}$, respectively.
a) Prove that $I(X ; Y) \geq p \log \left(\frac{1}{q}\right)-H_{b}(p)$, where H_{b} is the binary entropy function.

Hint: Recall that $I(X ; Y)=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| Q_{X Y}\right)$ and use f-divergence DPI.
b) Assume $P_{X}=\operatorname{Unif}(\mathcal{X})$ (clearly $\left.|\mathcal{X}|<\infty\right)$ and obtain the regular Fano's inequality from Part (a), i.e.,

$$
H(X \mid Y) \leq P_{X Y}(X \neq Y) \log |\mathcal{X}|+H_{b}\left(P_{X Y}(X \neq Y)\right)
$$

3) Application of Fano's inequality: Let $\mathcal{X}=\{1,2, \ldots, m\}$ and $X \sim P$ with PMF $p(i)=p_{i}$ for all $i \in \mathcal{X}$ such that $p_{1} \geq p_{2} \geq \ldots \geq p_{m}$.
a) Consider deterministic predictors of the form $\widehat{X}=i$. Find the predictor with minimum probability of error P_{e}.
b) Maximize $H(P)$ subject to the constraint that the probability of error of the estimator found in part (a) remains unchanged.
c) Use part (b) to derive a bound on P_{e} in terms of the entropy.
4) Alphabet of noise: Let $\mathcal{X}=\{0,1,2,3,4\}$. Consider the channel $Y=X+Z$ where Z is uniformly distributed over $\mathcal{Z}=\left\{z_{1}, z_{2}, z_{3}\right\}$. Here, $z_{1}, z_{2}, z_{3} \in \mathbb{Z}$.
a) What is the maximum capacity of this channel? Provide a distribution on \mathcal{X} and a choice of alphabet \mathcal{Z} that achieves the capacity.
b) What is the minimum capacity of this channel? Provide a distribution on \mathcal{X} and a choice of alphabet \mathcal{Z} that achieves the capacity.
5) Union of channels: In this problem we want to find the capacity C of the union of two channels. Specifically, let $\mathcal{X}_{1}=\{1, \ldots, m\}$ and $\mathcal{X}_{2}=\{m+1, \ldots, n\}$ and channels $\left(\mathcal{X}_{1}, p_{Y_{1} \mid X_{1}}, \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2}, p_{Y_{2} \mid X_{2}}, \mathcal{Y}_{2}\right)$, where at each time, one can send a symbol over channel 1 or channel 2 but not both.
a) Let $X_{1} \sim P_{1} \in \mathcal{P}\left(\mathcal{X}_{1}\right), X_{2} \sim P_{2} \in \mathcal{P}\left(\mathcal{X}_{2}\right)$, and

$$
X= \begin{cases}X_{1}, & \text { with probability } p \\ X_{2}, & \text { with probability } 1-p\end{cases}
$$

Find $H(X)$ in terms of $H\left(X_{1}\right), H\left(X_{2}\right)$, and p.
b) Maximize over p to show that $2^{H(X)} \leq 2^{H\left(X_{1}\right)}+2^{H\left(X_{1}\right)}$. One can view $2^{H(X)}$ as the effective alphabet size.
c) Find capacity of the union of two channels C.

Hint: View 2^{C} as the effective alphabet size of a channel with capacity C.
d) Use part (c) to compute the capacity of the following channel.

6) Preprocessing the output: Consider a discrete memoryless channel (DMC) $\left(\mathcal{X}, \mathcal{Y}, P_{Y \mid X}\right)$.
a) Prove that it is impossible to strictly increase the channel capacity $\max _{P_{X}} I(X ; Y)$ by preprocessesing the output Y by forming $\tilde{Y}=g(Y)$, giving rise to a new (effective) channel $P_{\tilde{Y} \mid X}$?
b) Under what conditions preprocessing does not strictly decrease the capacity?
7) Cascaded BSCs. Consider two DMCs $\left(\mathcal{X}, \mathcal{Y}, P_{Y \mid X}\right)$ and $\left(\mathcal{Y}, \mathcal{Z}, P_{Z \mid Y}\right)$. Let $P_{Y \mid X}$ and $P_{Z \mid Y}$ be binary symmetric channels with crossover probabilities λ_{1} and λ_{2} respectively.

a) What is the capacity C_{1} of $P_{Y \mid X}$?
b) What is the capacity C_{2} of $P_{Z \mid Y}$?
c) We now cascade these channels, obtaining a new effective channel $Q_{Z \mid X}$ given by $Q_{Z \mid X}(z \mid x)=$ $\sum_{y} P_{Y \mid X}(y \mid x) P_{Z \mid Y}(z \mid y)$, for all $x, z \in\{0,1\}$. What is the capacity C_{3} of $Q_{Z \mid X}$? Show $C_{3} \leq \min \left\{C_{1}, C_{2}\right\}$.
d) Now let us actively intervene between channels 1 and 2, rather than passively forwarding the output Y of $P_{Y \mid X}$ through $P_{Z \mid Y}$. What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output Y^{n} of channel 1 and then re-encode it as \tilde{Y}^{n} for transmission over channel 2 ?
Hint: Consider the Markov chain $\left.M \leftrightarrow X^{n} \leftrightarrow Y^{n} \leftrightarrow \tilde{Y}^{n} \leftrightarrow Z^{n} \leftrightarrow \hat{M}.\right)$
e) What is the capacity of the cascade in part c) if the end receiver can view both Y and Z ?
8) Product channel: Consider two DMCs $\left(\mathcal{X}_{1}, \mathcal{Y}_{1}, P_{Y_{1} \mid X_{1}}\right)$ and $\left(\mathcal{X}_{2}, \mathcal{Y}_{2}, P_{Y_{2} \mid X_{2}}\right)$ with capacities C_{1} and C_{2} respectively. A new channel $\left(\mathcal{X}_{1} \times \mathcal{X}_{2}, \mathcal{Y}_{1} \times \mathcal{Y}_{2}, P_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}\right)$, where $P_{Y_{1}, Y_{2} \mid X_{1}, X_{2}}\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)=P_{Y_{1} \mid X_{1}}\left(y_{1} \mid x_{1}\right) P_{Y_{2} \mid X_{2}}\left(y_{2} \mid x_{2}\right)$ for all $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, is formed. Find the capacity of this channel in terms of C_{1} and C_{2}.
9) The Z-channel: This channel has binary input and output alphabets and a channel transition kernel $P_{Y \mid X}$ as described by the matrix $Q=\left[Q_{x, y}\right]_{x, y \in\{0,1\}}$:

$$
Q=\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

where $Q_{x, y}=P_{Y \mid X}(y \mid x)$, for all $x, y \in\{0,1\}$.
a) Draw a diagram of the Z-channel.
b) Find the capacity of the Z-channel and the maximizing input probability distribution.

