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ECE 5630 - Solutions Homework Assignment 5

1) See Lecture 17.

2) a) Consider the transition kernel PZ|XY described by Z = 1{X=Y }. Let PZ and QZ be the transformation of PXY and

QXY , respectively, when pushed through PZ|XY . We then have that PZ = Bern(p) and QZ = Bern(q). Using the

f -divergence DPI, we get

I(X;Y ) = DKL(PXY ‖QXY ) ≥ DKL(PZ‖QZ) = DKL

(
Bern(p)‖Bern(q)

)
.

Then,

I(X;Y ) ≥ (1− p) log

(
1− p
1− q

)
+ p log

(
p

q

)
= (1− p) log

(
1

1− q

)
+ p log

(
1

q

)
−Hb(p)

≥ p log

(
1

q

)
−Hb(p),

where the last inequality follows from the fact that (1− p) log(1/(1− q)) ≥ 0.

b) We have H(X) = log |X |. Then, from part (a), we get

H(X|Y ) ≤ log |X |+Hb(p)− p log

(
1

q

)
.

Using the total probability theorem, we get

q = QXY (X = Y ) =
∑
y∈X

QXY (X = Y, Y = y) =
∑
y∈X

PX(X = y)PY (Y = y) =
1

|X |
∑
y∈X

PY (Y = y) =
1

|X |
.

Then,

H(X|Y ) ≤ (1− p) log |X |+Hb(p) = PXY (X 6= Y ) log |X |+Hb (PXY (X 6= Y )) ,

where the last equality follows from the fact that Hb(p) = Hb(1− p).

3) a) The predictor with minimum probability of error is X̂ = 1 for which Pe = 1− p1.

b) We have

H(P ) = −p1 log(p1)−
m∑
i=2

pi log(pi)

= −p1 log(p1)− Pe log(Pe)− Pe
m∑
i=2

pi
Pe

log

(
pi
Pe

)

= H(Pe)− Pe
m∑
i=2

pi
Pe

log

(
pi
Pe

)
.
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Note that p2/Pe, . . . , pm/Pe is a valid PMF on an alphabet of size m− 1. So,

H(P ) ≤ H(Pe)− Pe log(m− 1) (1)

with equality attained by pi = (1− p1)/(m− 1) for i = 2, . . . ,m. Note that from the condition p1 ≥ p2 . . . ≥ pm, we

get p1 ≥ 1/m. Thus, the predictor with the minimum probability of error is still X̂ = 1 as p1 ≥ (1 − p1)/(m − 1),

and the probability of error remains unchanged.

c) We have that H(Pe) ≤ 1. Then, using Inequality (1), we get H(X) ≤ 1 + Pe log(m− 1). Thus,

Pe ≥
H(X)− 1

log(m− 1)
.

4) a) Maximum capacity is C = log(5) bits. Achieved by taking Z = {10, 20, 30} and PX = Unif(X ).

b) We have that H(Y |X) = H(Z) = log(3). Thus,

C = max
PX

(H(Y )−H(Y |X)) = max
PX

H(Y )− log(3).

Given that Z ∼ Unif(Z), we have maxPX
H(Y ) = maxPY

H(Y ) = log |Y|. A choice of Z that minimizes |Y| is

given by Z = {0, 1, 2} for which Y = {0, 1, 2, 3, 4, 5} and, thus, C = log(6)− log(3) = 1. The distribution PX that

attains the capacity has the PMF pX = (1/2, 0, 0, 1/2).

5) Sections (a) and (b), see solution to Problem 10 in Chapter 2 of T. M. Cover and J. A. Thomas “Elements of Information

Theory”, 2nd Edition, Wiley, NY, US, 2003. For Sections (c) and (d), consider the following.

c) Let B ∼ Ber(α) and define Θ = B + 1 as a random variable with alphabet {1, 2} that indicats which of the two

channels is used. Let the channel input be X := (Θ, XΘ). Since the output alphabets Y1 and Y2 are disjoint, Θ is a

function of Y , i.e. X ↔ Y ↔ Θ.

Therefore,

I(X;Y ) = I(X;Y,Θ)

= I(XΘ,Θ;Y,Θ)

= I(Θ;Y,Θ) + I(XΘ;Y,Θ|Θ)

= I(Θ;Y,Θ) + I(XΘ;Y |Θ)

= H(Θ) + αI(XΘ;Y |Θ = 1) + (1− α)I(XΘ;Y |Θ = 2)

= Hb(α) + αI(X1;Y1) + (1− α)I(X2;Y2).

Thus, it follows that

C = sup
α∈[0,1]

[
Hb(α) + αC1 + (1− α)C2

]
,

which is a strictly concave function on α. Hence, the maximum exists and by elementary calculus, one can easily

show C = log2(2C1 + 2C2), which is attained with α = 2C1/(2C1 + 2C2).

If one interprets M = 2C as the effective number of noise free symbols, then the above result follows in a rather
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intuitive manner: we have M1 = 2C1 noise free symbols from channel 1, and M2 = 2C2 noise free symbols from

channel 2. Since at each step we get to choose which channel to use, we essentially have M1 + M2 = 2C1 + 2C2

noise free symbols for the new channel. Therefore, the capacity of this channel is C = log2(2C1 + 2C2).

d) From part (b) we get that the capacity is log(21−H(p) + 20).

6) a) Since X ↔ Y ↔ Ỹ forms a Markov chain, we can apply the data processing inequality. Hence for every input

variable X ∼ P , we have I(X;Y ) ≥ I(X; Ỹ ). Let X̃ ∼ P̃ be the capacity achieving input variable (and distribution)

for the channel PỸ |X , i.e., maxX∼P I(X; Ỹ ) = I(X̃; Ỹ ). Then

C = max
X∼P

I(X;Y ) ≥ I(X̃;Y ) ≥ I(X̃; Ỹ ) = max
X∼P

I(X; Ỹ ) = C̃.

Thus, processing the output does not increase capacity.

b) We have equality (no decrease in capacity) in the above sequence of inequalities only if we have equality in data

processing inequality, i.e., for the distribution that maximizes I(X; Ỹ ), we have X ↔ Ỹ ↔ Y forming a Markov

chain. In other words, Ỹ = g(Y ) should be a sufficient statistic for X .

7) a) C1 = 1−Hb(λ1). See Lecture 10 for the derivation of the capacity of the binary symmetric channel.

b) C2 = 1−Hb(λ2).

c) One can observe that QZ|X is also a BSC with transition probability λ1 ∗ λ2 = λ1(1 − λ2) + (1 − λ1)λ2. Thus,

C3 = 1−Hb(λ1 ∗ λ2). Moreover, we have X − Y − Z form a Markov chain. Then, for all PX ∈ P(X ), we have

I(X;Z) ≤ I(X;Y,Z) = I(X;Y ).

Thus, C3 ≤ C1. Similarly, we get C3 ≤ C2.

d) In this case, C3 = min{C1, C2} as only one of the channels would be the bottleneck between X and Z.

e) Since X−Y−Z, then (X;Y, Z) = I(X;Y ). If the receiver can view both Y and Z, the capacity is maxPX
I(X;Y,Z) =

maxPX
I(X;Y ) = C1.

8) To find the capacity of the product channel (X1×X2,Y1×Y2, PY1,Y2|X1,X2
), we need to find the distribution PX1,X2

∈

P(X1 × X2) that maximizes I(X1, X2;Y1, Y2). Since the transition kernel factors as PY1,Y2|X1,X2
= PY1|X1

PY2|X2
, the

joint distribution will be

PX1,X2,Y1,Y2
= PX1,X2

PY1|X1
PY2|X2

.

The above structure implies that Y1 ↔ X1 ↔ X2 ↔ Y2 forms a Markov chain and

I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2)

(a)
= H(Y1, Y2)−H(Y1|X1, X2)−H(Y2|X1, X2)

(b)
= H(Y1, Y2)−H(Y1|X1)−H(Y2|X2)

(c)

≤ H(Y1) +H(Y2)−H(Y1|X1)−H(Y2|X2)

= I(X1;Y1) + I(X2;Y2),
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where (a) and (b) follow from Markovity, while (c) is met with equality if X1 and X2, which makes Y1 and Y2 independent.

Therefore

C = max
PX1,X2

I(X1, X2;Y1, Y2)

≤ max
PX1,X2

I(X1;Y1) + max
PX1,X2

I(X2;Y2)

= max
PX1

I(X1;Y1) + max
PX2

I(X2;Y2)

= C1 + C2.

with equality if and only if PX1,X2 = P ?X1
⊗P ?X2

, where P ?X1
and P ?X2

, respectively, the capacity achieving distributions

for C1 and C2.

9) a) See Figure 1.
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Fig. 1: Z-Channel

b) Let PX = Bern(p). Then, PY = Bern(p/2) and H(Y ) = Hb(p/2). Also,

H(Y |X) = P (X = 0)H(Y |X = 0) + P (X = 1)H(Y |X = 1) = pHb(1/2) = p.

Thus, we have I(X;Y ) = H(Y ) − H(Y |X) = Hb(p/2) − p. We then have that I(X;Y ) is concave in p. So we

find the capacity of the channel, using the first-order optimality condition, i.e., d(Hb(p/2) − p)/dp = 0. That is, for

p∗ := argmaxp∈[0,1] I(X;Y ), we have

log

(
1− p∗/2
p∗/2

)
= 2.

Thus, p∗ = 2/5. Then, the capacity of the Z-channel is C = maxPX
I(X;Y ) = Hb(1/5) − 2/5 = 0.322, which is

achieved by PX = Bern(2/5).


