ECE 5630 - Solutions Homework Assignment 5

1

1) See Lecture 17.

2) a) Consider the transition kernel $P_{Z|XY}$ described by $Z = \mathbb{1}_{\{X=Y\}}$. Let P_Z and Q_Z be the transformation of P_{XY} and Q_{XY} , respectively, when pushed through $P_{Z|XY}$. We then have that $P_Z = \text{Bern}(p)$ and $Q_Z = \text{Bern}(q)$. Using the *f*-divergence DPI, we get

$$I(X;Y) = D_{\mathsf{KL}}(P_{XY} || Q_{XY}) \ge D_{\mathsf{KL}}(P_Z || Q_Z) = D_{\mathsf{KL}}(\mathsf{Bern}(p) || \mathsf{Bern}(q)).$$

Then,

$$I(X;Y) \ge (1-p)\log\left(\frac{1-p}{1-q}\right) + p\log\left(\frac{p}{q}\right)$$
$$= (1-p)\log\left(\frac{1}{1-q}\right) + p\log\left(\frac{1}{q}\right) - H_b(p)$$
$$\ge p\log\left(\frac{1}{q}\right) - H_b(p),$$

where the last inequality follows from the fact that $(1-p)\log(1/(1-q)) \ge 0$.

b) We have $H(X) = \log |\mathcal{X}|$. Then, from part (a), we get

$$H(X|Y) \le \log |\mathcal{X}| + H_b(p) - p \log \left(\frac{1}{q}\right)$$

Using the total probability theorem, we get

$$q = Q_{XY}(X = Y) = \sum_{y \in \mathcal{X}} Q_{XY}(X = Y, Y = y) = \sum_{y \in \mathcal{X}} P_X(X = y) P_Y(Y = y) = \frac{1}{|\mathcal{X}|} \sum_{y \in \mathcal{X}} P_Y(Y = y) = \frac{1}{|\mathcal{X}|}$$

Then,

$$H(X|Y) \le (1-p)\log|\mathcal{X}| + H_b(p) = P_{XY}(X \ne Y)\log|\mathcal{X}| + H_b(P_{XY}(X \ne Y)),$$

where the last equality follows from the fact that $H_b(p) = H_b(1-p)$.

3) a) The predictor with minimum probability of error is $\hat{X} = 1$ for which $P_e = 1 - p_1$.

b) We have

$$H(P) = -p_1 \log(p_1) - \sum_{i=2}^m p_i \log(p_i)$$

= $-p_1 \log(p_1) - P_e \log(P_e) - P_e \sum_{i=2}^m \frac{p_i}{P_e} \log\left(\frac{p_i}{P_e}\right)$
= $H(P_e) - P_e \sum_{i=2}^m \frac{p_i}{P_e} \log\left(\frac{p_i}{P_e}\right).$

Note that $p_2/P_e, \ldots, p_m/P_e$ is a valid PMF on an alphabet of size m-1. So,

$$H(P) \le H(P_e) - P_e \log(m-1) \tag{1}$$

with equality attained by $p_i = (1 - p_1)/(m - 1)$ for i = 2, ..., m. Note that from the condition $p_1 \ge p_2 ... \ge p_m$, we get $p_1 \ge 1/m$. Thus, the predictor with the minimum probability of error is still $\hat{X} = 1$ as $p_1 \ge (1 - p_1)/(m - 1)$, and the probability of error remains unchanged.

c) We have that $H(P_e) \leq 1$. Then, using Inequality (1), we get $H(X) \leq 1 + P_e \log(m-1)$. Thus,

$$P_e \ge \frac{H(X) - 1}{\log(m - 1)}.$$

- 4) a) Maximum capacity is $C = \log(5)$ bits. Achieved by taking $\mathcal{Z} = \{10, 20, 30\}$ and $P_X = \text{Unif}(\mathcal{X})$.
 - b) We have that $H(Y|X) = H(Z) = \log(3)$. Thus,

Ι

$$C = \max_{P_X}(H(Y) - H(Y|X)) = \max_{P_X}H(Y) - \log(3)$$

Given that $Z \sim \text{Unif}(\mathcal{Z})$, we have $\max_{P_X} H(Y) = \max_{P_Y} H(Y) = \log |\mathcal{Y}|$. A choice of \mathcal{Z} that minimizes $|\mathcal{Y}|$ is given by $\mathcal{Z} = \{0, 1, 2\}$ for which $\mathcal{Y} = \{0, 1, 2, 3, 4, 5\}$ and, thus, $C = \log(6) - \log(3) = 1$. The distribution P_X that attains the capacity has the PMF $p_X = (1/2, 0, 0, 1/2)$.

- Sections (a) and (b), see solution to Problem 10 in Chapter 2 of T. M. Cover and J. A. Thomas "Elements of Information Theory", 2nd Edition, Wiley, NY, US, 2003. For Sections (c) and (d), consider the following.
 - c) Let $B \sim \text{Ber}(\alpha)$ and define $\Theta = B + 1$ as a random variable with alphabet $\{1, 2\}$ that indicats which of the two channels is used. Let the channel input be $X := (\Theta, X_{\Theta})$. Since the output alphabets \mathcal{Y}_1 and \mathcal{Y}_2 are disjoint, Θ is a function of Y, i.e. $X \leftrightarrow Y \leftrightarrow \Theta$.

Therefore,

$$\begin{aligned} (X;Y) &= I(X;Y,\Theta) \\ &= I(X_{\Theta},\Theta;Y,\Theta) \\ &= I(\Theta;Y,\Theta) + I(X_{\Theta};Y,\Theta|\Theta) \\ &= I(\Theta;Y,\Theta) + I(X_{\Theta};Y|\Theta) \\ &= H(\Theta) + \alpha I(X_{\Theta};Y|\Theta = 1) + (1-\alpha)I(X_{\Theta};Y|\Theta = 2) \\ &= H_b(\alpha) + \alpha I(X_1;Y_1) + (1-\alpha)I(X_2;Y_2). \end{aligned}$$

Thus, it follows that

$$C = \sup_{\alpha \in [0,1]} \left[H_b(\alpha) + \alpha C_1 + (1-\alpha)C_2 \right]$$

which is a strictly concave function on α . Hence, the maximum exists and by elementary calculus, one can easily show $C = \log_2(2^{C_1} + 2^{C_2})$, which is attained with $\alpha = 2^{C_1}/(2^{C_1} + 2^{C_2})$. If one interprets $M = 2^C$ as the effective number of noise free symbols, then the above result follows in a rather intuitive manner: we have $M_1 = 2^{C_1}$ noise free symbols from channel 1, and $M_2 = 2^{C_2}$ noise free symbols from channel 2. Since at each step we get to choose which channel to use, we essentially have $M_1 + M_2 = 2^{C_1} + 2^{C_2}$ noise free symbols for the new channel. Therefore, the capacity of this channel is $C = \log_2(2^{C_1} + 2^{C_2})$.

- d) From part (b) we get that the capacity is $\log(2^{1-H(p)} + 2^0)$.
- 6) a) Since $X \leftrightarrow Y \leftrightarrow \tilde{Y}$ forms a Markov chain, we can apply the data processing inequality. Hence for every input variable $X \sim P$, we have $I(X;Y) \ge I(X;\tilde{Y})$. Let $\tilde{X} \sim \tilde{P}$ be the capacity achieving input variable (and distribution) for the channel $P_{\tilde{Y}|X}$, i.e., $\max_{X \sim P} I(X;\tilde{Y}) = I(\tilde{X};\tilde{Y})$. Then

$$C = \max_{X \sim P} I(X;Y) \ge I(\tilde{X};Y) \ge I(\tilde{X};\tilde{Y}) = \max_{X \sim P} I(X;\tilde{Y}) = \tilde{C}.$$

Thus, processing the output does not increase capacity.

- b) We have equality (no decrease in capacity) in the above sequence of inequalities only if we have equality in data processing inequality, i.e., for the distribution that maximizes $I(X; \tilde{Y})$, we have $X \leftrightarrow \tilde{Y} \leftrightarrow Y$ forming a Markov chain. In other words, $\tilde{Y} = g(Y)$ should be a sufficient statistic for X.
- 7) a) $C_1 = 1 H_b(\lambda_1)$. See Lecture 10 for the derivation of the capacity of the binary symmetric channel.
 - b) $C_2 = 1 H_b(\lambda_2).$
 - c) One can observe that $Q_{Z|X}$ is also a BSC with transition probability $\lambda_1 * \lambda_2 = \lambda_1(1 \lambda_2) + (1 \lambda_1)\lambda_2$. Thus, $C_3 = 1 - H_b(\lambda_1 * \lambda_2)$. Moreover, we have X - Y - Z form a Markov chain. Then, for all $P_X \in \mathcal{P}(\mathcal{X})$, we have

$$I(X;Z) \le I(X;Y,Z) = I(X;Y).$$

Thus, $C_3 \leq C_1$. Similarly, we get $C_3 \leq C_2$.

- d) In this case, $C_3 = \min\{C_1, C_2\}$ as only one of the channels would be the bottleneck between X and Z.
- e) Since X Y Z, then (X; Y, Z) = I(X; Y). If the receiver can view both Y and Z, the capacity is $\max_{P_X} I(X; Y, Z) = \max_{P_X} I(X; Y) = C_1$.
- 8) To find the capacity of the product channel $(\mathcal{X}_1 \times \mathcal{X}_2, \mathcal{Y}_1 \times \mathcal{Y}_2, P_{Y_1, Y_2 | X_1, X_2})$, we need to find the distribution $P_{X_1, X_2} \in \mathcal{P}(\mathcal{X}_1 \times \mathcal{X}_2)$ that maximizes $I(X_1, X_2; Y_1, Y_2)$. Since the transition kernel factors as $P_{Y_1, Y_2 | X_1, X_2} = P_{Y_1 | X_1} P_{Y_2 | X_2}$, the joint distribution will be

$$P_{X_1,X_2,Y_1,Y_2} = P_{X_1,X_2} P_{Y_1|X_1} P_{Y_2|X_2}.$$

The above structure implies that $Y_1 \leftrightarrow X_1 \leftrightarrow X_2 \leftrightarrow Y_2$ forms a Markov chain and

$$\begin{split} I(X_1, X_2; Y_1, Y_2) &= H(Y_1, Y_2) - H(Y_1, Y_2 | X_1, X_2) \\ \stackrel{(a)}{=} H(Y_1, Y_2) - H(Y_1 | X_1, X_2) - H(Y_2 | X_1, X_2) \\ \stackrel{(b)}{=} H(Y_1, Y_2) - H(Y_1 | X_1) - H(Y_2 | X_2) \\ \stackrel{(c)}{\leq} H(Y_1) + H(Y_2) - H(Y_1 | X_1) - H(Y_2 | X_2) \\ &= I(X_1; Y_1) + I(X_2; Y_2), \end{split}$$

where (a) and (b) follow from Markovity, while (c) is met with equality if X_1 and X_2 , which makes Y_1 and Y_2 independent. Therefore

$$C = \max_{P_{X_1,X_2}} I(X_1, X_2; Y_1, Y_2)$$

$$\leq \max_{P_{X_1,X_2}} I(X_1; Y_1) + \max_{P_{X_1,X_2}} I(X_2; Y_2)$$

$$= \max_{P_{X_1}} I(X_1; Y_1) + \max_{P_{X_2}} I(X_2; Y_2)$$

$$= C_1 + C_2.$$

with equality if and only if $P_{X_1,X_2} = P_{X_1}^{\star} \otimes P_{X_2}^{\star}$, where $P_{X_1}^{\star}$ and $P_{X_2}^{\star}$, respectively, the capacity achieving distributions for C_1 and C_2 .

9) a) See Figure 1.

b) Let $P_X = \text{Bern}(p)$. Then, $P_Y = \text{Bern}(p/2)$ and $H(Y) = H_b(p/2)$. Also,

$$H(Y|X) = \mathbf{P}(X=0) H(Y|X=0) + \mathbf{P}(X=1) H(Y|X=1) = pH_b(1/2) = p.$$

Thus, we have $I(X;Y) = H(Y) - H(Y|X) = H_b(p/2) - p$. We then have that I(X;Y) is concave in p. So we find the capacity of the channel, using the first-order optimality condition, i.e., $d(H_b(p/2) - p)/dp = 0$. That is, for $p^* := \operatorname{argmax}_{p \in [0,1]} I(X;Y)$, we have

$$\log\left(\frac{1-p^*/2}{p^*/2}\right) = 2.$$

Thus, $p^* = 2/5$. Then, the capacity of the Z-channel is $C = \max_{P_X} I(X;Y) = H_b(1/5) - 2/5 = 0.322$, which is achieved by $P_X = \text{Bern}(2/5)$.