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Introduction

What is information theory?

• A mathematical framework for quantifying and rigorously reasoning about uncertainty and informa-
tion (information is the resolution of uncertainty).

• It leverages this framework to study fundamental properties of operations one can perform on infor-
mation sources.

Examples of information sources are images, text files, audio files, etc.

Examples of operations one can perform on information sources are:

• compression: Exploiting redundancy and structure to reduce the number of bits needed to store or
transmit data.

• transmission: Converting source information to codewords for transmission over a communication
channel (source coding and channel coding).

• encryption: Encoding information to prevent unauthorized access.

List of Topics

(1) Background on probability theory

(2) f-divergence

Divergence is a function capable of measuring the distance/proximity between probability distributions.

Let X be a space. Let P(X ) be the set of all probability measures on X . Then, f -divergence is a mapping
Df : P(X )× P(X ) 7→ R+. In other words, f -divergence, which is induced by some convex f : (0,∞) 7→ R, is
a function that takes two probability measures as input and outputs a nonnegative real number. Depending
on the choice of the function f , f -divergence may or may not be a distance metric. However, any divergence
measure D does satisfy D(P‖Q) = 0 ⇐⇒ P = Q for all P,Q ∈ P(X ).

Other divergence measures include: KL divergence, Total variation (TV) distance, χ2 distance, etc.

(3) Information Measures

Examples of information measures:

• Shannon Entropy

• Differential Entropy

• Mutual Information
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(4) Letter Typical Sequences

Let X = {0, 1} and define X n = X × X × · · · × X︸ ︷︷ ︸
n times

. Alternatively, X n is the set of all binary

sequences of length n. Size of X n is |X n| = 2n.

Let P ({0, 1}) be the set of all probability measures on X . Let’s fix p ∈ P ({0, 1}) as p = Bern(p) where

p ∈
(
0, 1

2

)
. p is fixed.

Let Y n ∼ p⊗n be a random vector of length n. The notation means that the components Y n
1 , Y

n
2 , ..., Y

n
n

of the random vector Y n are an i.i.d sequence of random variables with distribution p.

We denote by τn(p) ⊆ X n, the letter typical set associated with distribution p⊗n. Qualitatively, the let-
ter typical set is the set of equiprobable outcomes such that the set is small in size and occurs with high
probability. More precisely, it satisfies the following properties.

• τn(p) is very small in size compared to the sample set (the set of all possible outcomes), i.e.,

|τn(p)|
|X n|

→ 0 as n→∞

• P
(
Y n ∈ τn(p)

)
→ 1 as n→∞ where Y n ∼ p⊗n as before.

• ∀ yn ∈ τn(p), we have:

P (Y n = yn) ≈ 1

|τn(p)|

Such a set τn(p) is called a typical set.

(5) Reliable Communication over noisy channels

Discuss operational setup, Shannon’s channel coding theorem (1948).

Proof (direct: using typical sequences and converse using properties of information measures).

(6) Distribution Simulation

• Exact Simulation: Given some p ∈ P(X ) (some probability distribution on space X ).

Suppose we have i.i.d samples y1, y2, ... from Bernoulli distribution (with p = 1
2).

Design an algorithm A which takes y1, y2, ... as inputs and generates new samples z1, z2, ... such that
zi ∼ p. This is called distribution simulation.

• Approximate Simulation: Suppose the target distribution is again p and the algorithm A generates
samples from the distribution QA. Let D be some divergence measure. The essence of approximate
simulation is that D

(
QA, p

)
→ 0 as the number of input samples to the algorithm A goes to infinity.

(7) Information-theoretic security

• Shannon’s cipher system

• Wiretap Channel (Wyner 1975)

• Active Wiretap Channel.
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(8) Information Theory and Machine Learning

• IT→ML: design ML algorithms for learning useful representations via information bottleneck methods
(e.g. deep variational information bottleneck framework ).

• ML → IT: use neural networks and stochastic gradient descent to estimate mutual information (also
called MINE: Mutual Information Neural Estimation).

1 Background on Probability Theory

We start by defining probability spaces.

Definition 1.1 (Probability space) A probability space is a triple (Ω,F ,P), where:

1. Ω is an arbitrary nonempty set, called the sample set.

2. F is a collection of subsets of Ω called the σ-algebra, which satisfies:

(i) Ω ∈ F
(ii) A ∈ F =⇒ Ac := Ω \A ∈ F (closed under complements).

(iii) A1, A2, ... ∈ F =⇒
∞⋃
i=1

Ai ∈ F (closed under countable unions).

3. P : F → [0, 1] is the probability measure, satisfying:

(i) P(Ω) = 1

(ii) σ-additivity: let A1, A2, ... ∈ F be disjoint (i.e. Ai ∩Aj = ∅ for i 6= j), then

P

( ∞⋃
n=1

An

)
=
∞∑
n=1

P (An)

Remark 1.1 (Interpretation) Ω is understood as the set of all possible outcomes of a random experiment.
The elements of the set Ω can be arbitrary, e.g., numbers, functions, symbols, etc. The σ-algebra F can be
thought of as the collection of questions one can ask about the experiment’s outcomes. Questions are of the
form ‘what is the probability that a certain event happens?’. The probability measure P is interpreted as the
‘answers’ to those questions.

Example 1.1 (Dice) Consider the random experiment of drawing a dice, i.e., Ω = {1, 2, 3, 4, 5, 6}. Many
σ-algebras can be defined on Ω. For instance F = {Ω, ∅, {1, 3}, {2, 4, 5, 6}} is a valid choice. However, when
Ω is countable (or finite, as in this example), the most common σ-algebra is F = 2Ω, where 2Ω. is the power

set of Ω. To endow (Ω,F) with a probability measure, we may set P(A) := |A|
|Ω| , for all A ∈ F . This P is called

the uniform measure on Ω and corresponds to a fair dice.

There are two instances of probability spaces that we will mostly focus on, discrete and continuous prob-
ability spaces.

1.1 Discrete Probability Space

• Sample set: The sample set Ω is at most countable (finite or countably infinite).

• σ-algebra: The common σ-algebra in this case is F = 2Ω. This is also the largest possible σ-algebra.
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• Probability measure: Over discrete probability space, P can be built from a simpler function, called
the Probability Mass Function (PMF). Let p : Ω 7→ [0, 1] be a PMF on Ω, i.e., a function satisfying∑

ω∈Ω p(ω) = 1. The probability measure Pp induced by p is defined as

Pp(A) =
∑
ω∈A

p(ω), ∀A ∈ F .

Exercise 1.1 Verify that Pp is a valid probability measure.

In summary, given a countable Ω and a PMF p, we will always consider the discrete probability space(
Ω, 2Ω,Pp

)
. Note that this triple is completely specified by Ω and p.

1.2 Continuous Probability Space

• Sample set: The sample set Ω is uncountably infinite. We will exclusively consider the case Ω = Rd.

• σ-algebra: Usually, we want the largest possible σ-algebra. So ideally, F = 2R
d
. However, Vitali’s

theorem (a fundamental result in measure theory), states that there does not exist a non-trivial trans-

lation invariant σ-additive measure from 2R
d

to the extended reals. More specifically, there exist non-
measurable subsets of Rd that preclude the existence of a σ-additive measure µ satisfying µ

(
[0, 1]d

)
= 1

and µ(A) = µ(x+A), for all x ∈ Rd and A ⊆ Rd, where x+A = {x+ y : y ∈ A}.
Therefore, we need a smaller σ-algebra which excludes such pathological sets but still includes all
interesting subsets of Rd. To this end we will adopt the Borel σ-algebra, denoted by B(Rd). We next
give a high-level description of its construction. The idea is to identify a well-chosen collection of subsets
of Rd (called the ‘generating set’) and use them to generate the σ-algebra.

Theorem 1 (Generated σ-algebra) For an arbitrary collection C of subsets of Ω, there exists a
unique, smallest σ-algebra, denoted by σ(C) and called the σ-algebra generated by C, that contains
every element of C. That is, σ(C) is the unique σ-algebra such that if H is another σ-algebra that
satisfies C ⊆ H, then σ(C) ⊆ H.

Proof: Let {Fi}i∈I be the collection of all σ-algebras containing C. Note that the set is not empty since
the 2Ω is always in it. Define

σ(C) :=
⋂
i∈I
Fi.

We need to shown that σ(C) is the unique σ-algebra that contains C, and that it is the smallest one. For
the former, we rely on Exercise 1.2. Next, note that σ(C) trivially contains C since every Fi contains
C. For smallness, if H is any other σ-algebra containing C, then H = Fi, for some i ∈ I. Therefore,
σ(C) ⊆ H. Finally, uniqueness follows by smallness, since if both H and G are smallest, the H ⊆ G and
G ⊆ H, which implies set equality. �

Exercise 1.2 Show that an arbitrary intersections of σ-algebras is a σ-algebra.

Example 1.2 (σ-algebra generated by a single set) The σ-algebra σ(A) is also given by the col-
lection of all countable union/intersections/complements of the elements of A. For instance, for a single
set A ⊆ Ω, σ({A}) = {∅,Ω, A,Ac}.

Definition 1.2 (Borel σ-algebra) Let C0 :=
{

(−∞, a1]×· · ·× (−∞, ad] : a1, . . . , ad ∈ R
}

. The Borel
σ-algebra, denoted by B(R), is the σ-algebra generated by C0, i.e., B(Rd) := σ(C0).
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• Probability measure: Over continuous probability space, P can be built from an Lebesgue integrable

function, called the probability density function (PDF). Let f : Rd 7→ R≥0 be such that
∫
Rd

f(x)dx = 1.

The probability measure Pf induced by f is

Pf (B) =

∫
B
f(x)dx, ∀B ∈ B(Rd).

In summary, when Ω = Rd, we always choose the σ-algebra as F = B(Rd). Given a PDF f , we then
consider the probability space

(
Rd,B(Rd),Pf

)
Remark 1.2 (Notation) We use P(Ω) to denote the set of all probability measures over Ω.

• if Ω is countable, then F = 2Ω.

• if Ω = Rd, then F = B(Rd).

1.3 Properties of Probability Measure

The following are several important properties of probability measures.

Proposition 1.1 (Properties of probability measure) Let (Ω,F ,P) be a probability space.

1. P(∅) = 1− P(Ω) = 0

2. Law of complement probability: P(Ac) = 1− P(A) for all A ∈ F .

3. Monotonocity: For all A,B ∈ F , A ⊆ B, we have P(A) ≤ P(B)

4. Union bound:

P

( ∞⋃
n=1

An

)
≤
∞∑
n=1

P(An)

for all A1, A2, ... ∈ F .

5. Continuity of probability measure: Let A1 ⊆ A2 ⊆ · · · be a sequence of increasing events converging to
A ∈ F in the sense that A = ∪∞n=1An, then

lim
n→∞

P(An) = P(A)

Same for decreasing sequence.

1.4 Conditional Probability Spaces

Given a probability space, one may generate multiple conditional probability spaces by different conditional
probability measures.

Definition 1.3 (Conditional probability measure) Given (Ω,F ,P) and some A ∈ F such that P(A) > 0,
define P(·|A) : F → [0, 1] by

P(B|A) =
P(A ∩B)

P(A)
, B ∈ F .

Exercise 1.3 Show that (Ω,F ,P(.|A)) is also a probability space.

The above definition allows generating multiple (conditional) probability space for a given space (Ω,F ,P).
What is the relation between P(.|A) and P(.|B), for some A,B ∈ F such that P(A),P(B) > 0? The relation
is encoded in the Bayes theorem.
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Theorem 2 (Bayes Theorem) Let A,B ∈ F such that P(A),P(B) > 0. Then

P(B|A) =
P(A|B)P(B)

P(A)
.

Definition 1.4 Let Ω be a set, and {Bn} a countable collection of subsets of Ω. We say the sets Bn form a
partition of Ω if and only if the following conditions hold:

1. (Pairwise disjoint) Bi ∩Bj = ∅ for all i, j such that i 6= j.

2. (Cover)
⋃

nBn = Ω

Proposition 1.2 (Law of Total Probability) Let (Ω,F ,P) be a probability space, and B1, B2, B3, . . . ,∈ F
form a partition of Ω. Then, for all A ∈ F ,

P(A) =
∞∑
n=1

P(Bn)P(A|Bn)

Exercise 1.4 Prove this.


