ECE 5630: Information Theory for Data Transmission, Security and Machine Learning

2/2/20

Lectures 1 and 2 $\,$

Lecturer: Prof. Ziv Goldfeld

Scriber: Adeel Mahmood, Net ID: am2384 Assistant Editor: Kia Khezeli

Introduction

What is information theory?

- A mathematical framework for quantifying and rigorously reasoning about **uncertainty** and **informa**tion (information is the resolution of uncertainty).
- It leverages this framework to study fundamental properties of **operations** one can perform on **information sources**.

Examples of information sources are images, text files, audio files, etc.

Examples of operations one can perform on information sources are:

- **compression:** Exploiting redundancy and structure to reduce the number of bits needed to store or transmit data.
- **transmission:** Converting source information to codewords for transmission over a communication channel (source coding and channel coding).
- encryption: Encoding information to prevent unauthorized access.

List of Topics

(1) Background on probability theory

(2) *f*-divergence

Divergence is a function capable of measuring the distance/proximity between probability distributions.

Let \mathcal{X} be a space. Let $\mathcal{P}(\mathcal{X})$ be the set of all probability measures on \mathcal{X} . Then, f-divergence is a mapping $D_f: \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \mapsto \mathbb{R}_+$. In other words, f-divergence, which is induced by some convex $f: (0, \infty) \mapsto \mathbb{R}$, is a function that takes two probability measures as input and outputs a nonnegative real number. Depending on the choice of the function f, f-divergence may or may not be a distance metric. However, any divergence measure D does satisfy $D(P||Q) = 0 \iff P = Q$ for all $P, Q \in \mathcal{P}(\mathcal{X})$.

Other divergence measures include: KL divergence, Total variation (TV) distance, χ^2 distance, etc.

(3) Information Measures

Examples of information measures:

- Shannon Entropy
- Differential Entropy
- Mutual Information

(4) Letter Typical Sequences

Let $\mathcal{X} = \{0, 1\}$ and define $\mathcal{X}^n = \underbrace{\mathcal{X} \times \mathcal{X} \times \cdots \times \mathcal{X}}_{n \text{ times}}$. Alternatively, \mathcal{X}^n is the set of all binary

sequences of length n. Size of \mathcal{X}^n is $|\mathcal{X}^n| = 2^n$.

Let $\mathcal{P}(\{0,1\})$ be the set of all probability measures on \mathcal{X} . Let's fix $\underline{p} \in \mathcal{P}(\{0,1\})$ as $\underline{p} = \text{Bern}(p)$ where $p \in (0, \frac{1}{2})$. p is fixed.

Let $Y^n \sim \underline{p}^{\otimes n}$ be a random vector of length n. The notation means that the components $Y_1^n, Y_2^n, ..., Y_n^n$ of the random vector Y^n are an i.i.d sequence of random variables with distribution p.

We denote by $\tau_n(\underline{p}) \subseteq \mathcal{X}^n$, the *letter typical set* associated with distribution $\underline{p}^{\otimes n}$. Qualitatively, the letter typical set is the set of equiprobable outcomes such that the set is small in size and occurs with high probability. More precisely, it satisfies the following properties.

• $\tau_n(p)$ is very small in size compared to the sample set (the set of all possible outcomes), i.e.,

$$\frac{|\tau_n(\underline{p})|}{|\mathcal{X}^n|} \to 0 \text{ as } n \to \infty$$

- $\mathbb{P}(Y^n \in \tau_n(p)) \to 1 \text{ as } n \to \infty \text{ where } Y^n \sim p^{\otimes n} \text{ as before.}$
- $\forall y^n \in \tau_n(\underline{p})$, we have:

$$\mathbb{P}\left(Y^n = y^n\right) \approx \frac{1}{|\tau_n(\underline{p})|}$$

Such a set $\tau_n(p)$ is called a typical set.

(5) Reliable Communication over noisy channels

Discuss operational setup, Shannon's channel coding theorem (1948).

Proof (direct: using typical sequences and converse using properties of information measures).

(6) Distribution Simulation

• Exact Simulation: Given some $p \in \mathcal{P}(\mathcal{X})$ (some probability distribution on space \mathcal{X}).

Suppose we have i.i.d samples $y_1, y_2, ...$ from Bernoulli distribution (with $p = \frac{1}{2}$).

Design an algorithm \mathcal{A} which takes y_1, y_2, \dots as inputs and generates new samples z_1, z_2, \dots such that $z_i \sim p$. This is called distribution simulation.

• Approximate Simulation: Suppose the target distribution is again \underline{p} and the algorithm \mathcal{A} generates samples from the distribution $Q_{\mathcal{A}}$. Let D be some divergence measure. The essence of approximate simulation is that $D(Q_{\mathcal{A}}, p) \to 0$ as the number of input samples to the algorithm \mathcal{A} goes to infinity.

(7) Information-theoretic security

- Shannon's cipher system
- Wiretap Channel (Wyner 1975)
- Active Wiretap Channel.

(8) Information Theory and Machine Learning

- IT \rightarrow ML: design ML algorithms for learning useful representations via information bottleneck methods (e.g. deep variational information bottleneck framework).
- $ML \rightarrow IT$: use neural networks and stochastic gradient descent to estimate mutual information (also called MINE: Mutual Information Neural Estimation).

1 Background on Probability Theory

We start by defining probability spaces.

Definition 1.1 (Probability space) A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where:

- 1. Ω is an arbitrary nonempty set, called the sample set.
- 2. \mathcal{F} is a collection of subsets of Ω called the σ -algebra, which satisfies:
 - (i) $\Omega \in \mathcal{F}$

(ii)
$$A \in \mathcal{F} \implies A^c := \Omega \setminus A \in \mathcal{F}$$
 (closed under complements).

- (iii) $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (closed under countable unions).
- 3. $\mathbb{P}: \mathcal{F} \to [0,1]$ is the probability measure, satisfying:
 - (i) $\mathbb{P}(\Omega) = 1$
 - (ii) σ -additivity: let $A_1, A_2, \ldots \in \mathcal{F}$ be disjoint (i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$), then

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Remark 1.1 (Interpretation) Ω is understood as the set of all possible outcomes of a random experiment. The elements of the set Ω can be arbitrary, e.g., numbers, functions, symbols, etc. The σ -algebra \mathcal{F} can be thought of as the collection of questions one can ask about the experiment's outcomes. Questions are of the form 'what is the probability that a certain event happens?'. The probability measure \mathbb{P} is interpreted as the 'answers' to those questions.

Example 1.1 (Dice) Consider the random experiment of drawing a dice, i.e., $\Omega = \{1, 2, 3, 4, 5, 6\}$. Many σ -algebras can be defined on Ω . For instance $\mathcal{F} = \{\Omega, \emptyset, \{1,3\}, \{2,4,5,6\}\}$ is a valid choice. However, when Ω is countable (or finite, as in this example), the most common σ -algebra is $\mathcal{F} = 2^{\Omega}$, where 2^{Ω} . is the power set of Ω . To endow (Ω, \mathcal{F}) with a probability measure, we may set $\mathbb{P}(A) := \frac{|A|}{|\Omega|}$, for all $A \in \mathcal{F}$. This \mathbb{P} is called the uniform measure on Ω and corresponds to a fair dice.

There are two instances of probability spaces that we will mostly focus on, discrete and continuous probability spaces.

1.1 Discrete Probability Space

- Sample set: The sample set Ω is at most countable (finite or countably infinite).
- σ -algebra: The common σ -algebra in this case is $\mathcal{F} = 2^{\Omega}$. This is also the largest possible σ -algebra.

• <u>Probability measure</u>: Over discrete probability space, \mathbb{P} can be built from a simpler function, called the Probability Mass Function (PMF). Let $p : \Omega \mapsto [0,1]$ be a PMF on Ω , i.e., a function satisfying $\sum_{\omega \in \Omega} p(\omega) = 1$. The probability measure \mathbb{P}_p induced by p is defined as

$$\mathbb{P}_p(A) = \sum_{\omega \in A} p(\omega), \quad \forall A \in \mathcal{F}.$$

Exercise 1.1 Verify that \mathbb{P}_p is a valid probability measure.

In summary, given a countable Ω and a PMF p, we will always consider the discrete probability space $(\Omega, 2^{\Omega}, \mathbb{P}_p)$. Note that this triple is completely specified by Ω and p.

1.2 Continuous Probability Space

- Sample set: The sample set Ω is uncountably infinite. We will exclusively consider the case $\Omega = \mathbb{R}^d$.
- σ -algebra: Usually, we want the largest possible σ -algebra. So ideally, $\mathcal{F} = 2^{\mathbb{R}^d}$. However, Vitali's theorem (a fundamental result in measure theory), states that there does not exist a non-trivial translation invariant σ -additive measure from $2^{\mathbb{R}^d}$ to the extended reals. More specifically, there exist non-measurable subsets of \mathbb{R}^d that preclude the existence of a σ -additive measure μ satisfying $\mu([0,1]^d) = 1$ and $\mu(A) = \mu(x+A)$, for all $x \in \mathbb{R}^d$ and $A \subseteq \mathbb{R}^d$, where $x + A = \{x + y : y \in A\}$.

Therefore, we need a smaller σ -algebra which excludes such pathological sets but still includes all interesting subsets of \mathbb{R}^d . To this end we will adopt the **Borel** σ -algebra, denoted by $\mathcal{B}(\mathbb{R}^d)$. We next give a high-level description of its construction. The idea is to identify a well-chosen collection of subsets of \mathbb{R}^d (called the 'generating set') and use them to generate the σ -algebra.

Theorem 1 (Generated σ -algebra) For an arbitrary collection C of subsets of Ω , there exists a unique, smallest σ -algebra, denoted by $\sigma(C)$ and called the σ -algebra generated by C, that contains every element of C. That is, $\sigma(C)$ is the unique σ -algebra such that if \mathcal{H} is another σ -algebra that satisfies $C \subseteq \mathcal{H}$, then $\sigma(C) \subseteq \mathcal{H}$.

Proof: Let $\{\mathcal{F}_i\}_{i\in I}$ be the collection of all σ -algebras containing \mathcal{C} . Note that the set is not empty since the 2^{Ω} is always in it. Define

$$\sigma(\mathcal{C}) := \bigcap_{i \in I} \mathcal{F}_i.$$

We need to shown that $\sigma(\mathcal{C})$ is the unique σ -algebra that contains \mathcal{C} , and that it is the smallest one. For the former, we rely on Exercise 1.2. Next, note that $\sigma(\mathcal{C})$ trivially contains \mathcal{C} since every \mathcal{F}_i contains \mathcal{C} . For smallness, if \mathcal{H} is any other σ -algebra containing \mathcal{C} , then $\mathcal{H} = \mathcal{F}_i$, for some $i \in I$. Therefore, $\sigma(\mathcal{C}) \subseteq \mathcal{H}$. Finally, uniqueness follows by smallness, since if both \mathcal{H} and \mathcal{G} are smallest, the $\mathcal{H} \subseteq \mathcal{G}$ and $\mathcal{G} \subseteq \mathcal{H}$, which implies set equality.

Exercise 1.2 Show that an arbitrary intersections of σ -algebras is a σ -algebra.

Example 1.2 (σ -algebra generated by a single set) The σ -algebra $\sigma(\mathcal{A})$ is also given by the collection of all countable union/intersections/complements of the elements of \mathcal{A} . For instance, for a single set $A \subseteq \Omega$, $\sigma(\{A\}) = \{\emptyset, \Omega, A, A^c\}$.

Definition 1.2 (Borel σ -algebra) Let $C_0 := \{(-\infty, a_1] \times \cdots \times (-\infty, a_d] : a_1, \ldots, a_d \in \mathbb{R}\}$. The Borel σ -algebra, denoted by $\mathcal{B}(\mathbb{R})$, is the σ -algebra generated by C_0 , i.e., $\mathcal{B}(\mathbb{R}^d) := \sigma(C_0)$.

The probability measure \mathbb{P}_f induced by f is

$$\mathbb{P}_f(B) = \int_B f(\mathbf{x}) d\mathbf{x}, \quad \forall B \in \mathcal{B}(\mathbb{R}^d).$$

In summary, when $\Omega = \mathbb{R}^d$, we always choose the σ -algebra as $\mathcal{F} = \mathcal{B}(\mathbb{R}^d)$. Given a PDF f, we then consider the probability space $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \mathbb{P}_f)$

Remark 1.2 (Notation) We use $\mathcal{P}(\Omega)$ to denote the set of all probability measures over Ω .

- if Ω is countable, then $\mathcal{F} = 2^{\Omega}$.
- if $\Omega = \mathbb{R}^d$, then $\mathcal{F} = \mathcal{B}(\mathbb{R}^d)$.

1.3 Properties of Probability Measure

The following are several important properties of probability measures.

Proposition 1.1 (Properties of probability measure) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- 1. $\mathbb{P}(\emptyset) = 1 \mathbb{P}(\Omega) = 0$
- 2. Law of complement probability: $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ for all $A \in \mathcal{F}$.
- 3. Monotonocity: For all $A, B \in \mathcal{F}, A \subseteq B$, we have $\mathbb{P}(A) \leq \mathbb{P}(B)$
- 4. Union bound:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

for all $A_1, A_2, \ldots \in \mathcal{F}$.

5. Continuity of probability measure: Let $A_1 \subseteq A_2 \subseteq \cdots$ be a sequence of increasing events converging to $A \in \mathcal{F}$ in the sense that $A = \bigcup_{n=1}^{\infty} A_n$, then

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(A)$$

Same for decreasing sequence.

1.4 Conditional Probability Spaces

Given a probability space, one may generate multiple conditional probability spaces by different conditional probability measures.

Definition 1.3 (Conditional probability measure) Given $(\Omega, \mathcal{F}, \mathbb{P})$ and some $A \in \mathcal{F}$ such that $\mathbb{P}(A) > 0$, define $\mathbb{P}(\cdot|A) : \mathcal{F} \to [0,1]$ by

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}, \quad B \in \mathcal{F}.$$

Exercise 1.3 Show that $(\Omega, \mathcal{F}, \mathbb{P}(.|A))$ is also a probability space.

The above definition allows generating multiple (conditional) probability space for a given space $(\Omega, \mathcal{F}, \mathbb{P})$. What is the relation between $\mathbb{P}(.|A)$ and $\mathbb{P}(.|B)$, for some $A, B \in \mathcal{F}$ such that $\mathbb{P}(A), \mathbb{P}(B) > 0$? The relation is encoded in the Bayes theorem. **Theorem 2 (Bayes Theorem)** Let $A, B \in \mathcal{F}$ such that $\mathbb{P}(A), \mathbb{P}(B) > 0$. Then

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}.$$

Definition 1.4 Let Ω be a set, and $\{B_n\}$ a countable collection of subsets of Ω . We say the sets B_n form a partition of Ω if and only if the following conditions hold:

- 1. (Pairwise disjoint) $B_i \cap B_j = \emptyset$ for all i, j such that $i \neq j$.
- 2. (Cover) $\bigcup_n B_n = \Omega$

Proposition 1.2 (Law of Total Probability) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $B_1, B_2, B_3, \ldots, \in \mathcal{F}$ form a partition of Ω . Then, for all $A \in \mathcal{F}$,

$$\mathbb{P}(A) = \sum_{n=1}^{\infty} \mathbb{P}(B_n) \mathbb{P}(A|B_n)$$

Exercise 1.4 Prove this.