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10.1 Mutual Information

Definition 10.1 (Mutual Information) Let (X,Y ) ∼ PXY ∈ P(X ×Y). The mutual information between
X and Y is defined as

I(X;Y ) := DKL(PXY ||PX ⊗ PY ),

where PX and PY are the X and Y marginals of PXY and PX ⊗ PY is the induced product measure.

Remark 10.1 (Comments) Note the following:

(i) Mutual information is a fundamental measure of dependence between random variables: it is invari-
ant to invertible transformations of the random variables, nullifies if and only if random variables are
independent, and emerges as a solution to operational data compression and transmission questions.

(ii) We interpret I(X;Y ) as the amount of information that X and Y convey about each other.

Proposition 10.1 (Basic Properties of Mutual Information) Mutual information satisfies the follow-
ing properties:

1. I(X;Y ) ≥ 0 with equality if and only if X ⊥⊥ Y .

2. I(X;Y ) = DKL(PY |X ||PY |PX).

3. I(X;Y ) = I(Y ;X).

4. I(X;Y ) ≥ I(X; f(Y )) for any deterministic function, with equality if and only if f is a bijection.

5. I(X,Y ;Z) ≥ I(X;Z). Note that I(X,Y ;Z) = DKL(PXY Z ||PXY ⊗ PZ).

Proof:

1. Clear by definition (derives from non-negativity of KL divergence for probability measures).

2. Let QXY = PX ⊗ PY and observe that QX = PX and QY |X = PY . From the chain rule for KL
divergences, we have

DKL(PXY ||QXY ) = DKL(PX ||QX) +DKL(PY |X ||QY |X |PX)

Thus,

DKL(PXY ||PX ⊗ PY ) =

0︷ ︸︸ ︷
DKL(PX ||PX) +DKL(PY |X ||PY |PX) = DKL(PY |X ||PY |PX).

3. Let g(x, y) = (y, x) and consider the transition kernel induced by g. Passing PX,Y and PX ⊗PY through
g produces PY,X and PY ⊗ PX , respectively. Applying the KL divergence DPI to this setup we obtain
Df (PXY ||PX ⊗ PY ) ≥ Df (PY X ||PY ⊗ PX). Reversing the role of X and Y completes the proof.
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4. The proof follows by the mutual information DPI. As will be shown in the next lecture, if X → Y → Z
forms a Markov chain, then I(X;Y ) ≥ I(X;Z) with equality if and only if X → Z → Y . Clearly,
X → Y → f(Y ), and if f is a bijection, then we also have X → f(Y )→ Y .

5. Let g(x, y, z) = (x, z) and consider the induced transition kernel. Passing PX,Y,Z and PX,Y ⊗PZ through
g produces PX,Z and PX ⊗ PZ , respectively. Applying the KL divergence DPI produces the result.

�

Proposition 10.2 (Mutual Information and Entropy)

1. I(X;X) =

{
H(X), discrete X,

∞, otherwise.

2. For discrete X: I(X;Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

3. For continuous X: I(X;Y ) = h(X) + h(Y )− h(X,Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X).

Proof:

1. We consider discrete and continuous cases separately. Finally, we extend the derivation for the contin-
uous case to arbitrary non-discrete case.

(i) Discrete: From the definition I(X,X) = DKL(PX|X ||PX |PX) where PX|X(·|x) = δx(·). Note that
δx � PX , for any x ∈ supp (PX). Then,

I(X;X) = DKL(PX|X ||PX |PX) =
∑
x∈X

pX(x)DKL(PX|X(·|x)︸ ︷︷ ︸
δx(·)

||PX)

=
∑
x∈X

pX(x)
∑
x′∈X

δx(x′) log
δx(x′)

pX(x′)
=
∑
x∈X

pX(x) log
1

pX(x)
= H(X).

(ii) Continuous: Assume PX � λ where λ is the Lebesgue measure. From the definition I(X;X) =
DKL(PXX ||PX ⊗ PX). We will show that PXX 6� PX ⊗ PX , thereby implying that KL divergence
diverges, as claimed. Define the diagonal set ∆ := {(x, x) : x ∈ X}. Then,

PXX(∆) =

∫
∆
dPXX(x, x) =

∫
X

∫
X
1{x=x′}dPXX(x, x) =

∫
X
dPX(x)

∫
X
1{x=x′}dPX|X(x′|x)

=

∫
X
dPX(x)

∫
X
1{x=x′}dδx(x′) =

∫
X
δx(x)dPX(x) = 1.

However,

PX ⊗ PX(∆) =

∫
∆
dPX ⊗ PX(x, x′) =

∫
X

∫
X
1{x=x′}dPX ⊗ PX

=

∫
X
dPX(x)

∫
X
1{x=x′}dPX(x′) =

∫
X
PX(x)dPX(x) = 0,

where the last equality follows from the fact that PX(x) = 0 for all x ∈ X because PX � λ. Thus,
PXX 6� PX ⊗ PX as PXX(∆) > 0 while PX ⊗ PX(∆) = 0.

(iii) Non-discrete: The continuous distribution argument trivially extends to an arbitrary non-discrete
scenario. In particular, define A := {x ∈ X : PX({x}) > 0} and ∆A := {(x, x) : x ∈ Ac}.
Repeating the above proof for ∆A instead of ∆ produces the general result.
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2. By definition, I(X;Y ) =
∑

x,y PXY (x, y) log PXY (x,y)
PX(x)PY (y) and PXY (x, y) = PY (y)PX|Y (x|y). Then,

I(X;Y ) =
∑
x,y

PXY (x, y) log
PY (y)PX|Y (x|y)

PX(x)PY (y)

=
∑
x,y

PXY (x, y) log
1

PX(x)
−
∑
x,y

PXY (x, y) log
1

PX|Y (x|y)
= H(X)−H(X|Y ).

By repeating the above argument using PXY (x, y) = PX(x)PY |X(y|x) we get I(X;Y ) = H(Y )−H(Y |X).
Additionally recall from the definition of conditional entropy that H(Y |X) = H(X,Y ) −H(X), so we
have I(X;Y ) = H(Y )−H(Y |X) = H(Y ) +H(X)−H(X,Y ).

3. The derivation for the continuous case is analogous to the discrete case, and is thus omitted.

�

Remark 10.2 (Illustration) The relationship between mutual information and entropy is illustrated in Fig-
ure 1.

H(X) H(Y )

H(X|Y ) H(Y |X)I(X;Y )

Figure 1: The relationship between mutual information and entropy.

Example 10.1

• Binary Symmetric Channel (BSC): Let X ∼ Ber(1/2) and Y = X ⊕ Z (addition modulo 2) where
Z ∼ Ber(ε), with ε ∈ [0, 1/2] independent of X. The BSC is depicted in Figure 2.
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Figure 2: Binary symmetric channel with flip parameter ε.

First observe that

Y =

{
X ⊕ 0, Z = 0,

X ⊕ 1, Z = 1.
=

{
X, w.p. 1− ε,
1−X, w.p. ε.
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To find I(X;Y ), we compute H(Y ) and H(Y |X), separately. For H(Y ), we first find the PMF of Y .
Consider:

PY (0) = PX(0) · PY |X(0|0) + PX(1) · PY |X(0|1) =
1

2
(1− ε) +

1

2
ε =

1

2
.

Thus, Y ∼ Ber(1/2), and so H(Y ) = Hb(1/2) = 1.

For H(Y |X), we have

H(Y |X) =
∑

x∈{0,1}

PX(x)H(Y |X = x) =
∑

x∈{0,1}

pX(x)H(X ⊕ Z|X = x).

By independence of X and Z, we have

H(X ⊕ Z|X = x) = H(x⊕ Z|X = x) = H(x⊕ Z) = H(Z),

where the last equality follows from the fact that entropy is invariant to bijection. Then,

H(Y |X) =
∑

x∈{0,1}

pX(x)H(X ⊕ Z|X = x) =
∑

x∈{0,1}

pX(x)H(Z) = H(Z) = Hb(ε).

This gives us that I(X;Y ) = 1 − Hb(ε) for the BSC. Figure 3 depicts the mutual information as a
function of ε.

ε

I(X;Y )

1/2 1

1

Figure 3: Mutual information of a BSC as a function of its parameter ε.

Notice that, in the “worst” case, ε = 1/2 and we have I(X;Y ) = 0, i.e., we cannot pass any information
through the BSC.

• Bivariate Gaussian: Let (X,Y ) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
. Recall that for a d-dimensional Gaussian we have

h
(
N (µ,Σ)

)
= 1

2 log((2πe)d detK). Thus

I(X;Y ) = h(X) + h(Y )− h(X,Y ) =
1

2
log(2πe) +

1

2
log(2πe)− 1

2
log((2πe)2(1− ρ2)) =

1

2
log

1

1− ρ2

Note that I(X;Y ) =∞ when ρ = 1. One could equivalently see that for X = Y , we have I(X;Y ) =∞
from Proposition 10.1. Moreover, ρ = 0 implies that X and Y are uncorrelated. For Gaussian random
variables uncorrelation is equivalent to independence, which, in turn, is equivalent to I(X;Y ) = 0.


