ECE 5630: Information Theory for Data Transmission, Security and Machine Learning

3/5/20

Lecture 10: Mutual Information

Lecturer: Prof. Ziv Goldfeld

Scriber: Isay Katsman, Net ID: isk22 Assistant Editor: Kia Khezeli

10.1 Mutual Information

Definition 10.1 (Mutual Information) Let $(X, Y) \sim P_{XY} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$. The mutual information between X and Y is defined as

 $I(X;Y) := D_{\mathsf{KL}}(P_{XY}||P_X \otimes P_Y),$

where P_X and P_Y are the X and Y marginals of P_{XY} and $P_X \otimes P_Y$ is the induced product measure.

Remark 10.1 (Comments) Note the following:

- (i) Mutual information is a fundamental measure of dependence between random variables: it is invariant to invertible transformations of the random variables, nullifies if and only if random variables are independent, and emerges as a solution to operational data compression and transmission questions.
- (ii) We interpret I(X;Y) as the amount of information that X and Y convey about each other.

Proposition 10.1 (Basic Properties of Mutual Information) Mutual information satisfies the following properties:

- 1. $I(X;Y) \ge 0$ with equality if and only if $X \perp Y$.
- 2. $I(X;Y) = D_{\mathsf{KL}}(P_{Y|X}||P_Y|P_X).$
- 3. I(X;Y) = I(Y;X).
- 4. $I(X;Y) \ge I(X;f(Y))$ for any deterministic function, with equality if and only if f is a bijection.
- 5. $I(X,Y;Z) \ge I(X;Z)$. Note that $I(X,Y;Z) = D_{\mathsf{KL}}(P_{XYZ}||P_{XY} \otimes P_Z)$.

Proof:

- 1. Clear by definition (derives from non-negativity of KL divergence for probability measures).
- 2. Let $Q_{XY} = P_X \otimes P_Y$ and observe that $Q_X = P_X$ and $Q_{Y|X} = P_Y$. From the chain rule for KL divergences, we have

$$D_{\mathsf{KL}}(P_{XY}||Q_{XY}) = D_{\mathsf{KL}}(P_X||Q_X) + D_{\mathsf{KL}}(P_{Y|X}||Q_{Y|X}|P_X)$$

Thus,

$$D_{\mathsf{KL}}(P_{XY}||P_X \otimes P_Y) = \overbrace{D_{\mathsf{KL}}(P_X||P_X)}^0 + D_{\mathsf{KL}}(P_{Y|X}||P_Y|P_X) = D_{\mathsf{KL}}(P_{Y|X}||P_Y|P_X).$$

3. Let g(x, y) = (y, x) and consider the transition kernel induced by g. Passing $P_{X,Y}$ and $P_X \otimes P_Y$ through g produces $P_{Y,X}$ and $P_Y \otimes P_X$, respectively. Applying the KL divergence DPI to this setup we obtain $D_f(P_{XY}||P_X \otimes P_Y) \ge D_f(P_{YX}||P_Y \otimes P_X)$. Reversing the role of X and Y completes the proof.

- 4. The proof follows by the mutual information DPI. As will be shown in the next lecture, if $X \to Y \to Z$ forms a Markov chain, then $I(X;Y) \ge I(X;Z)$ with equality if and only if $X \to Z \to Y$. Clearly, $X \to Y \to f(Y)$, and if f is a bijection, then we also have $X \to f(Y) \to Y$.
- 5. Let g(x, y, z) = (x, z) and consider the induced transition kernel. Passing $P_{X,Y,Z}$ and $P_{X,Y} \otimes P_Z$ through g produces $P_{X,Z}$ and $P_X \otimes P_Z$, respectively. Applying the KL divergence DPI produces the result.

Proposition 10.2 (Mutual Information and Entropy)

1.
$$I(X;X) = \begin{cases} H(X), & discrete X, \\ \infty, & otherwise. \end{cases}$$

- 2. For discrete X: I(X;Y) = H(X) + H(Y) H(X,Y) = H(X) H(X|Y) = H(Y) H(Y|X).
- 3. For continuous X: I(X;Y) = h(X) + h(Y) h(X,Y) = h(X) h(X|Y) = h(Y) h(Y|X).

Proof:

- 1. We consider discrete and continuous cases separately. Finally, we extend the derivation for the continuous case to arbitrary non-discrete case.
 - (i) **Discrete:** From the definition $I(X, X) = D_{\mathsf{KL}}(P_{X|X}||P_X|P_X)$ where $P_{X|X}(\cdot|x) = \delta_x(\cdot)$. Note that $\delta_x \ll P_X$, for any $x \in \text{supp }(P_X)$. Then,

$$\begin{split} I(X;X) &= D_{\mathsf{KL}}(P_{X|X}||P_X|P_X) = \sum_{x \in \mathcal{X}} p_X(x) D_{\mathsf{KL}}(\underbrace{P_{X|X}(\cdot|x)}_{\delta_x(\cdot)}||P_X) \\ &= \sum_{x \in \mathcal{X}} p_X(x) \sum_{x' \in \mathcal{X}} \delta_x(x') \log \frac{\delta_x(x')}{p_X(x')} = \sum_{x \in \mathcal{X}} p_X(x) \log \frac{1}{p_X(x)} = H(X). \end{split}$$

(ii) **Continuous:** Assume $P_X \ll \lambda$ where λ is the Lebesgue measure. From the definition $I(X; X) = D_{\mathsf{KL}}(P_{XX}||P_X \otimes P_X)$. We will show that $P_{XX} \ll P_X \otimes P_X$, thereby implying that KL divergence diverges, as claimed. Define the diagonal set $\Delta := \{(x, x) : x \in \mathcal{X}\}$. Then,

$$\begin{split} P_{XX}(\Delta) &= \int_{\Delta} \mathrm{d}P_{XX}(x,x) = \int_{\mathcal{X}} \int_{\mathcal{X}} \mathbbm{1}_{\{x=x'\}} \mathrm{d}P_{XX}(x,x) = \int_{\mathcal{X}} \mathrm{d}P_X(x) \int_{\mathcal{X}} \mathbbm{1}_{\{x=x'\}} \mathrm{d}P_{X|X}(x'|x) \\ &= \int_{\mathcal{X}} \mathrm{d}P_X(x) \int_{\mathcal{X}} \mathbbm{1}_{\{x=x'\}} \mathrm{d}\delta_x(x') = \int_{\mathcal{X}} \delta_x(x) \mathrm{d}P_X(x) = 1. \end{split}$$

However,

$$P_X \otimes P_X(\Delta) = \int_{\Delta} dP_X \otimes P_X(x, x') = \int_{\mathcal{X}} \int_{\mathcal{X}} \mathbb{1}_{\{x=x'\}} dP_X \otimes P_X$$
$$= \int_{\mathcal{X}} dP_X(x) \int_{\mathcal{X}} \mathbb{1}_{\{x=x'\}} dP_X(x') = \int_{\mathcal{X}} P_X(x) dP_X(x) = 0,$$

where the last equality follows from the fact that $P_X(x) = 0$ for all $x \in \mathcal{X}$ because $P_X \ll \lambda$. Thus, $P_{XX} \ll P_X \otimes P_X$ as $P_{XX}(\Delta) > 0$ while $P_X \otimes P_X(\Delta) = 0$.

(iii) Non-discrete: The continuous distribution argument trivially extends to an arbitrary non-discrete scenario. In particular, define $\mathcal{A} := \{x \in \mathcal{X} : P_X(\{x\}) > 0\}$ and $\Delta_{\mathcal{A}} := \{(x, x) : x \in \mathcal{A}^c\}$. Repeating the above proof for $\Delta_{\mathcal{A}}$ instead of Δ produces the general result.

2. By definition, $I(X;Y) = \sum_{x,y} P_{XY}(x,y) \log \frac{P_{XY}(x,y)}{P_X(x)P_Y(y)}$ and $P_{XY}(x,y) = P_Y(y)P_{X|Y}(x|y)$. Then,

$$I(X;Y) = \sum_{x,y} P_{XY}(x,y) \log \frac{P_Y(y)P_{X|Y}(x|y)}{P_X(x)P_Y(y)}$$

= $\sum_{x,y} P_{XY}(x,y) \log \frac{1}{P_X(x)} - \sum_{x,y} P_{XY}(x,y) \log \frac{1}{P_{X|Y}(x|y)} = H(X) - H(X|Y)$

By repeating the above argument using $P_{XY}(x, y) = P_X(x)P_{Y|X}(y|x)$ we get I(X;Y) = H(Y) - H(Y|X). Additionally recall from the definition of conditional entropy that H(Y|X) = H(X,Y) - H(X), so we have I(X;Y) = H(Y) - H(Y|X) = H(Y) + H(X) - H(X,Y).

3. The derivation for the continuous case is analogous to the discrete case, and is thus omitted.

Remark 10.2 (Illustration) The relationship between mutual information and entropy is illustrated in Figure 1.

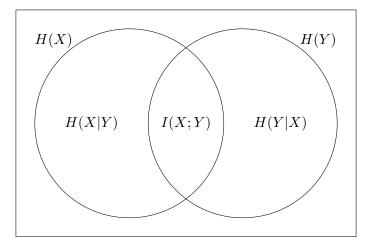


Figure 1: The relationship between mutual information and entropy.

Example 10.1

• Binary Symmetric Channel (BSC): Let $X \sim \text{Ber}(1/2)$ and $Y = X \oplus Z$ (addition modulo 2) where $\overline{Z \sim \text{Ber}(\epsilon)}$, with $\epsilon \in [0, 1/2]$ independent of X. The BSC is depicted in Figure 2.

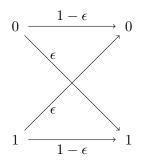


Figure 2: Binary symmetric channel with flip parameter ϵ .

First observe that

$$Y = \begin{cases} X \oplus 0, \quad Z = 0, \\ X \oplus 1, \quad Z = 1. \end{cases} = \begin{cases} X, & w.p. \ 1 - \epsilon, \\ 1 - X, \quad w.p. \ \epsilon. \end{cases}$$

To find I(X;Y), we compute H(Y) and H(Y|X), separately. For H(Y), we first find the PMF of Y. Consider:

$$P_Y(0) = P_X(0) \cdot P_{Y|X}(0|0) + P_X(1) \cdot P_{Y|X}(0|1) = \frac{1}{2}(1-\epsilon) + \frac{1}{2}\epsilon = \frac{1}{2}$$

Thus, $Y \sim \text{Ber}(1/2)$, and so $H(Y) = H_b(1/2) = 1$. For H(Y|X), we have

$$H(Y|X) = \sum_{x \in \{0,1\}} P_X(x)H(Y|X=x) = \sum_{x \in \{0,1\}} p_X(x)H(X \oplus Z|X=x).$$

By independence of X and Z, we have

$$H(X \oplus Z | X = x) = H(x \oplus Z | X = x) = H(x \oplus Z) = H(Z),$$

where the last equality follows from the fact that entropy is invariant to bijection. Then,

$$H(Y|X) = \sum_{x \in \{0,1\}} p_X(x) H(X \oplus Z|X = x) = \sum_{x \in \{0,1\}} p_X(x) H(Z) = H(Z) = H_b(\epsilon).$$

This gives us that $I(X;Y) = 1 - H_b(\epsilon)$ for the BSC. Figure 3 depicts the mutual information as a function of ϵ .

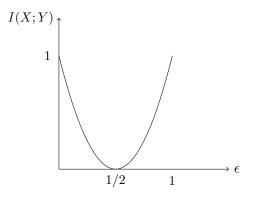


Figure 3: Mutual information of a BSC as a function of its parameter ϵ .

Notice that, in the "worst" case, $\epsilon = 1/2$ and we have I(X;Y) = 0, i.e., we cannot pass any information through the BSC.

• <u>Bivariate Gaussian</u>: Let $(X, Y) \sim \mathcal{N}\left(\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1&\rho\\\rho&1 \end{bmatrix}\right)$. Recall that for a d-dimensional Gaussian we have $h(\mathcal{N}(\mu, \Sigma)) = \frac{1}{2}\log((2\pi e)^d \det K)$. Thus

$$I(X;Y) = h(X) + h(Y) - h(X,Y) = \frac{1}{2}\log(2\pi e) + \frac{1}{2}\log(2\pi e) - \frac{1}{2}\log((2\pi e)^2(1-\rho^2)) = \frac{1}{2}\log\frac{1}{1-\rho^2}$$

Note that $I(X;Y) = \infty$ when $\rho = 1$. One could equivalently see that for X = Y, we have $I(X;Y) = \infty$ from Proposition 10.1. Moreover, $\rho = 0$ implies that X and Y are uncorrelated. For Gaussian random variables uncorrelation is equivalent to independence, which, in turn, is equivalent to I(X;Y) = 0.