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11.1 Conditional Mutual Information

We next define the conditional mutual information between two random variables, X and Y , given a third
variable Z. As a building block, we need the conditional mutual information given the event {Z = z}. Let
PXY Z ∈ P(X × Y ×Z) and consider the induced conditional distribution PXY |Z(·|z) ∈ P(X × Y), for z ∈ Z.
Denoting by PX|Z(·|z) and PY |Z(·|z) the corresponding marginals, we set

I(X;Y |Z = z) := DKL

(
PXY |Z(·|z)

∥∥PX|Z ⊗ PY |Z(·|z)
)
.

Definition 11.1 (Conditional MI) For PXY Z ∈ P(X×Y×Z), the conditional mutual information between
X and Y given Z is defined as

I(X;Y |Z) := DKL

(
PXY |Z

∥∥PX|Z ⊗ PY |Z |PZ

)
= Ez∼PZ

[
I(X;Y |Z = z)

]
.

Remark 11.1

1. I(X;Y |Z) is a functional of PXY Z , and not just the conditional probability law PXY |Z .

2. It is straightforward to verify that

I(X;Y |Z) = H(X|Z) +H(Y |Z)− I(X;Y |Z)

= H(X|Z)−H(X|Y,Z)

= H(Y |Z)−H(Y |X,Z).

In order to study the properties of conditional mutual information, we first review the related concept of
Markov chains.

Definition 11.2 (Markov chain) Let (X,Y, Z) ∼ PXY Z . We say that X → Y → Z forms a Markov
chain if

PXY Z = PXPY |XPZ|Y .

Example 11.1 Let X, Y and Z be three mutually independent random variables. Clearly, X → Y → Z
forms a Markov chain.

Example 11.2 Define

Y1 = X + Z1,

Y2 = X + Z1 + Z2 = Y1 + Z2.

then X → Y1 → Y2 forms a Markov chain (exercise).
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Proposition 11.1 (Equivalent condition of Markov chain) The following statements are equivalent.

X → Y → Z ⇐⇒ PXY Z = PXPY |XPZ|Y

⇐⇒ PXZ|Y = PX|Y PZ|Y

⇐⇒ PZ|XY = PZ|Y

⇐⇒ X ⊥⊥ Z|Y
⇐⇒ Z → Y → X.

We are now ready to study additional properties of mutual information and its conditional version.

Proposition 11.2 (More properties of MI) Let (X,Y, Z) ∼ PXY Z . Then,

1. Non-negativity: I(X;Y |Z) ≥ 0, with equality if and only if (iff) X → Z → Y .

2. Chain rule:

(a) Small: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) = I(Y ;Z) + I(X;Z|Y ).

(b) Full: I(X1, X2, ..., Xn;Y ) = I(X1;Y ) +
∑n

i=2 I(Xi;Y |Xi−1, Xi−2, ..., X1).

3. Data processing inequality: If X → Y → Z, then I(X;Y ) ≥ I(X;Z), with equality iff X → Z → Y .

4. If f is a bijection, then I(X;Y ) = I(X; f(Y )).

5. Concavity/convexity: For (X,Y ) ∼ PXY , denote I(X;Y ) as I(PX , PY |X). Then,

(a) For fixed PY |X , PX → I(PX , PY |X) is concave.

(b) Fox fixed PX , PY |X → I(PX , PY |X) is convex.

Proof:

1. Follows by definition.

2.

I(X1, X2, ..., Xn;Y ) = H(X1, X2, ..., Xn)−H(X1, X2, ..., Xn|Y )

=
n∑

i=1

H(Xi|Xi−1, ..., X1)−
n∑

i=1

H(Xi|Xi−1, ..., X1, Y )

=
n∑

i=1

I(Xi;Y |Xi−1, Xi−2, ..., X1)

3. First, observe that I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ) = I(X;Z) + I(X;Y |Z) ≥ I(X;Z). Note that
I(X;Z|Y ) = 0 as X → Y → Z. By definition, I(X;Y |Z) ≥ 0, and hence I(X;Y ) ≥ I(X;Z), with
equality if X → Z → Y ⇐⇒ I(X;Y |Z) = 0.

4. For any deterministic function f , X → Y → f(Y ). By the DPI, I(X;Y ) ≥ I(X; f(Y )). But when f is
a bijection, then X → f(Y )→ Y also holds. Applying the DPI again yields I(X; f(Y )) ≥ I(X;Y ).

5. (a) It suffices to show that for any λ ∈ [0, 1], we have

I(λP
(0)
X + (1− λ)P

(1)
X , PY |X) ≥ λI(P

(0)
X , PY |X) + (1− λ)I(P

(1)
X , PY |X).

Let Θ ∼ Ber(λ). Define PX|Θ(·|0) = P
(0)
X and PX|Θ(·|1) = P

(1)
X . By the law of total probability we

have PX = λP
(0)
X + (1− λ)P

(1)
X and by definition Θ→ X → Y . Thus,

I(X;Y ) = I(X,Θ;Y ) = I(Θ;Y ) + I(X;Y |Θ) ≥ I(X;Y |Θ).

(b) Follows because (P,Q)→ DKL (P‖Q) is convex in (P,Q) and that I(PX , PY |X) = DKL

(
PY |X

∥∥PY |PX

)
.
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11.2 Letter Typical Sequences

11.2.1 Introduction for binary alphabets

Let X = {0, 1}, and consider its n-folds extension X n, i.e., X n is the set of all binary sequences of length n.
Element of X n are denoted as xn := (x1, ..., xn) ∈ X n. Clearly, there are |X n| = |X |n = 2n sequences in X n.

Now, let P ∈ P(X ), i.e., P = Ber(α), for some α ∈ (0, 1). Let {Xi}∞i=1 be a sequence of random variables
independently and identically distributed according to P . In other words, for all n ∈ N, we have (X1, ..., Xn) ∼
P⊗n, where P⊗n denotes the n-fold product measure induced by P , i.e., P⊗n(xn) :=

∏n
i=1 P ({xi}).

Note that for any xn ∈ X n, we have P⊗n(xn) ≥ 0. More specifically, if the sequence xn contains k ≤ n
ones (and n − k zeros) then P⊗n(xn) = αk(1 − α)n−k > 0. Despite the fact that all sequences have positive
probability, clearly they are not all equiprobable. A natural question to ask is:

Question: What are the most probable sequences in X n with respect to i.i.d. draws from P = Ber(α)?

Answer: We expect that a typical sequence will have roughly nα ones and n(1− α) zeros.

Based on the above observation, the goal is to define a subset of X n that is much smaller than X n in
cardinality, but that absorbs most of the probably mass (with respect to P⊗n). Calling this subset T (n)(P )
(for now), we would like it to satisfy

1. the set is “small”, i.e., |T (n)(P )| � |X n| in the sense that limn→∞
|T (n)(P )|
|Xn| = 0.

2. the set “absorbs most of the probability”, i.e., limn→∞ P
⊗n (T (n)(P )

)
= 1.

To formalize this idea and define the desired set, we introduce the notion of empirical frequency.

Definition 11.3 (Empirical frequency) Let X be discrete. For any xn ∈ X n and a ∈ X , the number of
occurrences of a in xn is Nxn(a) :=

∑n
i=1 1{xi=a}. The empirical frequency νxn(a) of xn is defined as

νxn(a) :=
1

n
Nxn(a), ∀a ∈ X

Note that νxn(a) is a valid PMF on X . In the next lecture, we will define T (n)(P ) as the set that contains
all sequences whose empirical frequency is roughly equal to the PMF of P .


