ECE 5630: Information Theory for Data Transmission, Security and Machine Learning 03/10/2020

Lecture 11: Conditional Mutual Information and Letter Typical Sequences

Lecturer: Prof. Ziv Goldfeld

Scriber: Zhilu Zhang, Net ID: zz452
Assistant Editor: Kia Khezeli

11.1 Conditional Mutual Information

We next define the conditional mutual information between two random variables, X and Y, given a third variable Z. As a building block, we need the conditional mutual information given the event $\{Z=z\}$. Let $P_{X Y Z} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y} \times \mathcal{Z})$ and consider the induced conditional distribution $P_{X Y \mid Z}(\cdot \mid z) \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, for $z \in Z$. Denoting by $P_{X \mid Z}(\cdot \mid z)$ and $P_{Y \mid Z}(\cdot \mid z)$ the corresponding marginals, we set

$$
I(X ; Y \mid Z=z):=D_{\mathrm{KL}}\left(P_{X Y \mid Z}(\cdot \mid z) \| P_{X \mid Z} \otimes P_{Y \mid Z}(\cdot \mid z)\right)
$$

Definition 11.1 (Conditional MI) For $P_{X Y Z} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y} \times \mathcal{Z})$, the conditional mutual information between X and Y given Z is defined as

$$
I(X ; Y \mid Z):=D_{\mathrm{KL}}\left(P_{X Y \mid Z} \| P_{X \mid Z} \otimes P_{Y \mid Z} \mid P_{Z}\right)=\mathbb{E}_{z \sim P_{Z}}[I(X ; Y \mid Z=z)]
$$

Remark 11.1

1. $I(X ; Y \mid Z)$ is a functional of $P_{X Y Z}$, and not just the conditional probability law $P_{X Y \mid Z}$.
2. It is straightforward to verify that

$$
\begin{aligned}
I(X ; Y \mid Z) & =H(X \mid Z)+H(Y \mid Z)-I(X ; Y \mid Z) \\
& =H(X \mid Z)-H(X \mid Y, Z) \\
& =H(Y \mid Z)-H(Y \mid X, Z) .
\end{aligned}
$$

In order to study the properties of conditional mutual information, we first review the related concept of Markov chains.

Definition 11.2 (Markov chain) Let $(X, Y, Z) \sim P_{X Y Z}$. We say that $X \rightarrow Y \rightarrow Z$ forms a Markov chain if

$$
P_{X Y Z}=P_{X} P_{Y \mid X} P_{Z \mid Y}
$$

Example 11.1 Let X, Y and Z be three mutually independent random variables. Clearly, $X \rightarrow Y \rightarrow Z$ forms a Markov chain.

Example 11.2 Define

$$
\begin{aligned}
& Y_{1}=X+Z_{1}, \\
& Y_{2}=X+Z_{1}+Z_{2}=Y_{1}+Z_{2}
\end{aligned}
$$

then $X \rightarrow Y_{1} \rightarrow Y_{2}$ forms a Markov chain (exercise).

Proposition 11.1 (Equivalent condition of Markov chain) The following statements are equivalent.

$$
\begin{aligned}
X \rightarrow Y \rightarrow Z & \Longleftrightarrow P_{X Y Z}=P_{X} P_{Y \mid X} P_{Z \mid Y} \\
& \Longleftrightarrow P_{X Z \mid Y}=P_{X \mid Y} P_{Z \mid Y} \\
& \Longleftrightarrow P_{Z \mid X Y}=P_{Z \mid Y} \\
& \Longleftrightarrow X \Perp Z \mid Y \\
& \Longleftrightarrow Z \rightarrow Y \rightarrow X .
\end{aligned}
$$

We are now ready to study additional properties of mutual information and its conditional version.
Proposition 11.2 (More properties of MI) Let $(X, Y, Z) \sim P_{X Y Z}$. Then,

1. Non-negativity: $I(X ; Y \mid Z) \geq 0$, with equality if and only if (iff) $X \rightarrow Z \rightarrow Y$.
2. Chain rule:
(a) Small: $I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)=I(Y ; Z)+I(X ; Z \mid Y)$.
(b) Full: $I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right)=I\left(X_{1} ; Y\right)+\sum_{i=2}^{n} I\left(X_{i} ; Y \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right)$.
3. Data processing inequality: If $X \rightarrow Y \rightarrow Z$, then $I(X ; Y) \geq I(X ; Z)$, with equality iff $X \rightarrow Z \rightarrow Y$.
4. If f is a bijection, then $I(X ; Y)=I(X ; f(Y))$.
5. Concavity/convexity: For $(X, Y) \sim P_{X Y}$, denote $I(X ; Y)$ as $I\left(P_{X}, P_{Y \mid X}\right)$. Then,
(a) For fixed $P_{Y \mid X}, P_{X} \rightarrow I\left(P_{X}, P_{Y \mid X}\right)$ is concave.
(b) Fox fixed $P_{X}, P_{Y \mid X} \rightarrow I\left(P_{X}, P_{Y \mid X}\right)$ is convex.

Proof:

1. Follows by definition.
2.

$$
\begin{aligned}
I\left(X_{1}, X_{2}, \ldots, X_{n} ; Y\right) & =H\left(X_{1}, X_{2}, \ldots, X_{n}\right)-H\left(X_{1}, X_{2}, \ldots, X_{n} \mid Y\right) \\
& =\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)-\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}, Y\right) \\
& =\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right)
\end{aligned}
$$

3. First, observe that $I(X ; Y, Z)=I(X ; Y)+I(X ; Z \mid Y)=I(X ; Z)+I(X ; Y \mid Z) \geq I(X ; Z)$. Note that $I(X ; Z \mid Y)=0$ as $X \rightarrow Y \rightarrow Z$. By definition, $I(X ; Y \mid Z) \geq 0$, and hence $I(X ; Y) \geq I(X ; Z)$, with equality if $X \rightarrow Z \rightarrow Y \Longleftrightarrow I(X ; Y \mid Z)=0$.
4. For any deterministic function $f, X \rightarrow Y \rightarrow f(Y)$. By the DPI, $I(X ; Y) \geq I(X ; f(Y))$. But when f is a bijection, then $X \rightarrow f(Y) \rightarrow Y$ also holds. Applying the DPI again yields $I(X ; f(Y)) \geq I(X ; Y)$.
5. (a) It suffices to show that for any $\lambda \in[0,1]$, we have

$$
I\left(\lambda P_{X}^{(0)}+(1-\lambda) P_{X}^{(1)}, P_{Y \mid X}\right) \geq \lambda I\left(P_{X}^{(0)}, P_{Y \mid X}\right)+(1-\lambda) I\left(P_{X}^{(1)}, P_{Y \mid X}\right) .
$$

Let $\Theta \sim \operatorname{Ber}(\lambda)$. Define $P_{X \mid \Theta}(\cdot \mid 0)=P_{X}^{(0)}$ and $P_{X \mid \Theta}(\cdot \mid 1)=P_{X}^{(1)}$. By the law of total probability we have $P_{X}=\lambda P_{X}^{(0)}+(1-\lambda) P_{X}^{(1)}$ and by definition $\Theta \rightarrow X \rightarrow Y$. Thus,

$$
I(X ; Y)=I(X, \Theta ; Y)=I(\Theta ; Y)+I(X ; Y \mid \Theta) \geq I(X ; Y \mid \Theta)
$$

(b) Follows because $(P, Q) \rightarrow D_{\mathrm{KL}}(P \| Q)$ is convex in (P, Q) and that $I\left(P_{X}, P_{Y \mid X}\right)=D_{\mathrm{KL}}\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)$.

11.2 Letter Typical Sequences

11.2.1 Introduction for binary alphabets

Let $\mathcal{X}=\{0,1\}$, and consider its n-folds extension \mathcal{X}^{n}, i.e., \mathcal{X}^{n} is the set of all binary sequences of length n. Element of \mathcal{X}^{n} are denoted as $x^{n}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$. Clearly, there are $\left|\mathcal{X}^{n}\right|=|\mathcal{X}|^{n}=2^{n}$ sequences in \mathcal{X}^{n}.

Now, let $P \in \mathcal{P}(\mathcal{X})$, i.e., $P=\operatorname{Ber}(\alpha)$, for some $\alpha \in(0,1)$. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a sequence of random variables independently and identically distributed according to P. In other words, for all $n \in \mathbb{N}$, we have (X_{1}, \ldots, X_{n}) \sim $P^{\otimes n}$, where $P^{\otimes n}$ denotes the n-fold product measure induced by P, i.e., $P^{\otimes n}\left(x^{n}\right):=\prod_{i=1}^{n} P\left(\left\{x_{i}\right\}\right)$.

Note that for any $x^{n} \in \mathcal{X}^{n}$, we have $P^{\otimes n}\left(x^{n}\right) \geq 0$. More specifically, if the sequence x^{n} contains $k \leq n$ ones (and $n-k$ zeros) then $P^{\otimes n}\left(x^{n}\right)=\alpha^{k}(1-\alpha)^{n-k}>0$. Despite the fact that all sequences have positive probability, clearly they are not all equiprobable. A natural question to ask is:

Question: What are the most probable sequences in \mathcal{X}^{n} with respect to i.i.d. draws from $P=\operatorname{Ber}(\alpha)$?
Answer: We expect that a typical sequence will have roughly $n \alpha$ ones and $n(1-\alpha)$ zeros.
Based on the above observation, the goal is to define a subset of \mathcal{X}^{n} that is much smaller than \mathcal{X}^{n} in cardinality, but that absorbs most of the probably mass (with respect to $P^{\otimes n}$). Calling this subset $\mathcal{T}^{(n)}(P)$ (for now), we would like it to satisfy

1. the set is "small", i.e., $\left|\mathcal{T}^{(n)}(P)\right| \ll\left|\mathcal{X}^{n}\right|$ in the sense that $\lim _{n \rightarrow \infty} \frac{\left|\mathcal{T}^{(n)}(P)\right|}{\left|\mathcal{X}^{n}\right|}=0$.
2. the set "absorbs most of the probability", i.e., $\lim _{n \rightarrow \infty} P^{\otimes n}\left(\mathcal{T}^{(n)}(P)\right)=1$.

To formalize this idea and define the desired set, we introduce the notion of empirical frequency.
Definition 11.3 (Empirical frequency) Let \mathcal{X} be discrete. For any $x^{n} \in \mathcal{X}^{n}$ and $a \in \mathcal{X}$, the number of occurrences of a in x^{n} is $N_{x^{n}}(a):=\sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i}=a\right\}}$. The empirical frequency $\nu_{x^{n}}(a)$ of x^{n} is defined as

$$
\nu_{x^{n}}(a):=\frac{1}{n} N_{x^{n}}(a), \quad \forall a \in \mathcal{X}
$$

Note that $\nu_{x^{n}}(a)$ is a valid PMF on \mathcal{X}. In the next lecture, we will define $\mathcal{T}^{(n)}(P)$ as the set that contains all sequences whose empirical frequency is roughly equal to the PMF of P.

