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11.1 Conditional Mutual Information

We next define the conditional mutual information between two random variables, X and Y, given a third
variable Z. As a building block, we need the conditional mutual information given the event {Z = z}. Let
Pxyz € P(X x Y x Z) and consider the induced conditional distribution Pxyz(:|2) € P(X x V), for z € Z.
Denoting by Px|z(:|z) and Py|z(-|z) the corresponding marginals, we set

I(X;Y|Z = 2) := Dxi (Pxy|2(-12)|| Px|z ® Py|z(:|2)) -

Definition 11.1 (Conditional MI) For Pxyz € P(X xY x Z), the conditional mutual information between
X andY given Z is defined as

I(X;Y|Z) :== DuL (PXY|ZHPX|Z ® PY|Z|PZ) =K. p, [I(X;Y|Z = Z)]

Remark 11.1
1. I(X;Y|Z) is a functional of Pxyyz, and not just the conditional probability law Pxy|z.
2. It is straightforward to verify that

I[(X;Y|Z)=H(X|Z2)+ H(Y|Z) - I(X;Y]|Z)
= H(X|Z) - H(X|Y, Z)
= H(Y|Z)- H(Y|X, Z).

In order to study the properties of conditional mutual information, we first review the related concept of
Markov chains.

Definition 11.2 (Markov chain) Let (X,Y,Z) ~ Pxyz. We say that X — Y — Z forms a Markov
chain if

Pxyz = PxPy|xPzy.

Example 11.1 Let X, Y and Z be three mutually independent random wvariables. Clearly, X — Y — Z
forms a Markov chain.

Example 11.2 Define

Yi=X+2,
Yo=X+214+2Zy =Y+ Zo.

then X — Y1 — Yy forms a Markov chain (exercise).



Proposition 11.1 (Equivalent condition of Markov chain) The following statements are equivalent.
X =Y = Z < Pxyz = PxPyxPyy
< Pxzy = PxjyPz)y
<~ Pyixy = Pzly
e X 1 Z|Y
= Z-Y =X
We are now ready to study additional properties of mutual information and its conditional version.
Proposition 11.2 (More properties of MI) Let (X,Y,Z) ~ Pxyz. Then,
1. Non-negativity: I1(X;Y|Z) > 0, with equality if and only if (iff) X - Z =Y.
2. Chain rule:
(a) Small: 1(X,Y;2) =1(X;Z) + 1(Y; Z|X) = I(Y; Z) + I(X; Z|Y).
(b) Full: I(Xy, Xo, ... Xp; V) = I(X1;Y) + S0, I(X3: Y| Xi_1, X9, ., X1).
3. Data processing inequality: If X —Y — Z, then I1(X;Y) > I(X; Z), with equality iff X - Z =Y.
4. If f is a bijection, then I(X;Y) = I[(X; f(Y)).

5. Concavity/convezity: For (X,Y) ~ Pxy, denote I(X;Y) as I(Px, Py|x). Then,

(a) For fized Py|x, Px — I(Px, Py|x) is concave.
(b) Fox fived Px, Py|x — I(Px, Py|x) is conver.

Proof:
1. Follows by definition.
2.
(X1, Xo, ..., X3 Y) = H( Xy, Xo, ..., X)) — H(Xq, Xo, ..., Xp,|Y)
n n
=Y H(Xi|Xi1,...X1) = Y H(Xi|Xi1,.., X1,Y)

=1 =1

= ZI(Xi§ Y|Xi 1, Xi2,..., X1)
=1

3. First, observe that I(X;Y,Z2) = I(X;Y)+ I(X; Z|Y) = I(X;Z2) + I(X;Y|Z) > I(X;Z). Note that
I(X;Z]Y) =0as X - Y — Z. By definition, I(X;Y|Z) > 0, and hence I(X;Y) > I(X; Z), with
equality if X - Z - Y < I(X;Y|Z) =0.

4. For any deterministic function f, X — Y — f(Y). By the DPI, I(X;Y) > I(X; f(Y)). But when f is
a bijection, then X — f(Y) — Y also holds. Applying the DPI again yields I(X; f(Y)) > I(X;Y).

5. (a) It suffices to show that for any A € [0, 1], we have
TP + (1= NP, Pyix) 2 (P, Prix) + (1= VP, i),
Let © ~ Ber()). Define Py g(-|0) = P)((O) and Pxe(:]1) = P)((l). By the law of total probability we
have Py = AP + (1 — A\)P{") and by definition © — X — Y. Thus,
I(X;Y)=1(X,0;Y) = I[(0;Y) + I(X;Y|0) > I(X;Y|©).
(b) Follows because (P, Q) — DL (P[|@Q) is convex in (P, Q) and that I(Px, Py|x) = DkL (Py|XHPy|PX).
|



11.2 Letter Typical Sequences
11.2.1 Introduction for binary alphabets

Let X = {0, 1}, and consider its n-folds extension X", i.e., X™ is the set of all binary sequences of length n.
Element of X" are denoted as " := (z1, ..., z,) € X". Clearly, there are |X"| = |X|" = 2" sequences in X".

Now, let P € P(X), i.e., P = Ber(a), for some o € (0,1). Let {X;}°, be a sequence of random variables
independently and identically distributed according to P. In other words, for all n € N, we have (X7, ..., X;,) ~
P®" where P®™ denotes the n-fold product measure induced by P, i.e., P®"(z™) := [\, P({z:}).

Note that for any 2" € X", we have P®"(x2™) > 0. More specifically, if the sequence z" contains k < n
ones (and n — k zeros) then P®"(2") = af(1 — )" % > 0. Despite the fact that all sequences have positive
probability, clearly they are not all equiprobable. A natural question to ask is:

Question: What are the most probable sequences in X™ with respect to i.i.d. draws from P = Ber(«a)?
Answer: We expect that a typical sequence will have roughly na ones and n(1 — «) zeros.

Based on the above observation, the goal is to define a subset of X" that is much smaller than A" in
cardinality, but that absorbs most of the probably mass (with respect to P®"). Calling this subset T(")(P)
(for now), we would like it to satisfy

TP _

1. the set is “small”, i.e., [T (P)| < |X™ in the sense that lim,, B

2. the set “absorbs most of the probability”, i.e., lim,_,oo P&" (T(”)(P)) =1.

To formalize this idea and define the desired set, we introduce the notion of empirical frequency.

Definition 11.3 (Empirical frequency) Let X' be discrete. For any 2" € X™ and a € X, the number of
occurrences of a in " is Nyn(a) := Y 1" Ny —qy. The empirical frequency vyn(a) of x™ is defined as

1
Ugn(a) 1= ﬁan(a), Va e X

Note that vzn(a) is a valid PMF on X. In the next lecture, we will define 7 (P) as the set that contains
all sequences whose empirical frequency is roughly equal to the PMF of P.



