ECE 5630: Information Theory for Data Transmission, Security and Machine Learning 03/10/2020

Lecture 11: Conditional Mutual Information and Letter Typical Sequences

Lecturer: Prof. Ziv Goldfeld

Scriber: Zhilu Zhang, Net ID: zz452 Assistant Editor: Kia Khezeli

11.1 Conditional Mutual Information

We next define the conditional mutual information between two random variables, X and Y, given a third variable Z. As a building block, we need the conditional mutual information given the event $\{Z = z\}$. Let $P_{XYZ} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y} \times \mathcal{Z})$ and consider the induced conditional distribution $P_{XY|Z}(\cdot|z) \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, for $z \in Z$. Denoting by $P_{X|Z}(\cdot|z)$ and $P_{Y|Z}(\cdot|z)$ the corresponding marginals, we set

$$I(X;Y|Z=z) := D_{\mathsf{KL}} \left(P_{XY|Z}(\cdot|z) \| P_{X|Z} \otimes P_{Y|Z}(\cdot|z) \right).$$

Definition 11.1 (Conditional MI) For $P_{XYZ} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y} \times \mathcal{Z})$, the conditional mutual information between X and Y given Z is defined as

$$I(X;Y|Z) := D_{\mathsf{KL}}\left(P_{XY|Z} \| P_{X|Z} \otimes P_{Y|Z} | P_Z\right) = \mathbb{E}_{z \sim P_Z}\left[I(X;Y|Z=z)\right].$$

Remark 11.1

- 1. I(X;Y|Z) is a functional of P_{XYZ} , and not just the conditional probability law $P_{XY|Z}$.
- 2. It is straightforward to verify that

$$I(X;Y|Z) = H(X|Z) + H(Y|Z) - I(X;Y|Z)$$

= $H(X|Z) - H(X|Y,Z)$
= $H(Y|Z) - H(Y|X,Z)$.

In order to study the properties of conditional mutual information, we first review the related concept of Markov chains.

Definition 11.2 (Markov chain) Let $(X, Y, Z) \sim P_{XYZ}$. We say that $X \to Y \to Z$ forms a Markov chain if

$$P_{XYZ} = P_X P_{Y|X} P_{Z|Y}.$$

Example 11.1 Let X, Y and Z be three mutually independent random variables. Clearly, $X \to Y \to Z$ forms a Markov chain.

Example 11.2 Define

$$Y_1 = X + Z_1,$$

 $Y_2 = X + Z_1 + Z_2 = Y_1 + Z_2$

then $X \to Y_1 \to Y_2$ forms a Markov chain (exercise).

$$X \to Y \to Z \iff P_{XYZ} = P_X P_{Y|X} P_{Z|Y}$$
$$\iff P_{XZ|Y} = P_{X|Y} P_{Z|Y}$$
$$\iff P_{Z|XY} = P_{Z|Y}$$
$$\iff X \perp L Z|Y$$
$$\iff Z \to Y \to X.$$

We are now ready to study additional properties of mutual information and its conditional version.

Proposition 11.2 (More properties of MI) Let $(X, Y, Z) \sim P_{XYZ}$. Then,

- 1. Non-negativity: $I(X;Y|Z) \ge 0$, with equality if and only if (iff) $X \to Z \to Y$.
- 2. <u>Chain rule</u>:
 - (a) Small: I(X,Y;Z) = I(X;Z) + I(Y;Z|X) = I(Y;Z) + I(X;Z|Y).
 - (b) Full: $I(X_1, X_2, ..., X_n; Y) = I(X_1; Y) + \sum_{i=2}^n I(X_i; Y | X_{i-1}, X_{i-2}, ..., X_1).$
- 3. Data processing inequality: If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$, with equality iff $X \to Z \to Y$.
- 4. If f is a bijection, then I(X;Y) = I(X;f(Y)).
- 5. Concavity/convexity: For $(X, Y) \sim P_{XY}$, denote I(X; Y) as $I(P_X, P_{Y|X})$. Then,
 - (a) For fixed $P_{Y|X}$, $P_X \to I(P_X, P_{Y|X})$ is concave.
 - (b) Fox fixed P_X , $P_{Y|X} \to I(P_X, P_{Y|X})$ is convex.

Proof:

1. Follows by definition.

2.

$$I(X_1, X_2, ..., X_n; Y) = H(X_1, X_2, ..., X_n) - H(X_1, X_2, ..., X_n | Y)$$

= $\sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1) - \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1, Y)$
= $\sum_{i=1}^n I(X_i; Y | X_{i-1}, X_{i-2}, ..., X_1)$

- 3. First, observe that $I(X;Y,Z) = I(X;Y) + I(X;Z|Y) = I(X;Z) + I(X;Y|Z) \ge I(X;Z)$. Note that I(X;Z|Y) = 0 as $X \to Y \to Z$. By definition, $I(X;Y|Z) \ge 0$, and hence $I(X;Y) \ge I(X;Z)$, with equality if $X \to Z \to Y \iff I(X;Y|Z) = 0$.
- 4. For any deterministic function $f, X \to Y \to f(Y)$. By the DPI, $I(X;Y) \ge I(X;f(Y))$. But when f is a bijection, then $X \to f(Y) \to Y$ also holds. Applying the DPI again yields $I(X;f(Y)) \ge I(X;Y)$.
- 5. (a) It suffices to show that for any $\lambda \in [0, 1]$, we have

$$I(\lambda P_X^{(0)} + (1-\lambda)P_X^{(1)}, P_{Y|X}) \ge \lambda I(P_X^{(0)}, P_{Y|X}) + (1-\lambda)I(P_X^{(1)}, P_{Y|X})$$

Let $\Theta \sim \text{Ber}(\lambda)$. Define $P_{X|\Theta}(\cdot|0) = P_X^{(0)}$ and $P_{X|\Theta}(\cdot|1) = P_X^{(1)}$. By the law of total probability we have $P_X = \lambda P_X^{(0)} + (1-\lambda)P_X^{(1)}$ and by definition $\Theta \to X \to Y$. Thus,

$$I(X;Y) = I(X,\Theta;Y) = I(\Theta;Y) + I(X;Y|\Theta) \ge I(X;Y|\Theta).$$

(b) Follows because $(P,Q) \to D_{\mathsf{KL}}(P||Q)$ is convex in (P,Q) and that $I(P_X, P_Y|X) = D_{\mathsf{KL}}(P_Y|X||P_Y|P_X)$.

11.2 Letter Typical Sequences

11.2.1 Introduction for binary alphabets

Let $\mathcal{X} = \{0, 1\}$, and consider its *n*-folds extension \mathcal{X}^n , i.e., \mathcal{X}^n is the set of all binary sequences of length *n*. Element of \mathcal{X}^n are denoted as $x^n := (x_1, ..., x_n) \in \mathcal{X}^n$. Clearly, there are $|\mathcal{X}^n| = |\mathcal{X}|^n = 2^n$ sequences in \mathcal{X}^n .

Now, let $P \in \mathcal{P}(\mathcal{X})$, i.e., $P = \mathsf{Ber}(\alpha)$, for some $\alpha \in (0, 1)$. Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of random variables independently and identically distributed according to P. In other words, for all $n \in \mathbb{N}$, we have $(X_1, ..., X_n) \sim P^{\otimes n}$, where $P^{\otimes n}$ denotes the *n*-fold product measure induced by P, i.e., $P^{\otimes n}(x^n) := \prod_{i=1}^n P(\{x_i\})$.

Note that for any $x^n \in \mathcal{X}^n$, we have $P^{\otimes n}(x^n) \ge 0$. More specifically, if the sequence x^n contains $k \le n$ ones (and n - k zeros) then $P^{\otimes n}(x^n) = \alpha^k (1 - \alpha)^{n-k} > 0$. Despite the fact that all sequences have positive probability, clearly they are not all equiprobable. A natural question to ask is:

Question: What are the most probable sequences in \mathcal{X}^n with respect to i.i.d. draws from $P = \mathsf{Ber}(\alpha)$?

Answer: We expect that a typical sequence will have roughly $n\alpha$ ones and $n(1 - \alpha)$ zeros.

Based on the above observation, the goal is to define a subset of \mathcal{X}^n that is much smaller than \mathcal{X}^n in cardinality, but that absorbs most of the probably mass (with respect to $P^{\otimes n}$). Calling this subset $\mathcal{T}^{(n)}(P)$ (for now), we would like it to satisfy

- 1. the set is "small", i.e., $|\mathcal{T}^{(n)}(P)| \ll |\mathcal{X}^n|$ in the sense that $\lim_{n\to\infty} \frac{|\mathcal{T}^{(n)}(P)|}{|\mathcal{X}^n|} = 0$.
- 2. the set "absorbs most of the probability", i.e., $\lim_{n\to\infty} P^{\otimes n} \left(\mathcal{T}^{(n)}(P) \right) = 1$.

To formalize this idea and define the desired set, we introduce the notion of empirical frequency.

Definition 11.3 (Empirical frequency) Let \mathcal{X} be discrete. For any $x^n \in \mathcal{X}^n$ and $a \in \mathcal{X}$, the number of occurrences of a in x^n is $N_{x^n}(a) := \sum_{i=1}^n \mathbb{1}_{\{x_i=a\}}$. The empirical frequency $\nu_{x^n}(a)$ of x^n is defined as

$$\nu_{x^n}(a) := \frac{1}{n} N_{x^n}(a), \quad \forall a \in \mathcal{X}$$

Note that $\nu_{x^n}(a)$ is a valid PMF on \mathcal{X} . In the next lecture, we will define $\mathcal{T}^{(n)}(P)$ as the set that contains all sequences whose empirical frequency is roughly equal to the PMF of P.