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4.1 Expectation and Variance

We now focus on integration of measurable functions (random variables) with respect to their probability law.

Definition 4.1 (Expectation) Let X : Ω→ Rd be a random variable on (Ω,F ,P). The expectation of X is

E [X] :=

∫
Rd

xdPX(x).

Example 4.1 (Special Cases) For a discrete random variable X, the expected value is given by

E [X] =
∑

x∈supp(PX)

xpX(x).

For a continuous random variable Y , its expected value is given by

E [X] =

∫
supp(PX)

xfX(x)dx.

Consider computing the expected value of a function of a random variable. Specifically, given a Borel
measurable function g, we want to evaluate E[g(X)]. The ad hoc approach here is to define Y = g(X), obtain
its probability law PY , and calculate E[Y ]. The following proposition gives a simpler way to compute E[g(X)]
with the original probability law PX as the underlying measure.

Proposition 4.1 (Expectation of a function) Let X : Ω → Rd be a random variable on (Ω,F ,P) and
g : Rd → Rd′ be a Borel measurable function. Then

E [g(X)] =

∫
Rd

g(x)dPX(x).

Exercise 4.1 Show that Y : Ω→ Rd′ defined as Y = g(X) is a random variable on (Ω,F ,P).

Using Proposition 4.1, we define the variance of random variables.

Definition 4.2 (Variance) Let X be a random variable on (Ω,F ,P). The variance of X is

Var (X) := E
[
(X − E [X])2

]
.

4.2 Law of Large Numbers

The law of large numbers (LLN) quantifies the fact that averaging many identically and independently dis-
tributed copies of a random variable gives a good approximation of its expectation.

Proposition 4.2 Let X1, . . . , Xn be a sequence of R-valued i.i.d. random variables on the same probability
space (Ω,F ,P). The following hold:
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1. Weak LLN: If E [|X1|] <∞, then

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E [X1]

∣∣∣∣∣ > ε

)
= 0,∀ε > 0.

2. Weak LLN for Functions: Let f : R → R be Borel a measurable function such that E [|f(X1)|] < ∞.
Then

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E [f(X1)]

∣∣∣∣∣ > ε

)
= 0,∀ε > 0.

3. Uniform Weak LLN: Let f1, . . . , fk : R → R be measurable functions with E [|fl(X1)|] < ∞,∀l ∈
{1, . . . , k}. Then

lim
n→∞

P

(
k⋃
l=1

{∣∣∣∣∣ 1n
n∑
i=1

fl(Xi)− E [fl(X1)]

∣∣∣∣∣
}
> ε

)
= 0, ∀ε > 0.

Remark 4.1 (Weak vs. Strong LLN) The name ‘weak’ LNN refers to the fact that the above results ac-
count for convergence in probability. There are stronger versions of the LLN, such as the strong LLN, which
guarantees almost sure convergence.

4.3 Conditional Probability and Transition Kernels

Transition kernels formulate the notion of a random transformation of a random variable. Later, such kernels
will serve as our models from noisy communication channels.

Definition 4.3 (Transition Kernel) Let (X ,F) and (Y,G) be two measurable spaces. A function κ(·|·) :
G × X → R is a transition kernel from (X ,F) to (Y,G) if

1. κ(·|x) is a probability measure on (Y,G), i.e., κ(·|x) ∈ P (Y), ∀x ∈ X .

2. κ(B|·) : X → R is F-measurable, i.e. a random variable with respect to (X ,F), ∀B ∈ G.

Remark 4.2 (Notation) We often denote a transition kernel from (X ,F) to (Y,G) by PY |X , to highlight
the underlying spaces.

Remark 4.3 (Transition Kernel as Transformation) Transition kernels from X to Y can be thought
of random as transformations of a distribution PX ∈ P(X ) into another distribution PY ∈ P(Y). Indeed,
defining,

PY (B) := EPX
[κ(B|X)] =

∫
X
κ(B|x)dPX(x) B ∈ G,

the following proposition shows that κ(·|·) transforms PX into PY .

Proposition 4.3 (Induced Probability Measure) PY as defined above is a probability measure on (Y,G).

Proof: It suffices to show the following:

(i) Normalization: PY (Y) =
∫
X κ(Y|x)︸ ︷︷ ︸

=1 by definition

dPX(x) =
∫
X dPX(x) = 1.
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(ii) σ-additivity: Let {Bn}∞n=1 be a sequence of disjoint G-measurebale sets. We have

PY

( ∞⋃
n=1

Bn

)
=

∫
κ

( ∞⋃
n=1

Bn

∣∣∣∣∣x
)

dPX(x)

=

∫
X

∞∑
n=1

κ(Bn|x)dPX(x)

(∗)
=

∞∑
n=1

∫
X
κ(Bn|x)dPX(x)

=
∞∑
n=1

PY (Bn).

where (∗) is the Fubini-Tonelli theorem.

�

Proposition 4.4 (Transition Kernels vs. Joint Probability Measures) Let (X ,F) and (Y,G) be mea-
surable spaces, PX ∈ PF (X ) and κ(·|·) be a transition kernel from (X ,F) to (Y,G). Then there exists a unique
probability measure PXY on (X × Y,F ⊗ G), where F ⊗ G := σ

(
{A × B : A ∈ F , B ∈ G

)
is the product

σ-algebra, such that

PXY ((A,B)) =

∫
A
κ(B|x)dPX(x), ∀(A,B) ∈ F ⊗ G.

Conversely, given a probability space (X ×Y,F ⊗G, PXY ), there exists a unique pair comprising PX ∈ PF (X )
and a transition kernel κ(·|·) such that the above equation holds.

Remark 4.4 (Notation) Henceforth, we will write PXY = PX · PY |X = PY · PX|Y while understanding this
decomposition with respect to the above proposition.

4.4 Conditional Expectation

We next define conditional expectations (given a random variable or its realization). The underlying machinery
in these definitions is the transition kernel. With respect to Remarks 4.2-4.4, we proceed with random variable
notation.

Definition 4.4 (Conditional Expectation) Let PY |X(·|·) be a transition kernel from (X ,F) to (Y,G).
Define

1. E [Y |X = x0] :=
∫
Y ydPY |X(y|x0), x0 ∈ X ;

2. E [Y |X] :=
∫
Y ydPY |X(y|·).

Proposition 4.5 (Relation Between Conditional Expectations) Let (X,Y ) ∼ PXY ∈ P(X × Y) that
decomposes as PXY = PXPY |X (see Remark 4.4). Then there exists a unique measurable function h : X → Y
such that

i) h(x) = E [Y |X = x] , ∀x ∈ X ;

ii) h(X) = h ◦X = E [Y |X] almost surely.

Example 4.2 Let X =

{
1 w.p. 1/2

−1 w.p. 1/2
be independent of Z ∼ N (0, σ2), and define Y = X + Z. What is

E [X|Y ]? To compute it, we start from E [X|Y = y] and identify the function h. Then we can obtain E [X|Y ]
by composing h with Y .
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Exercise 4.2 Show that E [X|Y = y] = tanh
( y
σ2

)
.

Based on the above, we conclude that E [X|Y ] = h(Y ) = tanh
(
Y
σ2

)
.

Theorem 1 (Law of Total Expectation) Let (X,Y ) ∼ PXY ∈ P(X × Y) that decomposes as PXY =
PXPY |X (see Remark 4.4). Then

EPY
[Y ] = EPX

[
EPY |X [Y |X]

]
=

∫
X
E [Y |X = x] dPX(x)

Proof: Consider:

EPY
[Y ] =

∫
Y
ydPY (y)

(a)
=

∫
Y

∫
X
ydPY |X(y|x)dPX(x)

(b)
=

∫
X

(∫
Y
ydPY |X(y|x)

)
dPX(x)

(c)
=

∫
X
E [Y |X = x] dPX(x)

= EPX

[
EPY |X [Y |X]

]
,

where (a) is because PY (B) :=
∫
X PY |X(B|x)dPX(x) for any measurable set B, (b) is the Fubini-Tonelli

theorem, and (c) is the definition of E [Y |X = x]. This concludes the proof. �


