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5.1 Divergence

Our goal is to develop means to measure (a reasonable notion of) distance between probability measures.

Definition 5.1 (Divergence) Consider a functional δ : P(X ) × P(X ) → R≥0
⋃
{∞}. We say that δ is a

divergence if it satisfies: δ(P,Q) = 0 ⇐⇒ P = Q.

Definition 5.2 (Metric) A divergence δ is a metric, if for all P,Q,R ∈ P(X ) it also satisfies:

1. Symmetry: δ(P,Q) = δ(Q,P )

2. Triangle inequality δ(P,Q) ≤ δ(P,R) + δ(R,Q)

A large class of divergences falls under the framework of f -divergences, which is the focus of this chapter.
This includes:

• Kullback–Leibler divergence

• Total variation (TV) divergence

• Hellinger distance

• χ2-divergence

• Le Cam divergence

• Jensen-Shannon divergence

5.2 Primer: Convexity

Definition 5.3 (Convex Set) A subset K of a vector space V is convex, if

αx+ (1− α)y ∈ K, ∀x, y ∈ K, α ∈ [0, 1].

Example 5.1 (Set of Probability Measures) The set P(X ) of all probability measures on X is convex.

Proof: ∀P1, P2 ∈ P(X ), ∀α ∈ [0, 1], define Pα := αP1 + (1− α)P2. Observe that:

(i) Pα(X ) = (αP1 + (1− α)P2)(X ) = αP1(X ) + (1− α)P2(X ) = α+ (1− α) = 1

(ii) For A1, A2, ... ∈ F disjoint (i.e. Ai ∩Aj = ∅ for i 6= j), we have
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Thus, Pα is also a probability measure on X , i.e., Pα ∈ P(X ), as claimed. �

Definition 5.4 (Convex Function) A function f : K → R, for a convex set K ⊆ Rd, is convex if it satisfies:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ K, ∀α ∈ [0, 1]

Remark 5.1 (Strict Convexity and Concavity)

• f is strictly convex if the above inequality is strict;

• f is concave if −f is convex.

Definition 5.5 (Epigraph) The epigraph of a function f : K → R is:

epi(f) :=
{

(x, y) ∈ K × R : y ≥ f(x)
}
.

Proposition 5.1 f is a convex function if and only if epi(f) is a convex set

Proposition 5.2 (Convexity Preserving Operations) Let f1, f2 : Rd → R be convex, then the following
functions are also convex:

1. Sum: f1 + f2

2. Maximum: max(f1, f2)

3. Composition with linear: g : Rn → R defined as g(x) = f1(Ax), where Let A ∈ Rd×n is a matrix.

Proposition 5.3 (2nd Derivative Test) f : K → R, K ⊆ Rd is convex, if and only if its Hessian:

Hess(f) =
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. . .
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is positive semi-definite (A ∈ Rn×n is positive semi-definite if x>Ax ≥ 0, for all x ∈ Rn).

Remark 5.2 (Strict Convexity and Concavity)

• f is strictly convex if its Hessian is positive definite;

• f is concave if its Hessian is semi-negative definite;

• f is strictly concave if its Hessian is negative definite.

Corollary 5.1 (Real-Valued Functions) For a function f : I → R, where I ⊆ R is an interval, we have:

1. f is convex, if and only if
∂2f

∂x2
≥ 0;

2. f is strictly convex, if and only if
∂2f

∂x2
> 0;

3. f is concave, if and only if
∂2f

∂x2
≤ 0;

4. f is strictly concave, if and only if
∂2f

∂x2
< 0.
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Theorem 1 (Jensen’s Inequality) Let X ∼ PX ∈ P(X ) and f : X → R. The following hold:

1. If f is convex, then E[f(X)] ≥ f
(
E[X]

)
;

2. If f is strictly convex, then E[f(X)] > f
(
E[X]

)
(unless X is almost surely a constant);

3. If f is concave, then E[f(X)] ≤ f
(
E[X]

)
.

4. If f is strictly concave, then E[f(X)] < f
(
E[X]

)
(unless X is almost surely a constant);


