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5.1 Divergence

Our goal is to develop means to measure (a reasonable notion of) distance between probability measures.

Definition 5.1 (Divergence) Consider a functional 6 : P(X) x P(X) — RxoU{oc}. We say that § is a
divergence if it satisfies: 6(P,Q) =0 < P =Q.

Definition 5.2 (Metric) A divergence 6 is a metric, if for all P,Q, R € P(X) it also satisfies:
1. Symmetry: §(P,Q) = 6(Q, P)
2. Triangle inequality 6(P, Q) < §(P,R) + 0(R, Q)

A large class of divergences falls under the framework of f-divergences, which is the focus of this chapter.
This includes:

e Kullback—Leibler divergence

e Total variation (TV) divergence

Hellinger distance

x2-divergence

Le Cam divergence

Jensen-Shannon divergence

5.2 Primer: Convexity
Definition 5.3 (Convex Set) A subset IC of a vector space V is convex, if
ar+(1—a)ye K, Vr,yek, ael0,1].
Example 5.1 (Set of Probability Measures) The set P(X) of all probability measures on X is conver.
Proof: VP, P, € P(X), Va € [0,1], define P, := aP; + (1 — ) P». Observe that:
(i) Pa(X) = (aPr+ (1 - a)P2)(X) = aP(X) + (1 - a) (X)) =+ (1 —a) =1
(i) For Ay, Ag,... € F disjoint (i.e. A; N A; =0 for i # j), we have

Pa<[jAn> =(aP, + (1 — a)P) <UA>_aP1<UA> 1—a)Pg<GAn>

n=1 n=1

=Y Pi(An) + (1—0))_ Pa(An) =) Pu(An)
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Thus, P, is also a probability measure on X, i.e., P, € P(X), as claimed. [
Definition 5.4 (Convex Function) A function f : K — R, for a convez set K C R?, is convex if it satisfies:
flaz+ (1 —a)y) < af(@) + (1—a)f(y), Vo.yeK, Yae0,1]

Remark 5.1 (Strict Convexity and Concavity)
o f is strictly convex if the above inequality is strict;
o f is concave if —f is conver.
Definition 5.5 (Epigraph) The epigraph of a function f: K — R is:
epi(f) = {(z,y) eL xR: y > f(x)}.
Proposition 5.1 f is a convex function if and only if epi(f) is a convex set

Proposition 5.2 (Convexity Preserving Operations) Let fi, fo : R? — R be convez, then the following
functions are also conver:

1. Sum: f1 + fo
2. Mazimum: max(fi, f2)

3. Composition with linear: g : R" — R defined as g(x) = fi(Ax), where Let A € R¥™¥" is a matriz.

Proposition 5.3 (2nd Derivative Test) f: K — R, K C R? is convex, if and only if its Hessian:

ey Pf
87:1:% T 011024
Hess(f) = : - :
0% f 0% f
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is positive semi-definite (A € R™™ is positive semi-definite if x' Az > 0, for all z € R™).
Remark 5.2 (Strict Convexity and Concavity)

o f is strictly convex if its Hessian is positive definite;

o f is concave if its Hessian is semi-negative definite;

o f is strictly concave if its Hessian is negative definite.

Corollary 5.1 (Real-Valued Functions) For a function f: I — R, where I C R is an interval, we have:

. . L O%f
1. f is convex, if and only if ) >0;
x
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2. f is strictly convex, if and only if g‘}; > 0y
i
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3. f 1is concave, if and only if 922 <0y
b
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4. f is strictly concave, if and only if g]; < 0.
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Theorem 1 (Jensen’s Inequality) Let X ~ Px € P(X) and f : X — R. The following hold:
1. If f is convez, then E[f(X)] > f(E[X]);
2. If f is strictly convez, then E[f(X)] > f(E[X]) (unless X is almost surely a constant);
3. If f is concave, then E[f(X)] < f(E[X])

4. If f is strictly concave, then E[f(X)] < f(E[X]) (unless X is almost surely a constant);



