ECE 5630: Information Theory for Data Transmission, Security and Machine Learning 02/11/20

Lecture 5: Divergence and Convexity

Lecturer: Prof. Ziv Goldfeld

Scriber: Pengzhi Huang, Net ID: ph448 Assistant Editor: Kia Khezeli

5.1 Divergence

Our goal is to develop means to measure (a reasonable notion of) distance between probability measures.

Definition 5.1 (Divergence) Consider a functional $\delta : \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0} \bigcup \{\infty\}$. We say that δ is a divergence if it satisfies: $\delta(P,Q) = 0 \iff P = Q$.

Definition 5.2 (Metric) A divergence δ is a metric, if for all $P, Q, R \in \mathcal{P}(\mathcal{X})$ it also satisfies:

- 1. Symmetry: $\delta(P,Q) = \delta(Q,P)$
- 2. Triangle inequality $\delta(P,Q) \leq \delta(P,R) + \delta(R,Q)$

A large class of divergences falls under the framework of f-divergences, which is the focus of this chapter. This includes:

- Kullback–Leibler divergence
- Total variation (TV) divergence
- Hellinger distance
- χ^2 -divergence
- Le Cam divergence
- Jensen-Shannon divergence

5.2 Primer: Convexity

Definition 5.3 (Convex Set) A subset \mathcal{K} of a vector space \mathcal{V} is convex, if

$$\alpha x + (1 - \alpha)y \in \mathcal{K}, \quad \forall x, y \in \mathcal{K}, \ \alpha \in [0, 1]$$

Example 5.1 (Set of Probability Measures) The set $\mathcal{P}(\mathcal{X})$ of all probability measures on \mathcal{X} is convex. *Proof:* $\forall P_1, P_2 \in \mathcal{P}(\mathcal{X}), \forall \alpha \in [0, 1]$, define $P_{\alpha} := \alpha P_1 + (1 - \alpha)P_2$. Observe that:

(i)
$$P_{\alpha}(\mathcal{X}) = (\alpha P_1 + (1 - \alpha)P_2)(\mathcal{X}) = \alpha P_1(\mathcal{X}) + (1 - \alpha)P_2(\mathcal{X}) = \alpha + (1 - \alpha) = 1$$

(ii) For $A_1, A_2, \ldots \in \mathcal{F}$ disjoint (i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$), we have

$$P_{\alpha}\left(\bigcup_{n=1}^{\infty} A_n\right) = (\alpha P_1 + (1-\alpha)P_2)\left(\bigcup_{n=1}^{\infty} A_n\right) = \alpha P_1\left(\bigcup_{n=1}^{\infty} A_n\right) + (1-\alpha)P_2\left(\bigcup_{n=1}^{\infty} A_n\right)$$
$$= \alpha \sum_{n=1}^{\infty} P_1(A_n) + (1-\alpha)\sum_{n=1}^{\infty} P_2(A_n) = \sum_{n=1}^{\infty} P_{\alpha}(A_n)$$

Thus, P_{α} is also a probability measure on \mathcal{X} , i.e., $P_{\alpha} \in \mathcal{P}(\mathcal{X})$, as claimed.

Definition 5.4 (Convex Function) A function $f : \mathcal{K} \to \mathbb{R}$, for a convex set $\mathcal{K} \subseteq \mathbb{R}^d$, is convex if it satisfies:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in \mathcal{K}, \ \forall \alpha \in [0, 1]$$

Remark 5.1 (Strict Convexity and Concavity)

- f is strictly convex if the above inequality is strict;
- f is concave if -f is convex.

Definition 5.5 (Epigraph) The epigraph of a function $f : \mathcal{K} \to \mathbb{R}$ is:

$$epi(f) := \{ (x, y) \in \mathcal{K} \times \mathbb{R} : y \ge f(x) \}$$

Proposition 5.1 f is a convex function if and only if epi(f) is a convex set

Proposition 5.2 (Convexity Preserving Operations) Let $f_1, f_2 : \mathbb{R}^d \to \mathbb{R}$ be convex, then the following functions are also convex:

- 1. <u>Sum:</u> $f_1 + f_2$
- 2. <u>Maximum</u>: $\max(f_1, f_2)$
- 3. Composition with linear: $g: \mathbb{R}^n \to \mathbb{R}$ defined as $g(x) = f_1(Ax)$, where Let $A \in \mathbb{R}^{d \times n}$ is a matrix.

Proposition 5.3 (2nd Derivative Test) $f : \mathcal{K} \to \mathbb{R}, \mathcal{K} \subseteq \mathbb{R}^d$ is convex, if and only if its Hessian:

$$\operatorname{Hess}(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$

is positive semi-definite ($\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semi-definite if $x^{\top} \mathbf{A} x \ge 0$, for all $x \in \mathbb{R}^n$).

Remark 5.2 (Strict Convexity and Concavity)

- f is strictly convex if its Hessian is positive definite;
- f is concave if its Hessian is semi-negative definite;
- f is strictly concave if its Hessian is negative definite.

Corollary 5.1 (Real-Valued Functions) For a function $f: I \to \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, we have:

- 1. f is convex, if and only if $\frac{\partial^2 f}{\partial x^2} \ge 0$; 2. f is strictly convex, if and only if $\frac{\partial^2 f}{\partial x^2} > 0$; 3. f is concave, if and only if $\frac{\partial^2 f}{\partial x^2} \le 0$;
- 3. J is concave, if and only if $\frac{\partial}{\partial x^2} \le 0$;
- 4. f is strictly concave, if and only if $\frac{\partial^2 f}{\partial x^2} < 0$.

Theorem 1 (Jensen's Inequality) Let $X \sim P_X \in \mathcal{P}(\mathcal{X})$ and $f : \mathcal{X} \to \mathbb{R}$. The following hold:

- 1. If f is convex, then $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]);$
- 2. If f is strictly convex, then $\mathbb{E}[f(X)] > f(\mathbb{E}[X])$ (unless X is almost surely a constant);
- 3. If f is concave, then $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$.
- 4. If f is strictly concave, then $\mathbb{E}[f(X)] < f(\mathbb{E}[X])$ (unless X is almost surely a constant);