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6.1 Preliminaries

Before discussing f -divergences, we first need the notions of absolute continuity and the Radon-Nikodym
theorem. To set these ideas, let M+(X ) be the set of all non-negative σ-finite measures X (we leave the
σ-algebra implicit for this discussion). A non-negative measure µ is called σ-finite if there exist measurable
sets A1, A2, . . . ⊆ X with µ(An) <∞, for all n, such that

⋃∞
n=1An = X .

Definition 6.1 (Absolutely Continuous Measures) For two measures µ, ν ∈ M+(X ), we say that µ is
absolutely continuous with respect to ν, denoted by µ� ν, if

ν(A) = 0 =⇒ µ(A) = 0

for all measurable A. When µ� ν, we also say that ν dominates µ.

Remark 6.1 (Absolute Continuity and Supports) If µ� ν, then supp(µ) ⊆ supp(ν).

X

supp(ν) supp(µ)

Theorem 1 (Radon-Nikodym) Let µ, ν ∈ M+(X ) such that µ � ν. Then there exists a function f ∈
L1(ν) such that for any measurable set A

µ(A) =

∫
A
f(x)dν(x).

The function f is called the Radon-Nikodym derivative of µ with respect to ν, often denoted by f = dµ
dν .

Example 6.1 (The Counting Measure) Let ν = # be the counting measure, where

#(A) =

{
|A| , |A| <∞
+∞ , otherwise

for any measurable A. If µ � #, then the supp(µ) is countable and the Radon-Nikodym derivative p := dµ
d#

is the PMF of µ, i.e., p(x) = µ({x}), for all x ∈ supp(µ).

Example 6.2 (The Lebesgue Measure) Let X = Rd and ν = λ be the Lebesgue measure on Rd. If µ� λ,
then the the Radon-Nikodym derivative p = dµ

dλ is the PDF of µ, i.e., µ(A) =
∫
A p(x)dx, for any measurable A.
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6.2 f-Divergences

We focus now on a class of divergences, called f -divergences, constructed from convex functions that satisfy
certain conditions. As we shall see in future chapters, f -divergences frequently come up in solutions to
operational compression, communication or inference questions. This chapter explores their properties, dual
representations and some relation to generative modeling. We start with the definition of an f -divergence.

Definition 6.2 (f-divergence) Let f : R≥0 → R be a convex function such that:

(i) f(1) = 0

(ii) f is strictly convex around 1, i.e.,

f(αx+ (1− α)y) < αf(x) + (1− α)f(y)

for all x, y ∈ R≥0 and α ∈ [0, 1] such that αx+ (1− α)y = 1.

Let P,Q ∈ P(X ) be two probability measures on X , and let λ ∈ M+(X ) be a measure that dominates them
both, i.e., P,Q� λ.1 The f -divergence between Q and P is defined as

Df (P‖Q) := EQ
[
f

(
dP/dλ

dQ/dλ

)]
=

∫
X
f

(
dP/dλ

dQ/dλ

)
dQ(x)

where dP/dλ and dQ/dλ are the Radon-Nikodym derivatives of P and Q, respectively, w.r.t λ.

Remark 6.2 (Conventions and Simplification) We mention the following regarding the above definition:

1. It uses conventions f(0) = f(0+) and 0f(00) = 0;

2. If P � Q, then Df (P‖Q) = EQ
[
f
(
dP
dQ

)]
, where dP

dQ is the Radon-Nikodym derivative of P w.r.t. Q.

Example 6.3 (Discrete or Continuous Distributions) We specialize the Definition 6.2 to discrete or
absolutely continuous (w.r.t. Lebesgue) distributions (see Item 2 in Remark 6.2):

1. Discrete: If P � Q� #, where # is the counting measure, then

Df (P‖Q) =
∑
x∈X

f

(
p(x)

q(x)

)
q(x)

with p and q as the PMFs of P and Q, respectively.

2. Continuous: If P � Q� λ, where λ is the Lebesgue measure, then

Df (P‖Q) =

∫
X
f

(
p(x)

q(x)

)
q(x)dx

with p and q as the PDFs of P and Q, respectively.

1Notice that such λ always exists, e.g., λ = P +Q.
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6.3 Important f-Divergences

We now focus on some important f -divergences that are commonly found in the literature. In what follows,
all probability measures are defined over the same space X .

6.3.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence (also sometimes referred to as relative entropy or information diver-
gence) is the f -divergence induced by f(x) = x log x. Namely, the KL divergence of Q from P is

DKL (P‖Q) = Dx log x(P ||Q) = EQ
[
f

(
dP/dλ

dQ/dλ

)]
= EQ

[
dP/dλ

dQ/dλ
log

(
dP/dλ

dQ/dλ

)]
= EP

[
log

(
dP/dλ

dQ/dλ

)]
.

Remark 6.3 (Comments) We note the following:

1. If P � Q� #, where # is the counting measure, then

DKL (P‖Q) =
∑
x∈X

log

(
p(x)

q(x)

)
p(x)

with p and q as the PMFs of P and Q, respectively.

2. If P � Q� λ, where λ is the Lebesgue measure, then

DKL (P‖Q) =

∫
X

log

(
p(x)

q(x)

)
p(x)dx

with p and q as the PDFs of P and Q, respectively.

3. If P,Q are two probability measures such that P 6� Q, then

DKL (P‖Q) =∞.

4. Considering f(x) = − log x, which is a convex function satisfying Items (i) and (ii) in Definition 6.2,
we obtain

D− log x(P ||Q) = EQ
[
f

(
dP/dλ

dQ/dλ

)]
= EQ

[
− log

dP/dλ

dQ/dλ

]
= EQ

[
log

dQ/dλ

dP/dλ

]
= DKL (Q‖P ) .

6.3.2 Total Variation Distance

The Total Variation (TV) distance, is the f -divergence induced by f(x) = 1
2 |x− 1|. Namely, the TV distance

between Q and P is

δTV (P,Q) = D 1
2
|x−1|(P ||Q) =

1

2
EQ
[∣∣∣∣dP/dλdQ/dλ

− 1

∣∣∣∣] =
1

2

∫
X

∣∣∣∣dP/dλdQ/dλ
− 1

∣∣∣∣ dQ =
1

2

∫
X

∣∣∣∣dPdλ − dQ

dλ

∣∣∣∣ .
Remark 6.4 (Comments) We make note of the following:

1. If P � Q� #, where # is the counting measure, then

δTV (P,Q) =
1

2

∑
x∈X
|p(x)− q(x)| = 1

2

∥∥p(x)− q(x)
∥∥
1
.

with p and q as the PMFs of P and Q, respectively.
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2. If P � Q� λ, where λ is the Lebesgue measure, then

δTV (P,Q) =
1

2

∥∥p(x)− q(x)
∥∥
L1(Rd)

,

where

‖f‖L1(Rd) =

∫
|f |dλ(x)

and p and q are the PDFs of P and Q, respectively.

3. δTV (P,Q) is a metric on P(X ) (the immediately follows from the norm representation when the proba-
bility measure have PMFs or PDFs).

4. If supp(P ) ∩ supp(Q) = ∅, then δTV (P,Q) = 1.

6.3.3 χ2-Divergence

The χ2-divergence is the f -divergence induced by f(x) = (x − 1)2. Namely, the χ2 divergence between Q
from P is

χ2 (P‖Q) = D(x−1)2(P ||Q) = EQ

[(
dP/dλ

dQ/dλ
− 1

)2
]
.

Expanding the above reveals that there is not one-to-one correspondence between functions f and induced
f -divergences. Indeed:

EQ

[(
dP/dλ

dQ/dλ
− 1

)2
]

=

∫ (
dP

dQ

)2

dQ− 2

∫
dP

dQ
dQ+

∫
dQ = EQ

[(
dP

dQ

)2

− 1

]
.

Remark 6.5 (Comments) We make note of the following:

1. As shown above, the mapping f 7→ Df is not injective.

2. If P 6� Q, then χ2 (P‖Q) =∞.

6.4 Properties of f-Divergences

Having seen some popular f -divergences we now state some important properties.

Proposition 6.1 (Properties of f-Divergences) For any P,Q ∈ P(X ) dominated by a common measure
P,Q� λ, and an f -divergence Df , we have:

1. Non-Negativity: Df (P‖Q) ≥ 0 with equality if and only if P = Q.

2. Convexity: The mapping (P,Q) 7→ Df (P‖Q) is jointly convex. Consequently, P 7→ Df (P‖Q) is
convex for fixed Q, and Q 7→ Df (P‖Q) is convex for fixed P .

3. Conditioning Increases f-Divergences: Let PY |X and QY |X be two transition kernels and PX ∈
P(X ). Define the conditional f -divergence by

Df

(
PY |X

∥∥QY |X ∣∣PX) :=

∫
X
Df

(
PY |X(·|x)

∥∥QY |X(·|x)
)
dPX(x) = EPX

[
Df

(
PY |X(·|X)

∥∥QY |X(·|X)
) ]

and recall that

PY (·) = EPX

[
PY |X(·|X)

]
QY (·) = EPX

[
QY |X(·|X)

]
.

We have

Df (PY ‖QY ) ≤ Df

(
PY |X

∥∥QY |X ∣∣PX) .
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4. Joint vs. Marginal: If PXY = PXPY |X and QXY = QXPY |X , then

Df (PXY ‖QXY ) = Df (PX‖QX) .

Proof: 1. By the definition of f -divergence we have

Df (P‖Q) = EQ
[
f

(
dP/dλ

dQ/dλ

)]
≥ f

(
EQ
[
dP/dλ

dQ/dλ

])
≥ f(1) = 0

where the first inequality follows from Jensen’s inequality and the second from convexity of f . To prove
equality, first assume that P = Q. Then,

Df (P‖Q) = EQ [f(1)] = 0.

Now assume Df (P‖Q) = 0. Then f
(

dP/dλ
dQ/dλ

)
= 0 =⇒ dP/dλ

dQ/dλ = 1 since f is strongly convex at 1. It

follows that P = Q.

2. To prove convexity of Df consider the perspective function of f . Namely, the perspective of f : R≥0 → R
is a function gf : R≥0 × R>0 → R defined by

gf (x, y) = yf

(
x

y

)
, dom(gf ) =

{
(x, y) ∈ R≥0 × R>0 :

x

y
∈ dom(f)

}
For a convex function f , the perspective of f is also convex. That is,

gf (α(x1, y1) + (1− α)(x2, y2)) ≤ αgf (x1, y1) + (1− α)gf (x2, y2)

= αy1f

(
x1
y1

)
+ (1− α)y2f

(
x2
y2

)
for all α ∈ [0, 1] and each (xi, yi), i = 1, 2, in dom(gf ).

Denote D̃f (P,Q) = Df (P‖Q). Then for (P1, Q1), (P2, Q2) ∈ P(X )×P(X ) such that P1, P2, Q1, Q2 � λ

D̃f (α(P1, Q1) + (1− α)(P2, Q2)) =

∫
X
f

(
αdP1

dλ (x) + (1− α)dP2
dλ (x)

αdQ1

dλ (x) + (1− α)dQ2

dλ (x)

)
dλ

≤
∫
αf

(
dP1
dλ (x)
dQ1

dλ (x)

)
dλ+ (1− α)f

(
dP2
dλ (x)
dQ2

dλ (x)

)
dλ

= αD̃f (P1, Q1) + (1− α)D̃f (P2, Q2)

Thus the mapping (P,Q) 7→ Df (P‖Q) is convex.

3. For PXY := PXPY |X and QXY := PXQY |X , we have

Df (PY ‖QY ) = Df

(
EPX

[
PY |X(·|X)

]∥∥EPX

[
QY |X(·|X)

])
≤ EPX

[
Df

(
PY |X(·|X)

∥∥QY |X(·|X)
)]

= Df

(
PY |X

∥∥QY |X |PX) ,
where the inequality uses convexity of Df and Jensen’s Inequality.
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4. For PXY := PXPY |X and QXY := QXPY |X , we have

Df (PXY ‖QXY ) = EQXY

[
f

(
dPXY
dQXY

)]
= EQXY

[
f

(
dPXPY |X
dQXPY |X

)]
=

∫
X

∫
Y
f

(
dPXPY |X
dQXPY |X

)
dQX,Y (x, y)

=

∫
X
f

(
dPX
dQX

)
dQX(x)

= EQX

[
f

(
dPX
dQX

)]
= Df (PX‖QX)

�


