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8.1 Primer: Convex Conjugates

Definition 8.1 (Convex Conjugate) Let f: I — R be a convez function, where I C R is an interval. The
convex conjugate of f is another function f*: I* — R defined as

f*(y) = sup (yx — f(x)),

zel

where I* :== {y € R : sup,¢; (yz — f(z)) < oo}.

The convex conjugate of f at a point yg is given by zg € I with the largest difference between a linear
function with slope yg and the function f as depicted in Figure 1.

Figure 1: The illustration of zo = f*(yo).

Proposition 8.1 (Properties) The convexr conjugate f* of f satisfies:
(i) f* is continuous on its domain.
(ii) f* is convex.

(i4i) Biconjugation: (f*)* = f.

8.2 Duality

We can utilize convex conjugation to formulate computation of f-divergences as an optimization problem.
This form is referred to as dual (or variational) representation of Dy.

Theorem 1 (f-Divergence Duality) For any f-divergence, we have:

Dy (PlQ) = g;?EREP[g(X)] —Eqlf*(9(X))];

where f* is the convexr conjugate of f and the supremum is taken over all functions g for which both expectations
are finite.



Proof: Recall Dy (P||Q) = [, ( ) dQ(x). By Property (iii) in Proposition 8.1, we have
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for all measurable g : X — R (y inside the supremum generally depends on z). Finally, for any g : X — R,
we write

Dy (PIQ) 2 [ o >jQ /f (@)
s s
= Eplg(X)] ~ Eqlf (X))

Then, by supremizing over all measurable g : X — R, we have

Dy (PlQ) = gSUEREP[ 9(X)] = Eq[f*(¢(X))]-

dg( )), where f’ is the

derivative of f. |

It can be shown that the above lower bound is tight and achieved by g(x) = f’ (

Example 8.1 We need to find convex conjugates of respective f functions. Let h(x,y) = xy — f(x). Notice
that h(zx,y) is concave in = as f(x) is conver. So we can use the first-order optimality condition to find
f*(y) = sup, h(z,y).

1. KL: f(z) = zlogx and h(z,y) = zy — xlog(x). From the first order optimality condition % =0, it
follows that x* = argmax, h(z,y) = V=1 and

Fly)=ye? ' —(y—1er T =erh
Then,

Dy (P|Q) = sup Eplg(X)] —Eqle’™) ") =14 sup Ep[g(X)] - Eqle’™],
g:X—R g:X—=R

where the last equation follows from a change of variable of the form g(z) = g(x) — 1.
2. TV: f(z) = 3|z — 1| and h(z,y) = 2y — 3|z — 1|. So,

f*(y) — { Y, |y‘ = 27

00, O.W.

Then,

otv (P,Q) = H iup 1 Eplg(X)] — Egg(X)] = H T|up ) 2(EP[9(X)] —Eqlg(X)]),
Illeo<3 Illeo<

where the uniform norm (sup norm) ||g||oc is defined as ||g||lsoc = SuPycdom(q) [9(¥)!-
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Figure 2: The illustration of f*(y) for f(z) = 3|z — 1|.

8.3 Generative Modeling

Generative modeling is an unsupervised learning task, where we are given unlabeled data &, = {X;}
drawn in an ii.d. manner according to P € P(RY). Our objective is to use &, to learn some underlying
structure, e.g., clustering, dimensionality reduction, or fit a model to P itself.

A common approach to generative modeling to consider a parametric model class {Qg }gco, where © C RY .
We aim to find a model such that Qg ~ P. Note that by “learning” (g, does not necessarily require to explicitly
know it, but we do want to the very least to be able to sample from it. The state-of-the-art systems for learning
such generative model (that can be readily sampled) are Generative Adversarial Networks (GANSs).

8.3.1 Generative Adversarial Networks (GANs)

A GAN [1] pits two deep neural networks, a generator and a discriminator, against each other in a zero-sum
game to improve their performance. The generator produces new data instances, while the discriminator eval-
uates them for authenticity and penalizes the generator when samples are not realistic enough (see Fig. 3).
Training the two networks via an alternating optimization procedure until convergence results in a generator
capable of producing strikingly realistic samples. The details are as follows.

Resources: In addition to the data set X, we have access to an exogenous source of randomness, which
we can freely sample. A common choice is an isotropic Gaussian Z ~ N(0, 021, ), where typically dy < d.

Structure: A GAN consists of two DNNs:

1. Generator: A DNN gy : R% — R? that takes random noise Z as an input and outputs synthetic (fake)
samples. We denote the probability law of gg(Z) by Q.

2. Discriminator: A DNN d,; : R? — R that takes in both “real” and “fake” samples and tries to tell
them apart.

Optimization: By iteratively optimizing gg and dy via an alternating optimization procedure, once con-
verged, we obtain a generator that “is able to fool even the best discriminator possible”. Formally, the desired
(0, ¢) pair attains Nash equilibrium of the zero-sum game

inf sup Eldy ()] — Eldy(90(Z2))]

Principled Form: A principled approach to design the discriminator is to model it as an f-divergence Dy,
i.e., solve

inf Dy (P .
Inf Dy (P Qo)

Plugging in the dual form of Dy into the above and recover the minimax game formulation of GANS.
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Figure 3: Generative Adversarial Networks (GANs).

Example 8.2 (Total Variation Discriminator) Taking Dy = é1v, the induced GAN is

inf ¢ : = inf su d(x)] — Eld
Lo (PQu) = ot s Eld)] - Eld(2)

~inf sup Eldy(a)] ~ Eldy(an(2)],
€0 Pped:
ldglloo<3

where the approximation relies on the parametric class ® being reach enough to enjoy the universal approxi-
mation property.

Remark 8.1 (Concluding Remarks)

(i) GANs are very useful in practice but hard to study theoretically.

(it) infg Dy (P||Qg) is a convenient mathematical formulation that lands itself well for a theoretic analysis
(e.g., sample complezity, generalization, etc.).

(i1i) Wasserstein GAN [2]: The GAN construction that has shown the “best” performance in practice is based
on the 1-Wasserstein distance. That is, the min-max game is modeled as infoce W1 (P, Qg) where the
1-Wasserstein distance between two distributions P,Q € P(R?) is defined as

W1 (P, Q) := ||fT\u'p<1 Ep [f(X)] —Eq [f(X)].

|f(z)=f(y)]

where ||f”Lip = SUPg yeRd Ty

is the Lipschitz norm of f.
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