
ECE 5630: Information Theory for Data Transmission, Security and Machine Learning 02/20/20

Lecture 8: Duality for f -divergences

Scriber: Ben You, Net ID : by284
Lecturer: Prof. Ziv Goldfeld

Assistant Editor: Kia Khezeli

8.1 Primer: Convex Conjugates

Definition 8.1 (Convex Conjugate) Let f : I → R be a convex function, where I ⊆ R is an interval. The
convex conjugate of f is another function f? : I? → R defined as

f?(y) = sup
x∈I

(yx− f(x)),

where I? := {y ∈ R : supx∈I (yx− f(x)) <∞}.

The convex conjugate of f at a point y0 is given by x0 ∈ I with the largest difference between a linear
function with slope y0 and the function f as depicted in Figure 1.

x

y0x

f(x)

x0

Figure 1: The illustration of x0 = f?(y0).

Proposition 8.1 (Properties) The convex conjugate f? of f satisfies:

(i) f? is continuous on its domain.

(ii) f? is convex.

(iii) Biconjugation: (f?)? = f .

8.2 Duality

We can utilize convex conjugation to formulate computation of f -divergences as an optimization problem.
This form is referred to as dual (or variational) representation of Df .

Theorem 1 (f-Divergence Duality) For any f -divergence, we have:

Df (P‖Q) = sup
g:X→R

EP [g(X)]− EQ[f?(g(X))],

where f? is the convex conjugate of f and the supremum is taken over all functions g for which both expectations
are finite.

1

2

Proof: Recall Df (P‖Q) =
∫
X f

(
dP
dQ(x)

)
dQ(x). By Property (iii) in Proposition 8.1, we have

Df (P‖Q) =

∫
X
f

(
dP

dQ
(x)

)
dQ(x)

=

∫
X

sup
y∈dom(f?)

(
y
dP

dQ
(x)− f?(y)

)
dQ(x)

≥
∫
X

(
g(x)

dP

dQ
(x)− f?(g(x))

)
dQ(x)

for all measurable g : X → R (y inside the supremum generally depends on x). Finally, for any g : X → R,
we write

Df (P‖Q) ≥
∫
X
g(x)

dP

dQ
(x)dQ(x)−

∫
X
f?(g(x))dQ(x)

=

∫
X
g(x)dP (x)−

∫
X
f?(g(x))dQ(x)

= EP [g(X)]− EQ[f?(g(X))].

Then, by supremizing over all measurable g : X → R, we have

Df (P‖Q) ≥ sup
g:X→R

EP [g(X)]− EQ[f?(g(X))].

It can be shown that the above lower bound is tight and achieved by g(x) = f ′
(
dP

dQ
(x)

)
, where f ′ is the

derivative of f . �

Example 8.1 We need to find convex conjugates of respective f functions. Let h(x, y) = xy − f(x). Notice
that h(x, y) is concave in x as f(x) is convex. So we can use the first-order optimality condition to find
f?(y) = supx h(x, y).

1. KL: f(x) = x log x and h(x, y) = xy − xlog(x). From the first order optimality condition dh
dx = 0, it

follows that x? = argmaxx>0 h(x, y) = ey−1 and

f?(y) = yey−1 − (y − 1)ey−1 = ey−1.

Then,

Df (P‖Q) = sup
g:X→R

EP [g(X)]− EQ[eg(X)−1] = 1 + sup
g:X→R

EP [g(X)]− EQ[eg(X)],

where the last equation follows from a change of variable of the form g̃(x) = g(x)− 1.

2. TV: f(x) = 1
2 |x− 1| and h(x, y) = xy − 1

2 |x− 1|. So,

f?(y) =

{
y, |y| ≤ 1

2 ,
∞, o.w.

Then,

δTV (P,Q) = sup
||g||∞≤ 1

2

EP [g(X)]− EQ[g(X)] = sup
||g||∞≤1

1

2
(EP [g(X)]− EQ[g(X)]),

where the uniform norm (sup norm) ||g||∞ is defined as ||g||∞ = supy∈dom(g) |g(y)|.

3

x

yx

f(x)

(a) y > 1
2 .

x

yx
f(x)

1
2

(b) y = 1
2 .

x

f(x)
yx

y

(c) y < 1
2 .

Figure 2: The illustration of f?(y) for f(x) = 1
2 |x− 1|.

8.3 Generative Modeling

Generative modeling is an unsupervised learning task, where we are given unlabeled data Xn := {Xi}ni=1

drawn in an i.i.d. manner according to P ∈ P(Rd). Our objective is to use Xn to learn some underlying
structure, e.g., clustering, dimensionality reduction, or fit a model to P itself.

A common approach to generative modeling to consider a parametric model class {Qθ}θ∈Θ, where Θ ⊆ Rd′ .
We aim to find a model such thatQθ ≈ P . Note that by “learning”Qθ, does not necessarily require to explicitly
know it, but we do want to the very least to be able to sample from it. The state-of-the-art systems for learning
such generative model (that can be readily sampled) are Generative Adversarial Networks (GANs).

8.3.1 Generative Adversarial Networks (GANs)

A GAN [1] pits two deep neural networks, a generator and a discriminator, against each other in a zero-sum
game to improve their performance. The generator produces new data instances, while the discriminator eval-
uates them for authenticity and penalizes the generator when samples are not realistic enough (see Fig. 3).
Training the two networks via an alternating optimization procedure until convergence results in a generator
capable of producing strikingly realistic samples. The details are as follows.

Resources: In addition to the data set Xn, we have access to an exogenous source of randomness, which
we can freely sample. A common choice is an isotropic Gaussian Z ∼ N (0, σ2Id0), where typically d0 � d.

Structure: A GAN consists of two DNNs:

1. Generator: A DNN gθ : Rd0 → Rd that takes random noise Z as an input and outputs synthetic (fake)
samples. We denote the probability law of gθ(Z) by Qθ.

2. Discriminator: A DNN dφ : Rd → R that takes in both “real” and “fake” samples and tries to tell
them apart.

Optimization: By iteratively optimizing gθ and dφ via an alternating optimization procedure, once con-
verged, we obtain a generator that “is able to fool even the best discriminator possible”. Formally, the desired
(θ, φ) pair attains Nash equilibrium of the zero-sum game

inf
θ∈Θ

sup
φ∈Φ

E[dφ(x)]− E[dφ(gθ(Z))]

Principled Form: A principled approach to design the discriminator is to model it as an f -divergence Df ,
i.e., solve

inf
θ∈Θ

Df (P‖Qθ) .

Plugging in the dual form of Df into the above and recover the minimax game formulation of GANs.

4

gθ(Z) d

{Xi}ni=1real samples

Zd0 Generator DNN gθ

Discriminator DNN dφ Real/Fake

Figure 3: Generative Adversarial Networks (GANs).

Example 8.2 (Total Variation Discriminator) Taking Df = δTV, the induced GAN is

inf
θ∈Θ

δTV (P,Qθ) = inf
θ∈Θ

sup
‖d‖∞< 1

2

E[d(x)]− E[d(gθ(Z))]

≈ inf
θ∈Θ

sup
φ∈Φ:

‖dφ‖∞< 1
2

E[dφ(x)]− E[dφ(gθ(Z))],

where the approximation relies on the parametric class Φ being reach enough to enjoy the universal approxi-
mation property.

Remark 8.1 (Concluding Remarks)

(i) GANs are very useful in practice but hard to study theoretically.

(ii) infθDf (P‖Qθ) is a convenient mathematical formulation that lands itself well for a theoretic analysis
(e.g., sample complexity, generalization, etc.).

(iii) Wasserstein GAN [2]: The GAN construction that has shown the “best” performance in practice is based
on the 1-Wasserstein distance. That is, the min-max game is modeled as infθ∈Θ W1(P,Qθ) where the
1-Wasserstein distance between two distributions P,Q ∈ P(Rd) is defined as

W1(P,Q) := sup
‖f‖Lip≤1

EP [f(X)]− EQ [f(X)] .

where ‖f‖Lip := supx,y∈Rd
|f(x)−f(y)|
‖x−y‖ is the Lipschitz norm of f .

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza B., Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS-2014), pages 2672–2680, 2014.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International
Conference on Machine Learning (ICML-2017), pages 214–223, Sydney, Australia, Jul. 2017.

