ECE 5630 - Extra Problem Set

May 18th, 2020

Instructions: This is an extra problem set, not for submission.

1) Invariance to bijection: Let X and Y be i.i.d. according to $\operatorname{Unif}(\{0,1,2,3\})$.
a) Prove that $H(X+4 Y)=H(X, Y)$.
b) Calculate $H(X+4 Y)$.
2) KL-divergence computation: Compute the following f-divergences:
a) $D_{\mathrm{KL}}\left(\operatorname{Exp}\left(\eta_{1}\right) \| \operatorname{Exp}\left(\eta_{2}\right)\right)$, where $\operatorname{Exp}(\eta)$ is the exponential distribution with parameter $\eta>0$, i.e., the distribution whose PDF is $p^{(\eta)}(x)=\eta e^{-\eta x} \mathbb{1}_{\{x \geq 0\}}$.
b) $D_{\mathrm{KL}}\left(\operatorname{Bin}\left(n, p_{1}\right) \| \operatorname{Bin}\left(n, p_{2}\right)\right)$, where $\operatorname{Bin}(n, p)$ is the $\operatorname{Binomial}$ distribution with parameters $n \in \mathbb{N}$ and $p \in[0,1]$, i.e., the distribution whose PMF is $p^{(n, p)}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$, for $k \in\{0,1,2, \ldots, n\}$ (otherwise 0).
c) $D_{\mathrm{KL}}\left(\operatorname{Geo}\left(p_{1}\right) \| \operatorname{Geo}\left(p_{2}\right)\right)$, where $\operatorname{Geo}(p)$ is the geometric distribution with parameter $p \in[0,1]$, i.e., the distribution whose PMF is $p^{(p)}(k)=(1-p)^{k-1} p$, for $k \in \mathbb{N}$ (otherwise 0).

3) Shannon entropy and KL divergence

Consider the following two distributions P and Q supported on $\{1,2, \ldots, L+M\}$, with PMFs:

$$
\begin{aligned}
& p(x)= \begin{cases}p_{x}, & x=1, \ldots, L \\
0, & x=L+1, \ldots, L+M\end{cases} \\
& q(x)= \begin{cases}\alpha p_{x}, & x=1, \ldots, L \\
\frac{1-\alpha}{M}, & x=L+1, \ldots, L+M\end{cases}
\end{aligned}
$$

where $0<\alpha<1$.
a) Compute $D_{\mathrm{KL}}(P \| Q)$
b) Express $H(Q)$ in terms of $H(P), \alpha$ and M.
4) Differential entropy: Let X, Z_{1}, and Z_{2} be independent Gaussian random variables with mean zero and variances $\mathbb{E}\left[X^{2}\right]=P$ and $\mathbb{E}\left[Z_{1}^{2}\right]=\mathbb{E}\left[Z_{2}^{2}\right]=N$. Let $Y_{1}=g_{1} X+Z_{1}$ and $Y_{2}=g_{2} X+Z_{2}$ for some constants $g_{1}, g_{2} \in \mathbb{R}$. Express the following in terms of P, N, g_{1}, and g_{2} :
a) $h\left(Z_{1}, Z_{2}\right)$.
b) $h\left(Y_{1}, Y_{2}\right)$.
c) $I\left(X ; Y_{1}, Y_{2}\right)$.
5) More differential entropy: Let X, Y be jointly Gaussian with mean zero, variance one, and covariance $\rho \in(0,1)$.
a) What is $h(5 X+17)$
b) What $h(X, Y)$
c) What is $h(|X|)$?
6) Entropy and KL divergence: Let $\mathcal{X}=\{1, \ldots, L+M\}$, for $M, N \in \mathbb{N}$ and consider the distributions $P, Q \in \mathcal{P}(\mathcal{X})$ whose PMFs are, respectively,

$$
\begin{aligned}
& p(x)= \begin{cases}p_{x}, & x=1, \ldots, L \\
0, & x=L+1, \ldots, L+M\end{cases} \\
& q(x)= \begin{cases}\alpha p_{x}, & x=1, \ldots, L \\
\frac{1-\alpha}{M}, & x=L+1, \ldots, L+M\end{cases}
\end{aligned}
$$

where $0<\alpha<1$.
(a) compute $D_{\mathrm{KL}}(P \| Q)$
(b) Express $H(Q)$ and in terms of $H(P), \alpha$ and M.
7) Axiomatic definition of entropy: If a sequence of symmetric functions $H_{m}\left(p_{1}, p_{2} \ldots, p_{m}\right)$ satisfies the following properties:

- Normalization: $H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$,
- Continuity: $H_{2}(p, 1-p)$ is a continuous function of p,
- Grouping: $H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=H_{m-1}\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)$,
prove that H_{m} must be of the form

$$
H_{m}\left(p_{1}, p_{2} \ldots, p_{m}\right)=-\sum_{i=1}^{m} p_{i} \log \left(p_{i}\right)
$$

Hint 1: Using induction show that

$$
H_{m}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=H_{m-1}\left(p_{1}+\ldots+p_{k}, p_{k+1}, \ldots, p_{m}\right)+\left(p_{1}+\ldots+p_{k}\right) H_{2}\left(\frac{p_{1}}{p_{1}+\ldots+p_{k}}, \ldots, \frac{p_{k}}{p_{1}+\ldots+p_{k}}\right)
$$

for all $k=1, \ldots, m$.
Hint 2: Let $f(m)=H_{m}(1 / m, 1 / m, \ldots, 1 / m)$. Show that for two integers i and j, it holds that $f(i j)=f(i)+f(j)$.
Hint 3: Prove that $H_{2}(p, 1-p)=-p \log p-(1-p) \log (1-p)$ for any rational p. Use continuity to extend the argument to real numbers.
8) Entropy under constraints: Let $X, Y, Z \sim \operatorname{Ber}(1 / 2)$ and pairwise independent $(I(X ; Y)=I(Y ; Z)=I(X ; Z)=0)$.
a) Under this constraint, what is the minimum value for $H(X, Y, Z)$?
b) Given an example achieving this minimum.

Now instead of pairwise independence, assume that $I(X ; Y)=I(Y ; Z)=I(X ; Z)=\alpha$ for some $\alpha \in[0,1]$. Repeat parts (a) and (b).
9) Directed information: The directed information $I\left(X^{n} \rightarrow Y^{n}\right)$ from $X^{n}:=\left(X_{1}, \ldots, X_{n}\right)$ to $Y^{n}:=\left(Y_{1}, \ldots, Y_{n}\right)$ (random correlated sequences) is an information measure that appears in the context of interactive communication and communication with feedback. It is defined as

$$
\begin{equation*}
I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \tag{1}
\end{equation*}
$$

That is, it is the sum of the the mutual information of inputs up to time i and the output at time i conditioned on the past outputs up to time $i-1$. For this problem you can restrict yourself to considering discrete sources only (although this is not necessary).
(a) Show that $I\left(X^{n} \rightarrow Y^{n}\right) \neq I\left(Y^{n} \rightarrow X^{n}\right)$ in general.

Hint: consider X^{n} and Y^{n} to be certain subsets of $\left\{Z_{0}, Z_{1}, \ldots, Z_{n}\right\}$ that are i.i.d. Bern(1/2)).
(b) Consider a DMC used for n channel uses with input X^{n} and output Y^{n}. Here we do not assume that X^{n} is i.i.d. Show that in general,

$$
\begin{equation*}
I\left(X^{n} \rightarrow Y^{n}\right) \leq \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \tag{2}
\end{equation*}
$$

Make sure you justify each step.
(c) What happens to (2) when $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent?
10) Simulating a Gaussian distribution: In this question we are going to write a code (Mat lab/Python/etc.) for simulating a Gaussian distribution via the soft-covering lemma setup. Consider the additive white Gaussian noise channel (AWGN) whose output at time $i=1, \ldots, n$ is $V_{i}=u_{i}+Z_{i}$, where $u_{i} \in \mathbb{R}$ is the channel input and $Z_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ are i.i.d. Gaussians.
a) Implement the AWGN channel output function $\operatorname{AWGN}(n, \sigma, \mathbf{u})$, that takes as inputs a blocklength $n \in \mathbb{N}$, a noise parameter $\sigma \in \mathbb{R}_{>0}$ and an input sequence $\mathbf{u} \in \mathbb{R}^{n}$, and produces a sample of the (random) output sequence $\left(Y_{1}, \ldots, Y_{n}\right)$, for Y_{i} as above.
b) Next implement a randomly generated Gaussian code. Let $\operatorname{Code}(n, W, \eta)$ be the function that takes as input the blocklength $n \in \mathbb{N}$, a codebook size $W \in \mathbb{N}$, and an input standard deviation parameter $\eta \in \mathbb{R}_{>0}$, and outputs a collection $\{\mathbf{u}(w)\}_{w=1}^{W}$ of i.i.d. (across codewords and across time) sequences of length n, where each symbol $u_{i}(w)$, for $i=1, \ldots, n$ and $w=1, \ldots, W$, is drawn according to $\mathcal{N}\left(0, \eta^{2}\right)$.
c) Show that the induced output probability density function $q_{\mathbf{V}}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ is the Gaussian mixture model

$$
\begin{equation*}
q_{\mathbf{v}}(\mathbf{v})=\frac{1}{W} \sum_{w=1}^{W} \varphi_{\sigma}(\mathbf{v}-\mathbf{u}(w)) \tag{3}
\end{equation*}
$$

where $\varphi_{\sigma}(\mathbf{x})=\frac{1}{(2 \pi \sigma)^{n / 2}} e^{\frac{-\|\mathbf{x}\|_{2}^{2}}{2 \sigma^{2}}}$ is the density of $\mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathrm{I}_{n}\right)$ and I_{n} is the $n \times n$ identity matrix.
d) Let $U \sim \mathcal{N}\left(0, \eta^{2}\right)$ be the coding variable and $V=U+Z$ be the (single-letter) channel output, where $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of U. Show that the target distribution for fixed η and σ, i.e., the marginal distribution of V above, is $\mathcal{N}\left(\mathbf{0},\left(\eta^{2}+\sigma^{2}\right) \mathrm{I}_{n}\right)$, and write out its probability density function $\varphi \sqrt{\eta^{2}+\sigma^{2}}(\mathbf{v})$ explicitly.
e) Compute $I(U, V)$ in terms of η and σ.
f) Fix $\eta=\sigma=1, n \in\{1,2\}$ (implement both cases) and let W range from 1 to 10^{4} (choose appropriate gaps). For
each W (and n), use the function $\operatorname{Code}(n, W, \eta)$ to produce a Gaussian codebook. Compute and plot $q_{\mathbf{V}}(v)$ from (3) versus $\varphi \sqrt{\eta^{2}+\sigma^{2}}(\mathbf{v})$, for $v_{i} \in[-6,6], i=1, \ldots, n$. Also plot the (scaled) conditional distributions $q_{\mathbf{V} \mid W}(\mathbf{v} \mid w)=$ $\varphi_{\sigma}(\mathbf{v}-\mathbf{u}(w))$, for $w=1, \ldots, W$, on the same axes. Repeat this experiment for each considered W. Does the approximation of $\varphi \sqrt{\eta^{2}+\sigma^{2}}$ via $q_{\mathbf{V}}$ improves as W grows? How do the results differ between the $n=1$ and $n=2$ cases?
g) Plot the total variation distance

$$
\delta_{\mathrm{TV}}\left(q_{\mathbf{V}}, \varphi \sqrt{\eta^{2}+\sigma^{2}}\right)=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|q_{\mathbf{V}}(\mathbf{v})-\varphi \sqrt{\eta^{2}+\sigma^{2}}(\mathbf{v})\right| \mathrm{d} \mathbf{v}
$$

versus the range of W values. Describe and explain the curve you obtain.
11) Multiple cascaded BSCs: In this problem we study a generalization of the cascade of BSCs from Question 7 of Homework Sheet 5 . Consider a cascade of k identical and independent binary symmetric channels, each with crossover probability α.
a) In the case where no encoding or decoding is allowed at the intermediate terminals, what is the capacity of this cascaded channel as a function of k, α ?
b) Now, assume that encoding and decoding is allowed at the intermediate points, what is the capacity as a function of k, α ?
c) What is the capacity of each of the above settings in the case where the number of cascaded channels, k, goes to infinity?
12) Entropy power inequality: A famous (and highly useful) information inequality is the entropy power inequality (EPI). Lemma (Entropy power inequality) Let X and Y be two real-valued independent random variables. Then,

$$
\begin{equation*}
e^{2 h(X+Y)} \geq e^{2 h(X)}+e^{2 h(Y)} \tag{4}
\end{equation*}
$$

with equality if and only if X and Y are jointly Gaussian.
Let us consider a special case of that result. Suppose X and Y are two independent random variables with density functions

$$
f_{X}(x)= \begin{cases}\frac{1}{2 a} & |x| \leq a \\ 0 & |x|>a\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{2 b} & |y| \leq b \\ 0 & |y|>b\end{cases}
$$

for some arbitrary $0<a \leq b$.
a) Compute $h(X)$ and $h(Y)$.
b) Find the probability density function of $Z=X+Y$. You may solve analytically or rely on a carefully labeled graphical solution.
c) Find $h(Z)$.

Hint: For $\beta \geq \alpha$, we have

$$
\int_{\alpha}^{\beta} x \log x d x=\frac{1}{2} \beta^{2} \log \beta-\frac{1}{2} \alpha^{2} \log \alpha-\frac{\log e}{4}\left(\beta^{2}-\alpha^{2}\right)
$$

13) Erasures and errors in a binary channel: Consider a binary channel with probability of error α and probability of erasure ϵ as depicted in Figure 1. More specifically, consider $\left(\mathcal{X}, \mathcal{Y}, P_{Y \mid X}\right)$ where $\mathcal{X}=\{0,1\}, \mathcal{Y}=\{0,1, \mathrm{e}\}$ and $P_{Y \mid X}$ described by the relation:

$$
Y= \begin{cases}X, & \text { w.p. } 1-\alpha-\epsilon \\ 1-X, & \text { w.p. } \alpha \\ \text { e, } & \text { w.p. } \epsilon\end{cases}
$$

Find a closed from expression for the capacity $\max _{P_{X}} I(X ; Y)$ of this channel.

Fig. 1: Erasures and errors in a binary channel
14) Modulus channel: Consider a discrete channel with input alphabet $\mathcal{X}=\{0,1, \ldots, q-1\}$. The channel output is

$$
Y=[X+Z] \bmod q
$$

where Z is independent of X with $p_{Z}(0)=1-\beta$ and $p_{Z}(z)=\frac{\beta}{q-1}$ for $z=1,2, \ldots, q-1$.
a) What is $H(Z)$?
b) What is the capacity of this channel?
15) Time varying channels: Consider a time varying binary symmetric channel. More specifically, at time $i=1, \ldots, n$, the channel is specified by $\left(\mathcal{X}, \mathcal{Y}, P_{Y_{i} \mid X_{i}}\right)$, where $\mathcal{X}=\mathcal{Y}=\{0,1\}$ and $P_{Y_{i} \mid X_{i}}$ is described by the relationship $Y_{i}=X_{i} \oplus Z_{i}$, where $Z_{i} \sim \operatorname{Bern}\left(p_{i}\right)$ with $p_{i} \in(0,1)$. Assume that $\left\{Z_{i}\right\}_{i=1}^{n}$ are independent, and, thus, Y_{i} 's are conditionally independent given X_{i} 's. Find $\max _{P_{X^{n}}} I\left(X^{n} ; Y^{n}\right)$, where the underlying distribution is $P_{X^{n}} \prod_{i=1}^{n} P_{Y_{i} \mid X_{i}}$.
16) Computing channel capacity: Consider a channel $\left(\mathcal{X}, \mathcal{Y}, P_{Y \mid X}\right)$, where $\mathcal{X}=\mathcal{Y}=\{0,1,2\}$ and $P_{Y \mid X}$ has a conditional PMF $p_{Y \mid X}$ given by

$$
p_{Y \mid X}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 2 / 3
\end{array}\right]
$$

a) Find the capacity $\max _{P_{X}} I(X ; Y)$ and the distribution that achieves it.
b) Qualitatively justify why the distribution found in part (a) achieves the capacity.

