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ECE 5630 - Extra Problem Set
May 18th, 2020

Instructions: This is an extra problem set, not for submission.

1) Invariance to bijection: Let X and Y be i.i.d. according to Unif
(
{0, 1, 2, 3}

)
.

a) Prove that H(X + 4Y ) = H(X,Y ).

b) Calculate H(X + 4Y ).

2) KL-divergence computation: Compute the following f -divergences:

a) DKL

(
Exp(η1)

∥∥Exp(η2)), where Exp(η) is the exponential distribution with parameter η > 0, i.e., the distribution

whose PDF is p(η)(x) = ηe−ηx1{x≥0}.

b) DKL

(
Bin(n, p1)

∥∥Bin(n, p2)), where Bin(n, p) is the Binomial distribution with parameters n ∈ N and p ∈ [0, 1], i.e.,

the distribution whose PMF is p(n,p)(k) =
(
n
k

)
pk(1− p)n−k, for k ∈ {0, 1, 2, . . . , n} (otherwise 0).

c) DKL

(
Geo(p1)

∥∥Geo(p2)), where Geo(p) is the geometric distribution with parameter p ∈ [0, 1], i.e., the distribution

whose PMF is p(p)(k) = (1− p)k−1p, for k ∈ N (otherwise 0).

3) Shannon entropy and KL divergence

Consider the following two distributions P and Q supported on {1, 2, . . . , L+M}, with PMFs:

p(x) =

 px, x = 1, . . . , L;

0, x = L+ 1, . . . , L+M

q(x) =

 αpx, x = 1, . . . , L;

1−α
M , x = L+ 1, . . . , L+M

where 0 < α < 1.

a) Compute DKL(P‖Q)

b) Express H(Q) in terms of H(P ), α and M .

4) Differential entropy: Let X , Z1, and Z2 be independent Gaussian random variables with mean zero and variances

E[X2] = P and E[Z2
1 ] = E[Z2

2 ] = N . Let Y1 = g1X + Z1 and Y2 = g2X + Z2 for some constants g1, g2 ∈ R. Express

the following in terms of P,N, g1, and g2 :

a) h(Z1, Z2).

b) h(Y1, Y2).

c) I(X;Y1, Y2).
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5) More differential entropy: Let X,Y be jointly Gaussian with mean zero, variance one, and covariance ρ ∈ (0, 1).

a) What is h(5X + 17)

b) What h(X,Y )

c) What is h(|X|)?

6) Entropy and KL divergence: Let X = {1, . . . , L +M}, for M,N ∈ N and consider the distributions P,Q ∈ P(X )

whose PMFs are, respectively,

p(x) =

 px, x = 1, . . . , L;

0, x = L+ 1, . . . , L+M.

q(x) =

 αpx, x = 1, . . . , L;

1−α
M , x = L+ 1, . . . , L+M.

where 0 < α < 1.

(a) compute DKL(P‖Q)

(b) Express H(Q) and in terms of H(P ), α and M .

7) Axiomatic definition of entropy: If a sequence of symmetric functions Hm(p1, p2 . . . , pm) satisfies the following

properties:

• Normalization: H2(
1
2 ,

1
2 ) = 1,

• Continuity: H2(p, 1− p) is a continuous function of p,

• Grouping: Hm(p1, p2, . . . , pm) = Hm−1(p1 + p2, p3, . . . , pm) + (p1 + p2)H2

(
p1

p1+p2
, p2
p1+p2

)
,

prove that Hm must be of the form

Hm(p1, p2 . . . , pm) = −
m∑
i=1

pi log(pi).

Hint 1: Using induction show that

Hm(p1, p2, . . . , pm) = Hm−1(p1 + . . .+ pk, pk+1, . . . , pm) + (p1 + . . .+ pk)H2

(
p1

p1 + . . .+ pk
, . . . ,

pk
p1 + . . .+ pk

)
for all k = 1, . . . ,m.

Hint 2: Let f(m) = Hm(1/m, 1/m, . . . , 1/m). Show that for two integers i and j, it holds that f(ij) = f(i) + f(j).

Hint 3: Prove that H2(p, 1−p) = −p log p− (1−p) log(1−p) for any rational p. Use continuity to extend the argument

to real numbers.

8) Entropy under constraints: Let X,Y, Z ∼ Ber(1/2) and pairwise independent (I(X;Y ) = I(Y ;Z) = I(X;Z) = 0).

a) Under this constraint, what is the minimum value for H(X,Y, Z)?

b) Given an example achieving this minimum.

Now instead of pairwise independence, assume that I(X;Y ) = I(Y ;Z) = I(X;Z) = α for some α ∈ [0, 1]. Repeat

parts (a) and (b).
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9) Directed information: The directed information I(Xn → Y n) from Xn := (X1, . . . , Xn) to Y n := (Y1, . . . , Yn)

(random correlated sequences) is an information measure that appears in the context of interactive communication and

communication with feedback. It is defined as

I(Xn → Y n) =

n∑
i=1

I(Xi;Yi|Y i−1) (1)

That is, it is the sum of the the mutual information of inputs up to time i and the output at time i conditioned on the

past outputs up to time i − 1. For this problem you can restrict yourself to considering discrete sources only (although

this is not necessary).

(a) Show that I(Xn → Y n) 6= I(Y n → Xn) in general.

Hint: consider Xn and Y n to be certain subsets of {Z0, Z1, . . . , Zn} that are i.i.d. Bern(1/2)).

(b) Consider a DMC used for n channel uses with input Xn and output Y n. Here we do not assume that Xn is i.i.d.

Show that in general,

I(Xn → Y n) ≤
n∑
i=1

I(Xi;Yi). (2)

Make sure you justify each step.

(c) What happens to (2) when Y1, Y2, . . . , Yn are independent?

10) Simulating a Gaussian distribution: In this question we are going to write a code (Matlab/Python/etc.) for simulating

a Gaussian distribution via the soft-covering lemma setup. Consider the additive white Gaussian noise channel (AWGN)

whose output at time i = 1, . . . , n is Vi = ui + Zi, where ui ∈ R is the channel input and Zi ∼ N (0, σ2) are i.i.d.

Gaussians.

a) Implement the AWGN channel output function AWGN(n, σ,u), that takes as inputs a blocklength n ∈ N, a noise

parameter σ ∈ R>0 and an input sequence u ∈ Rn, and produces a sample of the (random) output sequence

(Y1, . . . , Yn), for Yi as above.

b) Next implement a randomly generated Gaussian code. Let Code(n,W, η) be the function that takes as input the

blocklength n ∈ N, a codebook size W ∈ N, and an input standard deviation parameter η ∈ R>0, and outputs a

collection {u(w)}Ww=1 of i.i.d. (across codewords and across time) sequences of length n, where each symbol ui(w),

for i = 1, . . . , n and w = 1, . . . ,W , is drawn according to N (0, η2).

c) Show that the induced output probability density function qV : Rn → R≥0 is the Gaussian mixture model

qV(v) =
1

W

W∑
w=1

ϕσ
(
v − u(w)

)
, (3)

where ϕσ(x) = 1
(2πσ)n/2

e
−‖x‖22
2σ2 is the density of N (0, σ2In) and In is the n× n identity matrix.

d) Let U ∼ N (0, η2) be the coding variable and V = U +Z be the (single-letter) channel output, where Z ∼ N (0, σ2)

is independent of U . Show that the target distribution for fixed η and σ, i.e., the marginal distribution of V above, is

N
(
0, (η2 + σ2)In

)
, and write out its probability density function ϕ√

η2+σ2(v) explicitly.

e) Compute I(U, V ) in terms of η and σ.

f) Fix η = σ = 1, n ∈ {1, 2} (implement both cases) and let W range from 1 to 104 (choose appropriate gaps). For
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each W (and n), use the function Code(n,W, η) to produce a Gaussian codebook. Compute and plot qV(v) from

(3) versus ϕ√
η2+σ2(v), for vi ∈ [−6, 6], i = 1, . . . , n. Also plot the (scaled) conditional distributions qV|W (v|w) =

ϕσ
(
v − u(w)

)
, for w = 1, . . . ,W , on the same axes. Repeat this experiment for each considered W . Does the

approximation of ϕ√
η2+σ2 via qV improves as W grows? How do the results differ between the n = 1 and n = 2

cases?

g) Plot the total variation distance

δTV

(
qV, ϕ√η2+σ2

)
=

1

2

∫
Rn

∣∣qV(v)− ϕ√
η2+σ2(v)

∣∣dv
versus the range of W values. Describe and explain the curve you obtain.

11) Multiple cascaded BSCs: In this problem we study a generalization of the cascade of BSCs from Question 7 of Homework

Sheet 5. Consider a cascade of k identical and independent binary symmetric channels, each with crossover probability α.

a) In the case where no encoding or decoding is allowed at the intermediate terminals, what is the capacity of this

cascaded channel as a function of k, α?

b) Now, assume that encoding and decoding is allowed at the intermediate points, what is the capacity as a function of

k, α?

c) What is the capacity of each of the above settings in the case where the number of cascaded channels, k, goes to

infinity?

12) Entropy power inequality: A famous (and highly useful) information inequality is the entropy power inequality (EPI).

Lemma (Entropy power inequality) Let X and Y be two real-valued independent random variables. Then,

e2h(X+Y ) ≥ e2h(X) + e2h(Y ), (4)

with equality if and only if X and Y are jointly Gaussian.

Let us consider a special case of that result. Suppose X and Y are two independent random variables with density

functions

fX(x) =


1
2a |x| ≤ a,

0 |x| > a

and

fY (y) =


1
2b |y| ≤ b,

0 |y| > b

for some arbitrary 0 < a ≤ b.

a) Compute h(X) and h(Y ).

b) Find the probability density function of Z = X + Y . You may solve analytically or rely on a carefully labeled

graphical solution.

c) Find h(Z).
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Hint: For β ≥ α, we have ∫ β

α

x log xdx =
1

2
β2 log β − 1

2
α2 logα− log e

4
(β2 − α2).

13) Erasures and errors in a binary channel: Consider a binary channel with probability of error α and probability of

erasure ε as depicted in Figure 1. More specifically, consider (X ,Y, PY |X) where X = {0, 1}, Y = {0, 1, e} and PY |X

described by the relation:

Y =


X, w.p. 1− α− ε,

1−X, w.p. α,

e, w.p. ε.

Find a closed from expression for the capacity maxPX I(X;Y ) of this channel.

Fig. 1: Erasures and errors in a binary channel

14) Modulus channel: Consider a discrete channel with input alphabet X = {0, 1, . . . , q − 1}. The channel output is

Y = [X + Z] mod q

where Z is independent of X with pZ(0) = 1− β and pZ(z) = β
q−1 for z = 1, 2, . . . , q − 1.

a) What is H(Z)?

b) What is the capacity of this channel?

15) Time varying channels: Consider a time varying binary symmetric channel. More specifically, at time i = 1, . . . , n, the

channel is specified by (X ,Y, PYi|Xi), where X = Y = {0, 1} and PYi|Xi is described by the relationship Yi = Xi⊕Zi,

where Zi ∼ Bern(pi) with pi ∈ (0, 1). Assume that {Zi}ni=1 are independent, and, thus, Yi’s are conditionally independent

given Xi’s. Find maxPXn I(X
n;Y n), where the underlying distribution is PXn

∏n
i=1 PYi|Xi .
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16) Computing channel capacity: Consider a channel (X ,Y, PY |X), where X = Y = {0, 1, 2} and PY |X has a conditional

PMF pY |X given by

pY |X =


2/3 1/3 0

1/3 1/3 1/3

0 1/3 2/3


a) Find the capacity maxPX I(X;Y ) and the distribution that achieves it.

b) Qualitatively justify why the distribution found in part (a) achieves the capacity.


