ECE 6970 - Homework Assignment 1

September 13th 2019

Due to: Thursday, September 26th, 2019 (at the beginning of the lecture) **Instructions:** Submission in pairs is allowed. Prove and explain every step in your answers. **Errata:** Fixes to Questions 2(e) and 7(b) were introduced. Thanks to Kia Khezeli.

- 1) Discrete probability spaces: Let \mathcal{X} be a countable set.
 - a) Show that its power set $2^{\mathcal{X}}$ is a valid σ -algebra.
 - b) Let $p: \mathcal{X} \to [0,1]$ be a probability mass function (PMF), i.e., satisfying $\sum_{x \in \mathcal{X}} p(x) = 1$. Define a function $\pi_p: 2^{\mathcal{X}} \to [0,1]$ by $\pi_p(A) \triangleq \sum_{x \in A} p(x)$, for $A \in 2^{\mathcal{X}}$. Show that $(\mathcal{X}, 2^{\mathcal{X}}, \pi_p)$ is a probability space.
- 2) **Properties of probability measures:** Let (X, \mathcal{F}, π) be a probability space. Prove the following properties of π :
 - a) Law of complement probability: $\pi(A) = 1 \pi(A^c), \forall A \in \mathcal{F}$, where $A^c = \mathcal{X} \setminus A$ is the complement of A.
 - b) Monotonicity: If $A, B \in \mathcal{F}$ with $A \subseteq B$, then $\pi(A) \leq \pi(B)$
 - c) Union bound: For any $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$, we have $\pi\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \pi(A_n)$
 - d) Continuity of probability: Let $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a sequence of event increasing to $A \in \mathcal{F}$, i.e., $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ and $\bigcup_{n=1}^{\infty} A_n = A$. Similarly, let $\{B_n\}_{n=1}^{\infty} \subseteq \mathcal{F}$ be a sequence of event decreasing to $B \in \mathcal{F}$, i.e., $B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots$ and $\bigcap_{n=1}^{\infty} B_n = B$. Prove that:
 - i) lim_{n→∞} π(A_n) = π(A). Deduce that for any {A'_n}[∞]_{n=1} ⊆ F, we have lim_{m→∞} π (⋃^m_{n=1} A_n) = π (⋃[∞]_{n=1} A_n).
 ii) lim_{n→∞} π(B_n) = π(B). Deduce that for any {B'_n}[∞]_{n=1} ⊆ F, we have lim_{m→∞} π (⋂^m_{n=1} B_n) = π (⋂[∞]_{n=1} B_n).
 - e) Law of total probability: Prove that for any partition {A_n}_{n=1}[∞] ⊆ F of X (i.e., (i) A_n ∩ A_m = Ø, ∀n ≠ m; and (ii) ∪_{n=1}[∞] A_n = X) and B ∈ F, we have π(B) = ∑_{n=1}[∞] π(A_n)π(B|A_n). Is your argument valid when π(A_{n'}) = 0 for some n' ∈ N?
- 3) Measurability of indicators: Let (X, \mathcal{F}, π) be a probability space. For $A \in \mathcal{F}$, define the function $\mathbb{1}_A : \mathcal{X} \to \mathbb{R}$ by

$$\mathbb{1}_A(x) \triangleq \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

- a) Prove that $\mathbb{1}_A$ is a random variable over (X, \mathcal{F}, π) .
- b) Show that $\mathbb{1}_A(x) = \delta_x(A)$ for every $A \in \mathcal{F}$ and $x \in \mathcal{X}$, where δ_x is the Dirac measure centered on x. Despite the above equality, explain the difference between $\mathbb{1}_A$ and δ_x .
- 4) Composition of transport maps: Let µ ∈ P(X), ν ∈ P(Y) and η ∈ P(Z) be probability measures. Suppose that T : X → Y transports µ to ν and that S : Y → Z transports ν to η, i.e., we have T_#µ = ν and S_#ν = η. Prove that S ∘ T transports µ to η (rederive any relevant steps shown in class and in particular show that (S ∘ T)⁻¹ = T⁻¹ ∘ S⁻¹).

- 5) Nonexistence of transport maps: Find probability measures $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$ for which no $T : \mathcal{X} \to \mathcal{Y}$ with $T_{\#}\mu = \nu$ exists, where $|\operatorname{supp}(\mu)|, |\operatorname{supp}(\nu)| < \infty$ and:
 - a) $|\operatorname{supp}(\mu)| < |\operatorname{supp}(\nu)|;$
 - b) $|\operatorname{supp}(\mu)| = |\operatorname{supp}(\nu)|;$
 - c) $|\operatorname{supp}(\mu)| > |\operatorname{supp}(\nu)|.$
- 6) Lemma for weak convergence to null: In class we showed that the set of transport maps between two given probability measure might not be closed with respect to weak convergence of functions in $L^1([0,1))$ endowed with the uniform measure. Our proof relied on the following lemma.

Lemma Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $L^1([0,1))$. A sufficient condition for $f_n \rightharpoonup 0$ as $n \rightarrow \infty$ is:

- (i) $\|f_n\|_{L^1([0,1))}$ is uniformly bounded; and
- (ii) For any $(a, b) \subseteq [0, 1)$, we have $\int_a^b f_n(x) dx \to 0$ as $n \to \infty$.

Prove this lemma. You may rely on the fact that for any $g \in L^{\infty}([0,1))$ and $\epsilon > 0$ there exists a simple function $\sum_{i=1}^{m} c_i \mathbb{1}_{(a_i,b_i)}$, such that $\|g - \sum_{i=1}^{m} c_i \mathbb{1}_{(a_i,b_i)}\|_{L^{\infty}([0,1))} < \epsilon$.

- Coupling Gaussian measures: Let μ = N(0, Σ₁) and ν = N(0, Σ₂) be two d-dimensional centered Gaussian measures with (nonsingular) covariance matrices Σ₁ and Σ₂, respectively.
 - a) Write out the probability density function for the product coupling $\pi = \mu \times \nu$.
 - b) Let $X \sim \mu$, $Y \sim \nu$ and assume $\Sigma_2 \succeq \Sigma_1$ in the positive semi-definite sense (i.e., $a^{\top}(\Sigma_2 \Sigma_1)a \ge 0$, $\forall a \in \mathbb{R}^d$). Further let $Z \sim \mathcal{N}(0, \Sigma_2 - \Sigma_1)$ be independent of X and define a new pair of random variables (X', Y') by X' = Xand Y' = X + Z. Prove that (X', Y') is a coupling of $X \sim \mu$ and $Y \sim \nu$. Write out the join probability density function of (X', Y').
 - c) Assume d = 1 and $X, Y \sim \mathcal{N}(0, \sigma^2)$, for $\sigma > 0$ (i.e., X and Y are now identically distributed). Propose three different couplings of X and Y such that their joint law in <u>not</u> Gaussian. Prove your claims.