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ECE 6970 - Homework Assignment 1
September 13th 2019

Due to: Thursday, September 26th, 2019 (at the beginning of the lecture)

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers.

Errata: Fixes to Questions 2(e) and 7(b) were introduced. Thanks to Kia Khezeli.

1) Discrete probability spaces: Let X be a countable set.

a) Show that its power set 2X is a valid σ-algebra.

b) Let p : X → [0, 1] be a probability mass function (PMF), i.e., satisfying
∑

x∈X p(x) = 1. Define a function πp : 2X →

[0, 1] by πp(A) ,
∑

x∈A p(x), for A ∈ 2X . Show that (X , 2X , πp) is a probability space.

2) Properties of probability measures: Let (X,F , π) be a probability space. Prove the following properties of π:

a) Law of complement probability: π(A) = 1− π(Ac), ∀A ∈ F , where Ac = X \A is the complement of A.

b) Monotonicity: If A,B ∈ F with A ⊆ B, then π(A) ≤ π(B)

c) Union bound: For any {An}∞n=1 ⊆ F , we have π (
⋃∞

n=1An) ≤
∑∞

n=1 π(An)

d) Continuity of probability: Let {An}∞n=1 ⊆ F be a sequence of event increasing to A ∈ F , i.e., A1 ⊆ A2 ⊆ A3 ⊆ . . .

and
⋃∞

n=1An = A. Similarly, let {Bn}∞n=1 ⊆ F be a sequence of event decreasing to B ∈ F , i.e., B1 ⊇ B2 ⊇ B3 ⊇ . . .

and
⋂∞

n=1Bn = B. Prove that:

i) limn→∞ π(An) = π(A). Deduce that for any {A′n}∞n=1 ⊆ F , we have limm→∞ π (
⋃m

n=1An) = π (
⋃∞

n=1An).

ii) limn→∞ π(Bn) = π(B). Deduce that for any {B′n}∞n=1 ⊆ F , we have limm→∞ π (
⋂m

n=1Bn) = π (
⋂∞

n=1Bn).

e) Law of total probability: Prove that for any partition {An}∞n=1 ⊆ F of X (i.e., (i) An ∩ Am = ∅, ∀n 6= m; and (ii)⋃∞
n=1An = X ) and B ∈ F , we have π(B) =

∑∞
n=1 π(An)π(B|An). Is your argument valid when π(An′) = 0 for

some n′ ∈ N?

3) Measurability of indicators: Let (X,F , π) be a probability space. For A ∈ F , define the function 1A : X → R by

1A(x) ,

1, x ∈ A

0, x /∈ A
.

a) Prove that 1A is a random variable over (X,F , π).

b) Show that 1A(x) = δx(A) for every A ∈ F and x ∈ X , where δx is the Dirac measure centered on x. Despite the

above equality, explain the difference between 1A and δx.

4) Composition of transport maps: Let µ ∈ P(X ), ν ∈ P(Y) and η ∈ P(Z) be probability measures. Suppose that

T : X → Y transports µ to ν and that S : Y → Z transports ν to η, i.e., we have T#µ = ν and S#ν = η. Prove that

S ◦ T transports µ to η (rederive any relevant steps shown in class and in particular show that (S ◦ T )−1 = T−1 ◦ S−1).
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5) Nonexistence of transport maps: Find probability measures µ ∈ P(X ) and ν ∈ P(Y) for which no T : X → Y with

T#µ = ν exists, where
∣∣ supp(µ)

∣∣, ∣∣ supp(ν)
∣∣ <∞ and:

a)
∣∣ supp(µ)

∣∣ < ∣∣ supp(ν)
∣∣;

b)
∣∣ supp(µ)

∣∣ =
∣∣ supp(ν)

∣∣;
c)
∣∣ supp(µ)

∣∣ > ∣∣ supp(ν)
∣∣.

6) Lemma for weak convergence to null: In class we showed that the set of transport maps between two given probability

measure might not be closed with respect to weak convergence of functions in L1
(
[0, 1)

)
endowed with the uniform

measure. Our proof relied on the following lemma.

Lemma Let {fn}∞n=1 be a sequence of functions in L1
(
[0, 1)

)
. A sufficient condition for fn ⇀ 0 as n→∞ is:

(i)
∥∥fn∥∥

L1
(
[0,1)
) is uniformly bounded; and

(ii) For any (a, b) ⊆ [0, 1), we have
∫ b

a
fn(x)dx→ 0 as n→∞.

Prove this lemma. You may rely on the fact that for any g ∈ L∞
(
[0, 1)

)
and ε > 0 there exists a simple function∑m

i=1 ci1(ai,bi), such that
∥∥g −∑m

i=1 ci1(ai,bi)

∥∥
L∞([0,1))

< ε.

7) Coupling Gaussian measures: Let µ = N (0,Σ1) and ν = N (0,Σ2) be two d-dimensional centered Gaussian measures

with (nonsingular) covariance matrices Σ1 and Σ2, respectively.

a) Write out the probability density function for the product coupling π = µ× ν.

b) Let X ∼ µ, Y ∼ ν and assume Σ2 < Σ1 in the positive semi-definite sense (i.e., a>(Σ2 − Σ1)a ≥ 0, ∀a ∈ Rd).

Further let Z ∼ N (0,Σ2 −Σ1) be independent of X and define a new pair of random variables (X ′, Y ′) by X ′ = X

and Y ′ = X + Z. Prove that (X ′, Y ′) is a coupling of X ∼ µ and Y ∼ ν. Write out the join probability density

function of (X ′, Y ′).

c) Assume d = 1 and X,Y ∼ N (0, σ2), for σ > 0 (i.e., X and Y are now identically distributed). Propose three different

couplings of X and Y such that their joint law in not Gaussian. Prove your claims.


