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ECE 6970 - Homework Assignment 2
October 7th 2019

Due to: Tuesday, October 22nd, 2019 (at the beginning of the lecture)

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers.

1) Distance cost in 1D: We saw in class that if µ, ν ∈ P(R) are probability measures on the real line with cumulative

distribution functions (CDFs) F and G, respectively, then

inf
π∈Π(µ,ν)

∫
R2

|x− y|dπ(x, y) =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣dt =

∫
R

∣∣F (x)−G(x)
∣∣dx. (1)

Optimality above is achieved by the coupling πH whose CDF is H(x, y) = min
{
F (x), G(y)

}
. This is a guided exercise

to prove the second equality in (1) and some related properties.

a) Show that πH is indeed a coupling of µ and ν. It suffices to show that H has F and G as marginal CDFs.

b) Consider the set A ,
{

(x, t)
∣∣∣ min

{
F (x), G(x)

}
≤ t ≤ max

{
F (x), G(x)

}
, x ∈ R

}
. Use Fubini’s Theorem to

show that ∫
R

∫ max
{
F (x),G(y)

}
min
{
F (x),G(y)

} dt dx =

∫ 1

0

∫ max
{
F−1(x),G−1(y)

}
min
{
F−1(x),G−1(y)

} dx dt.

c) Prove that max{a, b} −min{a, b} = |a− b| and use this relation to conclude that∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣dt =

∫
R

∣∣F (x)−G(x)
∣∣dx.

Comment: F−1 and G−1 are the generalized inverses of F and G, respectively. It is preferable to treat them as such

in your proofs. However, answers under the assumption that F and G are invertible will be accepted.

2) Transport Maps in 1D: Proceeding under the framework of Question 1 (although a distance costs is not necessary here),

recall that if µ (whose CDF is F ) has a density, then (1) is achieved by the transport plan T ? = G−1 ◦ F . Namely, we

have

inf
π∈Π(µ,ν)

∫
R2

|x− y|dπ(x, y) =

∫
R
|x− T ?(x)|dµ(x). (2)

This is a guided exercise to prove (2).

a) First, we will establish that T ? indeed pushes µ forward to ν. Prove that if there exists η ∈ P(R) such that G−1
# η = ν

and F#µ = η, then T ?#µ = ν.

Hint: During our first encounter with transport maps in class we showed that (S ◦ T )#µ = S#(T#µ).

b) Show that η = Unif
(
[0, 1]

)
satisfies the above relations, and conclude T ? is a valid transport map.
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c) Show that ∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣dt =

∫
R

∣∣∣x−G−1
(
F (x)

)∣∣∣dµ(x).

Hint: Use Section (b), which established F#µ = Unif
(
[0, 1]

)
, and the change of variables formula from the lectures:

If µ ∈ P(X ), T : X → Y and f ∈ L1(Y), then
∫
Y f(y)d(T#µ)(y) =

∫
X f
(
T (x)

)
dµ(x).

3) Kantorovich Duality Regularizer: In class, we proved the Kantorovich duality for optimal transport:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = sup
(ϕ,ψ)∈Φc

∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y), (3)

where Φc is the set of all pairs of potentials (measurable functions) (ϕ,ψ) satisfying ϕ(x) + ψ(y) ≤ c(x, y), for all

(x, y) ∈ X × Y . The first step in our proof was to introduce a regularizer Γ(π) to the left-hand side (LHS) of (3), and

extend the infimum to M+(X × Y), the set of all nonnegative Borel measures on X × Y . Our regularizer was

Γ(π) = sup
(ϕ,ψ)∈C0b (X )×C0b (Y)

∫
X
ϕ(x)d(µ− πX )(x) +

∫
Y
ψ(y)d(ν − πY)(y),

where πX and πY are the X - and Y-marginals of π ∈M+(X × Y).

a) Show that

Γ(π) =

0, π ∈ Π(µ, ν)

+∞, otherwise
.

b) Denoting K(π) ,
∫
X×Y c(x, y)dπ(x, y), use the previous section to justify that

inf
π∈Π(µ,ν)

K(π) = inf
π∈M+(X×Y)

K(π) + Γ(π).

4) Gluing Lemma: The Gluing Lemma is used for proving the triangle inequality of Wasserstein Distances. It reads as

follows: Let µj ∈ P(Xj), for j = 1, 2, 3, be three probability measures on their corresponding spaces. Let π12 ∈ Π(µ1, µ2)

and π23 ∈ Π(µ2, µ3). Then there exists π ∈ P(X1 × X2 × X3) such that πX1,X2
= π12 and πX2,X3

= π23, where πX ,Y

is the marginal of π on X × Y .

Prove the Gluing Lemma for densities. Namely, assume X1 = X2 = X2 = Rd and let fj , j = 1, 2, 3, be the probability

density functions (PDFs) of µj . Let g12(x, y) be a PDF on Rd×Rd that has f1(x) and f2(y) as its marginals. Similarly,

g23(y, z) is a PDF with marginals f2(y) and f3(z). Construct a PDF g(x, y, z) on Rd×Rd×Rd such that
∫
Rd g(x, y, z)dz =

g12(x, y) and
∫
Rd g(x, y, z)dx = g23(y, z).

5) Triangle Inequality for Wasserstein Distances: The p-Wasserstein distance, for p ∈ [1,+∞), between µ, ν ∈ Pp(X ),

where Pp(X ) is the set of probability measures over X with
∫
X ‖x‖

pdµ(x) <∞, is:

Wp(µ, ν) ,

(
inf

π∈Π(µ,ν)

∫
X×Y

‖x− y‖pdπ(x, y)

)1/p

. (4)

We saw in class that
(
Pp(X ),Wp

)
is a metric space. In particular, Wp satisfies the triangle inequality: For any µ, ν, η ∈

Pp(X ), we have

Wp(µ, η) ≤Wp(µ, ν) + Wp(ν, η)
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Use the Gluing Lemma to prove the triangle inequality for Wp.

Hint: Cast π12 and π23 from the Gluing Lemma as optimal coupling for (µ, ν) and (ν, η), respectively.


