ECE 6970 - Homework Assignment 2

October 7th 2019

Due to: Tuesday, October 22nd, 2019 (at the beginning of the lecture)

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers.

1) Distance cost in 1D: We saw in class that if pu,v € P(R) are probability measures on the real line with cumulative

distribution functions (CDFs) F' and G, respectively, then

inf |x—y|d7r(x,y):/0 |F71(t)—Gil(t)|dt=/R|F(I)—G(l‘)|d1‘. (1)

mEl(p,v) JR2

Optimality above is achieved by the coupling 7 whose CDF is H(x,y) = min { F(z), G(y)}. This is a guided exercise
to prove the second equality in (1) and some related properties.

a) Show that 7y is indeed a coupling of x4 and v. It suffices to show that H has F' and G as marginal CDFs.
b) Consider the set A £ {(a:,t) ‘ min {F(z),G(z)} <t < max{F(z),G(z)}, = € R}. Use Fubini’s Theorem to

de{F z),G(y) } 1 max{Fﬁl(w),Gfl(y)}
// dtdx:// dz dt.
mm{F(:v y)} 0 min{F‘l(w),G_l(y)}
¢) Prove that max{a,b} — min{a, b} = |a — b| and use this relation to conclude that

/ |[FH(t) — G (t)|dt :/ |F(z) — G(z)|dx.
0 R

Comment: F~! and G~! are the generalized inverses of F' and G, respectively. It is preferable to treat them as such

show that

in your proofs. However, answers under the assumption that ' and G are invertible will be accepted.

2) Transport Maps in 1D: Proceeding under the framework of Question 1 (although a distance costs is not necessary here),
recall that if y (whose CDF is F) has a density, then (1) is achieved by the transport plan 7% = G~! o F. Namely, we

have

inf /R2 |z — yld7(z,y) = /R |z — T*(z)|du(x). 2)

r €T (j1,v)
This is a guided exercise to prove (2).
a) First, we will establish that 7* indeed pushes p forward to v. Prove that if there exists n € P(R) such that G;n =v
and Fiyp =, then Thp = v.
Hint: During our first encounter with transport maps in class we showed that (S o T)up = Su(Tup).

b) Show that n = Unif([(), 1}) satisfies the above relations, and conclude 7™ is a valid transport map.



¢) Show that .
[ 10 - el = [ fo- 6 (F@)|duto).
0 R

Hint: Use Section (b), which established Fup = Unif([O, 1}), and the change of variables formula from the lectures:
If g€ P(X), T: X — Y and f € LN(Y), then [y, f(y)d(Tep)y) = [y £(T(x))dp(z).

3) Kantorovich Duality Regularizer: In class, we proved the Kantorovich duality for optimal transport:

in /X el pdn(r ) = i /X o(@)dpu(z) + /y b(y)du(y), 3

mell(p,v) () ED.
where @, is the set of all pairs of potentials (measurable functions) (p,%) satisfying ¢(z) + ¥ (y) < c(z,y), for all
(z,y) € X x Y. The first step in our proof was to introduce a regularizer I'(7) to the left-hand side (LHS) of (3), and
extend the infimum to M (X x ), the set of all nonnegative Borel measures on X x ). Our regularizer was
M= s gl moe) + [ v - m))
(pp)ecy(X)yxcp(y) Jx y
where 7y and 7y are the X- and Y-marginals of 71 € M (X x ).

a) Show that

I(r) = 0, m € (p,v)

400, otherwise
b) Denoting K(7) £ fXxy c(z,y)dm(z,y), use the previous section to justify that

inf K(m)= inf K(m) + I'(m).
ﬂell_lr%u,u) (ﬂ—) TrEMIJFH(Xxy) (W) (W)

4) Gluing Lemma: The Gluing Lemma is used for proving the triangle inequality of Wasserstein Distances. It reads as
follows: Let p; € P(X;), for j = 1,2, 3, be three probability measures on their corresponding spaces. Let w12 € II(j1, p2)
and mo3 € II(puo, p13). Then there exists m € P(X; x Xy X X3) such that mx, x, = T2 and 7x, x, = ma3, Where Tx y
is the marginal of 7 on X x ).

Prove the Gluing Lemma for densities. Namely, assume X} = X5 = A5 = R? and let fj» 3 =1,2,3, be the probability

density functions (PDFs) of y;. Let g12(,y) be a PDF on R? x R? that has f;(z) and f2(y) as its marginals. Similarly,
go3(y, 2) is a PDF with marginals f»(y) and f3(z). Construct a PDF g(z, y, z) on R¢xR%xR? such that f]Rd g(z,y,2)dz =

912(‘7’.’ y) and fRd g($7 Y, Z)d.%' = 923(y= Z)

5) Triangle Inequality for Wasserstein Distances: The p-Wasserstein distance, for p € [1,+00), between p, v € P,(X),
where P,(X) is the set of probability measures over X' with [ ||lz|[Pdu(z) < oo, is:

1/p
W, (u,v) £ ( inf / [l — y%w(x,y)) ) 4
XxY
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We saw in class that (Pp(){ ), W,,) is a metric space. In particular, W,, satisfies the triangle inequality: For any p,v,n €
P,(X), we have
Wo (1 m) < Wy (p,v) + Wy (v, 1)



Use the Gluing Lemma to prove the triangle inequality for W,

Hint: Cast 72 and w3 from the Gluing Lemma as optimal coupling for (u,v) and (v, n), respectively.



