ECE 6970 - Homework Assignment 2

October 7th 2019

Due to: Tuesday, October 22nd, 2019 (at the beginning of the lecture) **Instructions:** Submission in pairs is allowed. Prove and explain every step in your answers.

1) Distance cost in 1D: We saw in class that if $\mu, \nu \in \mathcal{P}(\mathbb{R})$ are probability measures on the real line with cumulative

distribution functions (CDFs) F and G, respectively, then

$$\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^2} |x-y| \mathsf{d}\pi(x,y) = \int_0^1 \left| F^{-1}(t) - G^{-1}(t) \right| \mathsf{d}t = \int_{\mathbb{R}} \left| F(x) - G(x) \right| \mathsf{d}x. \tag{1}$$

1

Optimality above is achieved by the coupling π_H whose CDF is $H(x, y) = \min \{F(x), G(y)\}$. This is a guided exercise to prove the second equality in (1) and some related properties.

- a) Show that π_H is indeed a coupling of μ and ν . It suffices to show that H has F and G as marginal CDFs.
- b) Consider the set $\mathcal{A} \triangleq \left\{ (x,t) \mid \min \{F(x), G(x)\} \le t \le \max \{F(x), G(x)\}, x \in \mathbb{R} \right\}$. Use Fubini's Theorem to show that

$$\int_{\mathbb{R}} \int_{\min\left\{F(x), G(y)\right\}}^{\max\left\{F(x), G(y)\right\}} \mathrm{d}t \, \mathrm{d}x = \int_{0}^{1} \int_{\min\left\{F^{-1}(x), G^{-1}(y)\right\}}^{\max\left\{F^{-1}(x), G^{-1}(y)\right\}} \mathrm{d}x \, \mathrm{d}t$$

c) Prove that $\max\{a, b\} - \min\{a, b\} = |a - b|$ and use this relation to conclude that

$$\int_{0}^{1} \left| F^{-1}(t) - G^{-1}(t) \right| \mathsf{d}t = \int_{\mathbb{R}} \left| F(x) - G(x) \right| \mathsf{d}x$$

Comment: F^{-1} and G^{-1} are the generalized inverses of F and G, respectively. It is preferable to treat them as such in your proofs. However, answers under the assumption that F and G are invertible will be accepted.

2) **Transport Maps in 1D:** Proceeding under the framework of Question 1 (although a distance costs is not necessary here), recall that if μ (whose CDF is F) has a density, then (1) is achieved by the transport plan $T^* = G^{-1} \circ F$. Namely, we have

$$\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^2} |x-y| \mathsf{d}\pi(x,y) = \int_{\mathbb{R}} |x-T^{\star}(x)| \mathsf{d}\mu(x).$$
(2)

This is a guided exercise to prove (2).

a) First, we will establish that T^{*} indeed pushes μ forward to ν. Prove that if there exists η ∈ P(ℝ) such that G⁻¹_#η = ν and F_#μ = η, then T^{*}_#μ = ν.

Hint: During our first encounter with transport maps in class we showed that $(S \circ T)_{\#} \mu = S_{\#}(T_{\#} \mu)$.

b) Show that $\eta = \text{Unif}([0,1])$ satisfies the above relations, and conclude T^* is a valid transport map.

c) Show that

$$\int_0^1 \left| F^{-1}(t) - G^{-1}(t) \right| \mathsf{d}t = \int_{\mathbb{R}} \left| x - G^{-1}(F(x)) \right| \mathsf{d}\mu(x).$$

Hint: Use Section (b), which established $F_{\#}\mu = \text{Unif}([0,1])$, and the change of variables formula from the lectures: If $\mu \in \mathcal{P}(\mathcal{X})$, $T : \mathcal{X} \to \mathcal{Y}$ and $f \in L^1(\mathcal{Y})$, then $\int_{\mathcal{Y}} f(y) d(T_{\#}\mu)(y) = \int_{\mathcal{X}} f(T(x)) d\mu(x)$.

3) Kantorovich Duality Regularizer: In class, we proved the Kantorovich duality for optimal transport:

$$\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \mathsf{d}\pi(x,y) = \sup_{(\varphi,\psi) \in \Phi_c} \int_{\mathcal{X}} \varphi(x) \mathsf{d}\mu(x) + \int_{\mathcal{Y}} \psi(y) \mathsf{d}\nu(y), \tag{3}$$

where Φ_c is the set of all pairs of potentials (measurable functions) (φ, ψ) satisfying $\varphi(x) + \psi(y) \leq c(x, y)$, for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. The first step in our proof was to introduce a regularizer $\Gamma(\pi)$ to the left-hand side (LHS) of (3), and extend the infimum to $\mathcal{M}_+(\mathcal{X} \times \mathcal{Y})$, the set of all nonnegative Borel measures on $\mathcal{X} \times \mathcal{Y}$. Our regularizer was

$$\Gamma(\pi) = \sup_{(\varphi,\psi)\in\mathcal{C}^0_b(\mathcal{X})\times\mathcal{C}^0_b(\mathcal{Y})} \int_{\mathcal{X}} \varphi(x) \mathsf{d}(\mu - \pi_{\mathcal{X}})(x) + \int_{\mathcal{Y}} \psi(y) \mathsf{d}(\nu - \pi_{\mathcal{Y}})(y),$$

where $\pi_{\mathcal{X}}$ and $\pi_{\mathcal{Y}}$ are the \mathcal{X} - and \mathcal{Y} -marginals of $\pi \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})$.

a) Show that

$$\Gamma(\pi) = \begin{cases} 0, & \pi \in \Pi(\mu, \nu) \\ +\infty, & \text{otherwise} \end{cases}$$

b) Denoting $\mathsf{K}(\pi) \triangleq \int_{\mathcal{X}\times\mathcal{Y}} c(x,y) \mathsf{d}\pi(x,y)$, use the previous section to justify that

$$\inf_{\pi\in\Pi(\mu,\nu)}\mathsf{K}(\pi)=\inf_{\pi\in\mathcal{M}_+(\mathcal{X}\times\mathcal{Y})}\mathsf{K}(\pi)+\Gamma(\pi).$$

4) Gluing Lemma: The Gluing Lemma is used for proving the triangle inequality of Wasserstein Distances. It reads as follows: Let μ_j ∈ P(X_j), for j = 1, 2, 3, be three probability measures on their corresponding spaces. Let π₁₂ ∈ Π(μ₁, μ₂) and π₂₃ ∈ Π(μ₂, μ₃). Then there exists π ∈ P(X₁ × X₂ × X₃) such that π_{X1,X2} = π₁₂ and π_{X2,X3} = π₂₃, where π_{X,Y} is the marginal of π on X × Y.

Prove the <u>Gluing Lemma for densities</u>. Namely, assume $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}_2 = \mathbb{R}^d$ and let f_j , j = 1, 2, 3, be the probability density functions (PDFs) of μ_j . Let $g_{12}(x, y)$ be a PDF on $\mathbb{R}^d \times \mathbb{R}^d$ that has $f_1(x)$ and $f_2(y)$ as its marginals. Similarly, $g_{23}(y, z)$ is a PDF with marginals $f_2(y)$ and $f_3(z)$. Construct a PDF g(x, y, z) on $\mathbb{R}^d \times \mathbb{R}^d$ such that $\int_{\mathbb{R}^d} g(x, y, z) dz = g_{12}(x, y)$ and $\int_{\mathbb{R}^d} g(x, y, z) dx = g_{23}(y, z)$.

5) Triangle Inequality for Wasserstein Distances: The p-Wasserstein distance, for p ∈ [1, +∞), between µ, ν ∈ P_p(X), where P_p(X) is the set of probability measures over X with ∫_X ||x||^pdµ(x) < ∞, is:</p>

$$\mathsf{W}_{p}(\mu,\nu) \triangleq \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} \|x - y\|^{p} \mathsf{d}\pi(x,y)\right)^{1/p}.$$
(4)

We saw in class that $(\mathcal{P}_p(\mathcal{X}), W_p)$ is a metric space. In particular, W_p satisfies the triangle inequality: For any $\mu, \nu, \eta \in \mathcal{P}_p(\mathcal{X})$, we have

$$W_p(\mu,\eta) \le W_p(\mu,\nu) + W_p(\nu,\eta)$$

Use the Gluing Lemma to prove the triangle inequality for W_p .

Hint: Cast π_{12} and π_{23} from the Gluing Lemma as optimal coupling for (μ, ν) and (ν, η) , respectively.