ECE 6970 - Homework Assignment 3

November 15th 2019

Due to: Tuesday, November 26th, 2019 (at the beginning of the lecture)

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers.

1) Properties of f-divergences: For any P, € P(X) probability measures on the same probability space, dominated by

a common measure P, () < ), recall that

Ds(PIQ) =Bof (S5 ).
where f is a convex function satisfying the assumption given in class and dy/d) is the Radon-Nikodym derivative of 4
with respect to \. Prove the following properties:
a) Non-negativity: D,(P||Q) > 0 with equality if and only if P = Q.
b) Joint convexity: The map (P, Q) — D(P||Q) is (jointly) convex.
Hint: Use the ‘perspective’ of f, defined by g(z,y) = yf (%), which is convex in (z,y) if and only if f is convex.

c¢) Conditioning increases f divergence: For Px € P(X’) and two transition kernels (channels) Py |x and Qy|x from X

to ), consider the probability measures Px )y := PxPy|x and Qxy := PxQy|x on X x ). Denoting by Py and

@y their marginals on ), show that
Dy(Py|Qy) < Dy(Pyx||Qy|x|Px) =: /Df(PY|X:m||QY\X:z)dPX(5U)~ (D

d) Same channel = same divergence: For Px,Qx € P(X) and a transition kernel Py |x, define Py y := PxPy|x

and Qxy := Qx Py x (measures on the product space, as before). Show that

Dy(Px||Qx) = Dy(Pxy||Qx.,y)-

2) Example of Data Processing Inequality: Let (X', ) be a measurable space (X is the sample set and F the o-algebra).

Use the Data Processing Inequality to show that for any two probability measures P,Q on (X, F) and any F € F:
D;(P|Q) > Df(Bern (P(E)) HBern (Q(E))),

where Bern(p), for p € [0, 1], is a Bernoulli p distribution.

3) f-divergences, metrics, and mismatched support: Recall the definitions of Kullback-Leibler (KL) divergence Dk (-||-),
x2-divergence x?(-|), Total Variations Distance dtv(,-), Squared Hellinger Distance H?(-,-), and Jensen-Shannon

Divergence JSD(:||-) provided in class. Show that:



a) \/H?(-,-) is a metric on P(X).
Hint: Use relation to L? norm. You may assume probability measures have densities, but a general proof is preferable.
b) DkL(P,Q) = x*(P,Q) = oo whenever P < @ (i.e., P is not absolutely continuous with respect to Q).
¢) drv(P,Q), H?*(P,Q) and JSD(P, Q) attain their maximal values, 1, 2, and 2log 2, respectively, whenever supp(P) N
supp(Q) = 0.
d) Explain why the previous property is unwanted when performing generative modeling infgpeco d(P, Qp) of a data

distribution P based on a parametrized family {Qg}sco under statistical divergence 9.

4) f-divergences variational formula: The convex conjugate of a function f on R is f*(y) = sup,caom(s) 2y — f(2),
where dom(f) is the domain of f. We saw the following variational representation of f-divergences:
Dy(P||Q) = sup Ep[g] —Eq[f* og],
g: X R
where the supremum is over all measurable g for which the expectations are finite. In random variable notation, the
right-hand side is written as sup, Ep [g(z)] — Eq[f*(g9(X))]. with the law of X specified in the subscript. Show that
a) Dy(P||Q) > supy. x,g Ep[g] — EQ[f* o g, when supremising over all g as above.
Hint: The convex conjugate is a bicunjugation, i.e., (f*)* = f. and for any y € dom(f*) f@) > yz — f*(y).
b) Bonus: Assuming f is differentiable, equality in the supremum is attained by g(x (% ), where [’ is the
derivative of f. Prove this fact (not mandatory).
c¢) Derive the following variational formulas by computing convex conjugates:
i) Dki(P|Q) =1+ supy.x_ g Epg(X) — Eqged™X)
ii) o1v(P, Q) = supgy <1 %EP!J(X) —Eqg(X)
i) x*(P||Q) = supy.x .z Epg(X) — 9(X )+ 4
Hint: Consider the change of variables h( )= i

5) Entropy (full) chain rule: Let (X,..., X)) ~ Px, . x,. Show that:

a) If (Xy,...,X}y) is discrete, then its Shannon entropy decomposes as H(X,..., Xy) = Zle H(X;|X1,...,Xi-1),
where H(X1|Xo) = H(X1).

b) If (X;,...,X)) is jointly continuous, then its differential entropy decomposes as h(Xi,...,Xx) = h(Xk) +
Zi—:ll h(Xp—i| Xk, ooy X (i—1))-

6) Properties of mutual information: Let (X,Y,Z) ~ Px y,z. Use properties learned in class to show that:

a) Mutual information and conditional KL divergence: I(X;Y) = Dki(Py|x||Py|Px), where Pxy = PxPy|x and

Py is its Y-marginal. The conditional KL divergence is defined in (1).

b) More data = more information: I(X;Y) < I(X;Y, Z).
¢) Mutual information and functions: I(X;Y) > I(X; f(Y)) for any deterministic function f. Furthermore, if f is

continuous and one-to-one, then I(X; f(X)) = H(X) for discrete X, and I(X; f(X)) = oo for continuous X. Do

not use mutual information Data Processing Inequality in your proof.




