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ECE 6970 - Homework Assignment 3
November 15th 2019

Due to: Tuesday, November 26th, 2019 (at the beginning of the lecture)

Instructions: Submission in pairs is allowed. Prove and explain every step in your answers.

1) Properties of f -divergences: For any P,Q ∈ P(X ) probability measures on the same probability space, dominated by

a common measure P,Q� λ, recall that

Df (P‖Q) := EQf
(
dP/dλ

dQ/dλ

)
,

where f is a convex function satisfying the assumption given in class and dµ/dλ is the Radon-Nikodym derivative of µ

with respect to λ. Prove the following properties:

a) Non-negativity: Df (P‖Q) ≥ 0 with equality if and only if P = Q.

b) Joint convexity: The map (P,Q) 7→ Df (P‖Q) is (jointly) convex.

Hint: Use the ‘perspective’ of f , defined by g(x, y) = yf
(
x
y

)
, which is convex in (x, y) if and only if f is convex.

c) Conditioning increases f divergence: For PX ∈ P(X ) and two transition kernels (channels) PY |X and QY |X from X

to Y , consider the probability measures PX,Y := PXPY |X and QX,Y := PXQY |X on X × Y . Denoting by PY and

QY their marginals on Y , show that

Df (PY ‖QY ) ≤ Df (PY |X‖QY |X |PX) =:

∫
Df (PY |X=x‖QY |X=x)dPX(x). (1)

d) Same channel =⇒ same divergence: For PX , QX ∈ P(X ) and a transition kernel PY |X , define PX,Y := PXPY |X

and QX,Y := QXPY |X (measures on the product space, as before). Show that

Df (PX‖QX) = Df (PX,Y ‖QX,Y ).

2) Example of Data Processing Inequality: Let (X ,F) be a measurable space (X is the sample set and F the σ-algebra).

Use the Data Processing Inequality to show that for any two probability measures P,Q on (X ,F) and any E ∈ F :

Df (P‖Q) ≥ Df

(
Bern

(
P (E)

)∥∥Bern(Q(E)
))
,

where Bern(p), for p ∈ [0, 1], is a Bernoulli p distribution.

3) f -divergences, metrics, and mismatched support: Recall the definitions of Kullback-Leibler (KL) divergence DKL(·‖·),

χ2-divergence χ2(·‖·), Total Variations Distance δTV(·, ·), Squared Hellinger Distance H2(·, ·), and Jensen-Shannon

Divergence JSD(·‖·) provided in class. Show that:
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a)
√
H2(·, ·) is a metric on P(X ).

Hint: Use relation to L2 norm. You may assume probability measures have densities, but a general proof is preferable.

b) DKL(P,Q) = χ2(P,Q) =∞ whenever P 6� Q (i.e., P is not absolutely continuous with respect to Q).

c) δTV(P,Q), H2(P,Q) and JSD(P,Q) attain their maximal values, 1, 2, and 2 log 2, respectively, whenever supp(P )∩

supp(Q) = ∅.

d) Explain why the previous property is unwanted when performing generative modeling infθ∈Θ δ(P,Qθ) of a data

distribution P based on a parametrized family {Qθ}θ∈Θ under statistical divergence δ.

4) f -divergences variational formula: The convex conjugate of a function f on R is f?(y) = supx∈dom(f) xy − f(x),

where dom(f) is the domain of f . We saw the following variational representation of f -divergences:

Df (P‖Q) = sup
g:X→R

EP [g]− EQ[f? ◦ g],

where the supremum is over all measurable g for which the expectations are finite. In random variable notation, the

right-hand side is written as supg EP
[
g(x)

]
− EQ

[
f?
(
g(X)

)]
, with the law of X specified in the subscript. Show that

a) Df (P‖Q) ≥ supg:X→R EP [g]− EQ[f? ◦ g], when supremising over all g as above.

Hint: The convex conjugate is a bicunjugation, i.e., (f?)? = f . and for any y ∈ dom(f?), f(x) ≥ yx− f?(y).

b) Bonus: Assuming f is differentiable, equality in the supremum is attained by g(x) = f ′
(

dP
dQ (x)

)
, where f ′ is the

derivative of f . Prove this fact (not mandatory).

c) Derive the following variational formulas by computing convex conjugates:

i) DKL(P‖Q) = 1 + supg:X→R EP g(X)− EQeg(X)

ii) δTV(P,Q) = sup‖g‖∞≤1
1
2EP g(X)− EQg(X)

iii) χ2(P‖Q) = supg:X→R EP g(X)− EQ
[
g(X) + g2(x)
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]
Hint: Consider the change of variables h(x) = g(x)

2 + 1.

5) Entropy (full) chain rule: Let (X1, . . . , Xk) ∼ PX1,...,Xn . Show that:

a) If (X1, . . . , Xk) is discrete, then its Shannon entropy decomposes as H(X1, . . . , Xk) =
∑k
i=1H(Xi|X1, . . . , Xi−1),

where H(X1|X0) = H(X1).

b) If (X1, . . . , Xk) is jointly continuous, then its differential entropy decomposes as h(X1, . . . , Xk) = h(Xk) +∑k−1
i=1 h(Xk−i|Xk, . . . , Xk−(i−1)).

6) Properties of mutual information: Let (X,Y, Z) ∼ PX,Y,Z . Use properties learned in class to show that:

a) Mutual information and conditional KL divergence: I(X;Y ) = DKL(PY |X‖PY |PX), where PX,Y = PXPY |X and

PY is its Y -marginal. The conditional KL divergence is defined in (1).

b) More data =⇒ more information: I(X;Y ) ≤ I(X;Y, Z).

c) Mutual information and functions: I(X;Y ) ≥ I
(
X; f(Y )

)
for any deterministic function f . Furthermore, if f is

continuous and one-to-one, then I
(
X; f(X)

)
= H(X) for discrete X , and I

(
X; f(X)

)
= ∞ for continuous X . Do

not use mutual information Data Processing Inequality in your proof.


