ECE 6970 - Homework Assignment 3

1

November 15th 2019

Due to: Tuesday, November 26th, 2019 (at the beginning of the lecture) **Instructions:** Submission in pairs is allowed. Prove and explain every step in your answers.

1) Properties of *f*-divergences: For any $P, Q \in \mathcal{P}(\mathcal{X})$ probability measures on the same probability space, dominated by a common measure $P, Q \ll \lambda$, recall that

$$D_f(P||Q) := \mathbb{E}_Q f\left(\frac{\mathrm{d}P/\mathrm{d}\lambda}{\mathrm{d}Q/\mathrm{d}\lambda}\right),$$

where f is a convex function satisfying the assumption given in class and $d\mu/d\lambda$ is the Radon-Nikodym derivative of μ with respect to λ . Prove the following properties:

- a) Non-negativity: $D_f(P||Q) \ge 0$ with equality if and only if P = Q.
- b) Joint convexity: The map $(P,Q) \mapsto D_f(P||Q)$ is (jointly) convex.
- Hint: Use the 'perspective' of f, defined by $g(x, y) = yf\left(\frac{x}{y}\right)$, which is convex in (x, y) if and only if f is convex. c) <u>Conditioning increases f divergence:</u> For $P_X \in \mathcal{P}(\mathcal{X})$ and two transition kernels (channels) $P_{Y|X}$ and $Q_{Y|X}$ from \mathcal{X} to \mathcal{Y} , consider the probability measures $P_{X,Y} := P_X P_{Y|X}$ and $Q_{X,Y} := P_X Q_{Y|X}$ on $\mathcal{X} \times \mathcal{Y}$. Denoting by P_Y and Q_Y their marginals on \mathcal{Y} , show that

$$D_f(P_Y \| Q_Y) \le D_f(P_{Y|X} \| Q_{Y|X} | P_X) =: \int D_f(P_{Y|X=x} \| Q_{Y|X=x}) \mathsf{d} P_X(x).$$
(1)

d) <u>Same channel</u> \implies same divergence: For $P_X, Q_X \in \mathcal{P}(\mathcal{X})$ and a transition kernel $P_{Y|X}$, define $P_{X,Y} := P_X P_{Y|X}$ and $Q_{X,Y} := Q_X P_{Y|X}$ (measures on the product space, as before). Show that

$$D_f(P_X || Q_X) = D_f(P_{X,Y} || Q_{X,Y}).$$

2) Example of Data Processing Inequality: Let $(\mathcal{X}, \mathcal{F})$ be a measurable space $(\mathcal{X} \text{ is the sample set and } \mathcal{F} \text{ the } \sigma\text{-algebra})$. Use the Data Processing Inequality to show that for any two probability measures P, Q on $(\mathcal{X}, \mathcal{F})$ and any $E \in \mathcal{F}$:

$$D_f(P \| Q) \ge D_f(\mathsf{Bern}(P(E)) \| \mathsf{Bern}(Q(E))),$$

where Bern(p), for $p \in [0, 1]$, is a Bernoulli p distribution.

f-divergences, metrics, and mismatched support: Recall the definitions of Kullback-Leibler (KL) divergence D_{KL}(·||·), χ²-divergence χ²(·||·), Total Variations Distance δ_{TV}(·,·), Squared Hellinger Distance H²(·,·), and Jensen-Shannon Divergence JSD(·||·) provided in class. Show that:
 a) $\sqrt{H^2(\cdot, \cdot)}$ is a metric on $\mathcal{P}(\mathcal{X})$.

Hint: Use relation to L^2 norm. You may assume probability measures have densities, but a general proof is preferable.

- b) $D_{\mathsf{KL}}(P,Q) = \chi^2(P,Q) = \infty$ whenever $P \not\ll Q$ (i.e., P is not absolutely continuous with respect to Q).
- c) $\delta_{\mathsf{TV}}(P,Q)$, $\mathsf{H}^2(P,Q)$ and $\mathsf{JSD}(P,Q)$ attain their maximal values, 1, 2, and $2\log 2$, respectively, whenever $\mathrm{supp}(P) \cap \mathrm{supp}(Q) = \emptyset$.
- d) Explain why the previous property is unwanted when performing generative modeling $\inf_{\theta \in \Theta} \delta(P, Q_{\theta})$ of a data distribution P based on a parametrized family $\{Q_{\theta}\}_{\theta \in \Theta}$ under statistical divergence δ .
- 4) *f*-divergences variational formula: The convex conjugate of a function f on \mathbb{R} is $f^*(y) = \sup_{x \in dom(f)} xy f(x)$, where dom(f) is the domain of f. We saw the following variational representation of f-divergences:

$$D_f(P||Q) = \sup_{g:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[g] - \mathbb{E}_Q[f^* \circ g],$$

where the supremum is over all measurable g for which the expectations are finite. In random variable notation, the right-hand side is written as $\sup_g \mathbb{E}_P[g(x)] - \mathbb{E}_Q[f^*(g(X))]$, with the law of X specified in the subscript. Show that

- a) $D_f(P||Q) \ge \sup_{g:\mathcal{X}\to\mathbb{R}} \mathbb{E}_P[g] \mathbb{E}_Q[f^* \circ g]$, when supremising over all g as above.
 - **Hint:** The convex conjugate is a bicunjugation, i.e., $(f^*)^* = f$. and for any $y \in \text{dom}(f^*)$, $f(x) \ge yx f^*(y)$.
- b) **Bonus:** Assuming f is differentiable, equality in the supremum is attained by $g(x) = f'\left(\frac{dP}{dQ}(x)\right)$, where f' is the derivative of f. Prove this fact (not mandatory).
- c) Derive the following variational formulas by computing convex conjugates:
 - i) $D_{\mathsf{KL}}(P \| Q) = 1 + \sup_{q: \mathcal{X} \to \mathbb{R}} \mathbb{E}_P g(X) \mathbb{E}_Q e^{g(X)}$
 - ii) $\delta_{\mathsf{TV}}(P,Q) = \sup_{\|g\|_{\infty} \leq 1} \frac{1}{2} \mathbb{E}_P g(X) \mathbb{E}_Q g(X)$
 - iii) $\chi^2(P \| Q) = \sup_{g: \mathcal{X} \to \mathbb{R}} \mathbb{E}_P g(X) \mathbb{E}_Q \left[g(X) + \frac{g^2(x)}{4} \right]$

Hint: Consider the change of variables $h(x) = \frac{g(x)}{2} + 1$.

- 5) Entropy (full) chain rule: Let $(X_1, \ldots, X_k) \sim P_{X_1, \ldots, X_n}$. Show that:
 - a) If (X_1, \ldots, X_k) is discrete, then its Shannon entropy decomposes as $H(X_1, \ldots, X_k) = \sum_{i=1}^k H(X_i | X_1, \ldots, X_{i-1})$, where $H(X_1 | X_0) = H(X_1)$.
 - b) If (X_1, \ldots, X_k) is jointly continuous, then its differential entropy decomposes as $h(X_1, \ldots, X_k) = h(X_k) + \sum_{i=1}^{k-1} h(X_{k-i}|X_k, \ldots, X_{k-(i-1)}).$

6) Properties of mutual information: Let $(X, Y, Z) \sim P_{X,Y,Z}$. Use properties learned in class to show that:

- a) <u>Mutual information and conditional KL divergence</u>: $I(X;Y) = D_{\mathsf{KL}}(P_{Y|X}||P_Y|P_X)$, where $P_{X,Y} = P_X P_{Y|X}$ and P_Y is its Y-marginal. The conditional KL divergence is defined in (1).
- b) More data \implies more information: $I(X;Y) \le I(X;Y,Z)$.
- c) <u>Mutual information and functions</u>: $I(X;Y) \ge I(X;f(Y))$ for any deterministic function f. Furthermore, if f is continuous and one-to-one, then I(X;f(X)) = H(X) for discrete X, and $I(X;f(X)) = \infty$ for continuous X. Do not use mutual information Data Processing Inequality in your proof.