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Abstract—The arbitrarily varying wiretap channel (AVWTC)
is an open problem largely because of two main challenges.
Not only does it capture the difficulty of the compound wiretap
channel (another open problem) as a special case, it also requires
that secrecy is ensured with respect to exponentially many
possible channel state sequences. This work overcomes the second
aforementioned difficulty. To that end, we consider an AVWTC
with a type constraint on the allowed state sequences, and derive
a single-letter characterization of its correlated-random (CR)
assisted semantic-security (SS) capacity. The allowed state se-
quences are the ones in a typical set around a single constraining
type. SS is established by showing that the mutual information
between the message and the eavesdropper’s observations is
negligible even when maximized over all message distributions,
choices of state sequences and realizations of the CR-code.

Both the achievability and the converse proofs of the type
constrained coding theorem rely on stronger claims than actually
required. The direct part establishes a novel single-letter lower
bound on the CR-assisted SS-capacity of an AVWTC with state
sequences constrained by any convex and closed set of state
probability mass functions. This bound achieves the best known
single-letter secrecy rates for a corresponding compound wiretap
channel over the same constraint set. In contrast to other single-
letter results in the AVWTC literature, the derivation does not
assume the existence of a best channel to the eavesdropper.
Optimality is a consequence of an max-inf upper bound on
the CR-assisted SS-capacity of an AVWTC with state sequences
constrained to any collection of type-classes. When adjusted to
the aforementioned compound WTC, the upper bound simplifies
to a max-min structure, thus strengthening the previously best
known single-letter upper bound by Liang et al. that has a min-
max form.

I. INTRODUCTION

Modern communication systems usually present an architec-

tural separation between error correction and data encryption.

The former is typically realized at the physical layer by trans-

forming the noisy communication channel into a reliable “bit

pipe”. The data encryption is implemented on top of that by

applying cryptographic principles. The cryptographic approach

assumes no knowledge on the quality of the eavesdropper’s

channel and relies solely on restricting the computational

power of the eavesdropper. However, as the construction of

quantum computers edges closer (D-Wave company recently

reported a working prototype of a quantum computer with over

than 1000 qbits), the validity of the restricted computational

power assumption comes into question. Nonetheless, cryptog-

raphy remains the main practical tool for protecting data, at

least for the time being.

An alternative approach to secure communication is the

so-called physical layer security, a concept that dates back

to Wyner’s celebrated paper on the wiretap channel (WTC)

[1]. Essentially, Wyner’s main idea was to exploit the noise

of the communication channel along with proper physical

layer coding to guarantee secrecy against a computationally-

unlimited eavesdropper. Protection against such an eaves-

dropper, however, comes at a price of assuming that the

eavesdropper’s channel is perfectly known to the legitimate

parties and stays fixed during the transmission. Many of the

information-theoretic secrecy results that followed relied on

extending Wyner’s ideas, and therefore, are derived under the

same hypothesis. Much of the critique by the cryptographic

community towards information-theoretic security is aimed

exactly at that assumption.

Practical systems suffer from limited channel state informa-

tion (CSI) due to inaccuracies in the channel’s estimation pro-

cess and imperfect feedback. Furthermore, adversarial eaves-

droppers will refrain from providing the legitimate parties with

any information about their channels to make securing the

data even harder. Accordingly, limited CSI (especially about

the eavesdropper’s channel) must be assumed to successfully

model a practical communication system. The model of an

arbitrarily varying WTC (AVWTC), that is the focus of this

work, does just that. The AVWTC combines the WTC [1] and

the arbitrarily varying channel (AVC) [2], [3]. It consists of a

collection of discrete-memoryless WTCs indexed by elements

in a finite state space. The state at each time instance is

chosen in an arbitrary manner and is unknown to the legitimate

parties. Being aware of the state space, however, the legitimate

users can place the actual channel realization within a certain

uncertainty set, which models their limited eavesdropper’s

CSI.

The challenge presented by the AVWTC is twofold. First,

it subsumes the difficulty of the compound WTC (where

the channel’s state is constant in time), for which a single-

letter secrecy-capacity characterization is also an open problem

[4], [5]. A multi-letter description of the compound WTC’s

secrecy-capacity was found in [5]. It is, however, currently

unknown how to single-letterize this expression. The un-

derlying gap is that while reliability must be ensured with

respect to the worst main channel, security is measured under

the best eavesdropper channel; a single channel state under

which these extremes simultaneously materialize, however,

does not necessarily exist. The second difficulty concerning

AVWTCs is that security must be ensured under all possible

state sequences, whose number grows exponentially with the

blocklength. To get single-letter results, the latter is usually

dealt with by assuming the existence of a best channel to

the eavesdropper and establishing secrecy with respect to



that channel only (see, e.g., [6], [7]). Yet, the only single-

letter secrecy-capacity characterization for an AVWTC that

the authors are aware of assumes even more [6, Theorem

4]. On top of the existence of such a best channel, the

derivation of [6, Theorem 4] also relies on the AVWTC being

strongly-degraded and having independent (main channel and

eavesdropper channel) states.

This work gives a full solution to the second difficulty.

We consider a general AVWTC with a type constraint on the

allowed state sequences, and establish in Theorem 1 a single-

letter characterization of its CR-assisted semantic-security

(SS) capacity. The type constraint essentially means that the

viable state sequences are only the ones of the prescribed type.

However, since a fixed distribution (even if rational) is not

a valid type for all blocklengths, we define achievability by

allowing the empirical distribution of the state sequences to

be within a small gap from the type. By doing so, the type

constrained AVWTC is well defined for all blocklengths. As

a consequence, our uncertainty set is a typical set around

the allowed type, which still contains exponentially many

state sequences. The structure of the CR-assisted SS-capacity

formula suggests that the legitimate users effectively see the

averaged channel (i.e., the expectation of the main channels

with respect to the type) while security must be ensured versus

an eavesdropper with perfect CSI. A specific instance of a

type constrained AVWTC that is related to binary symmetric

- binary erasure (BS-BE) WTC that was studies in [8] is used

to visualize the result.

The results are derived while adopting the prescription of

[9] to replace the commonly used strong secrecy metric with

the stricter SS metric. The authors of [9] advocate SS as the

new standard for information-theoretic security, because from

a cryptographic point of view, strong secrecy is insufficient

to provide security of applications. Its main drawback lies

in the assumption that the message is random and uniformly

distributed, as real-life messages are neither (messages may

be files, votes or any type of structured data, often with low

entropy). In turn, the uniformly distributed message makes

the strong secrecy metric an average quantity, that might

converge even when many1 of the messages are actually

not secured. Furthermore, to eliminate the benefit of CR for

secrecy purposes, we demand that SS holds for each realization

of the CR (a similar approach was taken in [10] with respect

to the strong secrecy metric). This essentially means that the

transmission is semantically-secure even if the choice of the

state sequence depends on the realization of the CR.

To prove our coding theorem for the type constrained

AVWTC (i.e., the main result in Theorem 1), we provide

both a stronger achievability and a stronger converse than is

actually required. The broader achievability claim, found in

Theorem 2, is a lower bound on the CR-assisted SS-capacity

of an AVWTC with state sequences constrained by any convex

and closed set of state PMFs. This bound shows that the best

1The number of unsecured messages may even grow exponentially with the
blocklength, while still having a converging strong secrecy metric.
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Fig. 1: The AVWTC with Q-constrained states, i.e., when the allowed
state sequences have empirical PMFs that belong to Q.

known achievable single-letter secrecy rates for a similarly

constrained compound WTC [4], [5] can be achieved also in

the AVWTC. The converse of Theorem 1 is a consequence

of Theorem 3 that states an upper bound on CR-assisted

SS-capacity of an AVWTC with state sequences from any

collection of type-classes. The upper bound is of an max-inf

form, i.e., first an infimum over the constraint set is taken,

and then the result is maximized over the input distributions.

When specializing the result to the aforementioned compound

WTC, it produces an upper bound that improves upon the

previously best known single-letter upper bound for this setting

[4, Theorem 2]. The latter result has a min-max structure,

while our upper bound has a max-min form.

II. PROBLEM SETUP AND DEFINITIONS

We use notation from [11, Section II]. In particular, the set

of all probability mass functions (PMFs) on a finite set X
is denoted by P(X ). The type νx of a sequence x ∈ Xn is

νx(x) ,
N(x|x)

n
, where N(x|x) =

∑n
i=1 1{xi=x}. The subset

of P(X ) that contains all possible types of sequences x ∈ Xn

is denoted by Pn(X ). For P ∈ Pn(X ), the type-class
{

x ∈
Xn

∣

∣νx = P
}

is denoted by T n
P . We use T n

ǫ (P ) to denote

the set of letter-typical sequences with respect to the PMF

P ∈ P(X ) and the non-negative number ǫ defined by

T n
ǫ (P )=

{

x∈Xn
∣

∣

∣

∣

∣νx(x)−P (x)
∣

∣≤
ǫ

|X |
1{

P (x)>0
}, ∀x∈X

}

,

where 1A is the indicator function on the event A.

Let X , Y , Z and S be finite sets. A discrete-memoryless

(DM) arbitrarily varying wiretap channel (AVWTC), as il-

lustrated in Fig. 1, is defined by a pair (W,V) of families

of channels W =
{

Ws : X → P(Y)
∣

∣s ∈ S
}

and

V =
{

Vs : X → P(Z)
∣

∣s ∈ S
}

, from X to Y and Z ,

respectively. Thus, s ∈ S denotes the state of the channels

and can be interpreted as an index identifying a particular

pair (W,V ) ∈ W×V.

The n-th extension of the channel laws for input x ∈
Xn and outputs y ∈ Yn and z ∈ Zn, under the state

sequence s ∈ Sn are Wn
s (y|x) ,

∏n
i=1 Wsi(yi|xi) and

V n
s (z|x) ,

∏n
i=1 Vsi(zi|xi). The corresponding families of

n-fold channels Wn
s and V n

s , for s ∈ Sn, are denoted by W
n

and V
n, respectively, and (Wn,Vn) is referred to as the (n-

fold) AVWTC. The random variables representing the outputs

of the AVWTC (Wn,Vn) observed by the legitimate user



and by the eavesdropper under the state sequence s ∈ Sn are

denoted by Y n
s and Zn

s , respectively.

For any Q ⊆ P(S) define

Sn
Q ,

{

s ∈ Sn
∣

∣

∣
νs ∈ Q

}

. (1)

We impose a constraint Q on the allowed state sequences, i.e.,

only s ∈ Sn
Q are permitted. The triple (Wn,Vn,Q) is referred

to as the (n-fold) Q-constrained AVWTC.

Definition 1 (Uncorrelated Code) An uncorrelated

(n,Mn)-code cn for the AVWTC (Wn,Vn) has a message

set M = [1 : Mn], a stochastic encoder f : M → P(Xn)
and decoder φ : Yn → M̂, where M̂ , M∪{e} and e /∈ M
is an error symbol.

For any uncorrelated (n,Mn)-code cn and state sequence

s ∈ Sn, the induced PMF on M×Xn × Yn ×Zn × M̂ is

P
(cn,s)

M,X,Ys,Zs,M̂
(m,x,y, z, m̂) ,PM (m)f(x|m)Wn

s (y|x)

× V n
s (z|x)1{

m̂=φ(y)
}, (2)

where PM ∈ P(M). The performance of cn on the type

constrained AVWTC (Wn,Vn, QS) is evaluated in terms of

its rate 1
n
logMn, the maximal decoding error probability and

the SS-metric. Reliability and security must be ensured with

respect to every allowed constrained state sequence.

Definition 2 (Message Error Probability) Let cn be an un-

correlated (n,Mn)-code for the AVWTC (Wn,Vn). For any

m ∈ M and s ∈ Sn, let the error probability in decoding m
under the state sequence s be

em(Wn
s , cn) =

∑

x∈Xn

f(x|m)
∑

y∈Yn:
φ(y) 6=m

Wn
s (y|x). (3)

Definition 3 (SS Metric) Let cn be an uncorrelated (n,Mn)-
code for the AVWTC (Wn,Vn). The information leakage to

the eavesdropper under the state sequence s ∈ Sn and the

message PMF PM ∈ P(M) is

ℓ(V n
s , PM , cn) = Icn(M ;Zs), (4)

where the subscript cn denotes that the mutual information

term is taken with respect to the marginal PMF P
(cn,s)
M,Zs

of

(2). For any Q ⊆ P(S), the SS metric with respect to cn and

the Q-constrained AVWTC (Wn,Vn,Q) is 2

ℓSem(V
n,Q, cn) = max

s∈Sn
Q,

PM∈P(M)

ℓ(V n
s , PM , cn). (5)

Remark 1 We use the convention that the maximum over

an empty set is −∞. Accordingly, if Q contains no rational

distributions then ℓSem(V
n,Q, cn) = −∞, for all n ∈ N.

Even when there exists QS ∈ Pn(S) such that QS ∈ Q, there

are blocklengths n for which νs 6= QS for every s ∈ Sn, and

2ℓSem(Vn,Q, cn) is actually the mutual-information-security (MIS) met-
ric, which is equivalent to SS by [9]. We use the representation in (5) rather
than the formal definition of SS (see, e.g., [9, Equation (4)]) out of analytical
convenience.

consequently, ℓSem(V
n,Q, cn) = −∞ for these values of n

as well.

Remark 2 SS requires that the uncorrelated code cn works

well for all message PMFs. This means that the mutual

information term in (5) is maximized over PM when cn is

known. In other words, although not stated explicitly, the

optimal PM is a function of cn.

We proceed with defining correlated random (CR) codes,

their associated maximal error probability and SS-metric, CR-

assisted achievability and CR-assisted secrecy-capacity.

Definition 4 (CR Code, Error Probability and SS Metric)

A CR (n,Mn,Kn)-code Cn for the AVWTC (Wn,Vn)
is given by a family of uncorrelated (n,Mn)-codes

Cn =
{

cn(γ)
}

γ∈Γn
, where Γn = [1 : Kn], and a PMF

µn ∈ P(Γn). For any m ∈ M and s ∈ Sn, the associated

error probability with respect to Cn is

Em(Wn
s ,Cn) =

∑

γ∈Γn

µn(γ)em
(

Wn
s , cn(γ)

)

(6)

The maximal error probability and SS-metric of Cn for the

Q-constrained AVWTC (Wn,Vn,Q) are defined as

E(Wn,Q,Cn) = max
s∈Sn

Q,

m∈M

Em(Wn
s ,Cn) (7a)

LSem(V
n,Q,Cn) = max

γ∈Γn

ℓSem
(

V
n,Q, cn(γ)

)

. (7b)

Remark 3 The choice of encoder-decoder in a CR code is

based on a realization of a random experiment that is available

to the transmitted and the legitimate receiver. However, this

CR the legitimate users share should not be viewed as a

cryptographic key to be exploited for secrecy. This is accounted

for in (7b) by requiring that every uncorrelated code in the

family Cn is semantically-secure. The choice of the state

sequence, on the other hand, may depend on the family Cn
and the PMF µn, but not on the realization itself.

Definition 5 (CR-Assisted Achievability) A number R ∈
R+ is called an achievable CR-assisted SS-rate for the Q-

constrained AVWTC (Wn,Vn,Q), if for every ǫ > 0 and

sufficiently large n, there exists a CR (n,Mn,Kn)-code Cn

with

1

n
logMn > R− ǫ (8a)

E(Wn,Q,Cn) ≤ ǫ (8b)

LSem(V
n,Q,Cn) ≤ ǫ. (8c)

Remark 4 Note that if there are no types in Q then any rate

is achievable. Consequently, if Q1 ⊆ Q2 ⊆ P(S), then any

R that is achievable for the Q2-constrained AVWTC is also

achievable for the Q1-constrained AVWTC. The achievable

rates are therefore an increasing set as the constraint set

decreases.

Definition 6 (CR-Assisted Capacity) The CR-assisted SS-

capacity CR(W,V,Q) of the Q-constrained AVWTC is the

supremum of the set of achievable CR-assisted SS-rates.



Our main goal is solving the type constrained AVWTC

(Wn,Vn, QS), for QS ∈ Pn(S). However, since a fixed ratio-

nal distribution QS is not a valid type for all blocklengths, the

definitions of the type constrained performance metrics and its

achievability user a relaxation parameter. For any QS ∈ P(S)

and δ > 0, let Qδ(QS) ,
{

νs ∈ Pn(S)
∣

∣

∣
s ∈ T n

δ (QS)
}

.

The definitions of the error probability and the SS-metric

for the type constrained AVWTC repeat those from Definition

4 with Qδ(QS) instead of Q. The CR-assisted SS-capacity

CR(W,V, QS) of the type constrained AVWTC is defined as

CR(W,V, QS) = sup
δ>0

CR

(

W,V,Qδ(QS)
)

.

III. SINGLE-LETTER CR-CAPACITY RESULTS AND

DISCUSSION

Our main result is a single-letter characterization of the CR-

assisted SS-capacity CR(W,V, QS) of the type constrained

AVWTC (Wn,Vn, QS), for any QS ∈ P(S). To the best

of our knowledge, the only single-letter characterization of a

secrecy-capacity of an AVWTC outside the current work [6,

Theorem 4] is under the following assumptions: (i) security

under the weak secrecy metric (as shown in [10, Corollary 1]

an upgrade to strong secrecy under the same conditions (ii)-(iv)

is possible); (ii) the state space decomposes as S = Sy × Sz ,

where sy ∈ Sy and sz ∈ Sz are the states of the main AVC

and of the AVC to the eavesdropper, respectively; (iii) the

eavesdroppers output is a degraded version of the output of

the main AVC under any pair of state, i.e., X−Ysy−Zsz forms

a Markov chain, for all (sy, sz) ∈ Sy ×Sz; (iv) there exists a

best channel to the eavesdropper, i.e., the exists s⋆z ∈ Sz such

that X −Zs⋆z
−Zsz forms a Markov chain, for all sz ∈ Sz . 3

Our single-letter CR-capacity characterization is derived

without assuming any of the above, while upgrading the

secrecy metric to SS.

Theorem 1 (AVWTC CR-Assisted SS-Capacity) For any

QS ∈ P(S), the CR-assisted SS-capacity of the type

constrained AVWTC (Wn,Vn, QS) is

CR(W,V, QS) = max
QU,X

[

I(U ;Y )− I(U ;Z|S)
]

, (9)

where the mutual information terms are calculated with

respect to a joint PMF QU,XQSQY |X,SQZ|X,S with

QY |X,S(y|x, s) = Ws(y|x) and QZ|X,S(z|x, s) = Vs(z|x),
for all (s, x, y, z) ∈ S × X × Y × Z , and |U| ≤ |X |.

Theorem 1 is an outcome of two other stronger results that

state a lower and upper bound on the CR-assisted SS-capacity

of a general Q-constrained AVWTC. These bounds match

when specialized to the type constrained scenario. The lower

and upper bounds are given in Theorem 2 and 3, respectively.

The derivation of Theorem 1 from Theorems 2 and 3 mostly

relies on standard continuity of mutual information arguments

3An even stronger version of assumptions (iii) and (iv) was used in [6].
Specifically, the degraded property and the existence of a best channel to the
eavesdropper were assumed to hold not only for every pair of original states,
but also for any pair of averaged states (defined as convex combinations of
the original ones).

and is omitted due to space limitations (see [11, Section IV-D]

for the details).

Remark 5 (SS-Capacity Interpretation) The characteriza-

tion of the CR-assisted SS-capacity CR(W,V, QS) in (9) has

the common structure of two subtracted mutual information

terms. The first term, which corresponds to the capacity of

the main channel, suggests that the legitimate users effectively

see the averaged DMC WQ : X → P(Y) defined by

WQ(y|x) ,
∑

s∈S QS(s)Ws(y|x). In general, the capacity

of the averaged channel is no larger than the capacities of

the main channels Ws associated with each s ∈ S . Namely,

denoting the capacity of a PTP channel W : X → P(Y) by

C(W ), it holds that C(WQ) ≤ mins∈S C(Ws). This is due

to the convexity of the mutual information in the conditional

PMF (for a fixed marginal) and Jensen’s inequality.

The second (subtracted) mutual information term is the

loss in capacity induced by the secrecy requirement. The

independence of U and S allows one to rewrite the conditional

mutual information as I(U ;S,Z), which implies that security

must be ensured versus an eavesdropper with perfect CSI. The

formula in (9) can also be viewed as the secrecy-capacity of

the WTC with state variables that are i.i.d. according to QS ,

when no CSI is available to the legitimate users while the

eavesdropper has full CSI.

We have the following lower bound on the CR-assisted SS-

capacity of a Q-constrained AVWTC.

Theorem 2 (Achievability with Q-constrained States)

For any convex and closed Q ⊆ P(S), the CR-assisted

SS-capacity of the Q-constrained AVWTC (Wn,Vn,Q) is

lower bounded as

CR(W,V,Q) ≥ max
QU,X

[

min
Q

(1)
S

∈Q
I(U ;Y )− max

Q
(2)
S

∈Q
I(U ;Z|S)

]

,

(10)

where the mutual information terms are calculated with re-

spect to joint PMFs QU,XQ
(j)
S QY |X,SQZ|X,S , for j = 1, 2,

with QY |X,S(y|x, s) = Ws(y|x) and QZ|X,S(z|x, s) =
Vs(z|x), for all (s, x, y, z) ∈ S ×X ×Y ×Z , and |U| ≤ |X |.

The proof of Theorem 2 relies on the approach from [12]

for the error probability analysis of a CR-code over a family of

codes that grows doubly-exponentially with the blocklength.

Since this family of codes is too large to establish SS in

the sense of (7b), we use the Chernoff bound to show that

a sub-family with no more than polynomially many codes is

sufficient for reliability. Having that, the double-exponential

decay that [11, Lemma 1] provides is leveraged to establish

SS over the reduced CR-code. The fact that reliability and

security must hold with respect to the worst case choice in Q is

expressed in the minimization of I(U ;Y ) over all Q
(1)
S PMFs

and the maximization of I(U ;Z|S) over Q
(2)
S . The interested

reader is referred to the Section V of the full version of this

work [11] for the proof of Theorem 2.

Although no converse proof accompanies Theorem 2, the

lower bound it states is stronger than existing single-letter



achievability results in the literature as it assumes no ‘best

channel to the eavesdropper’, doesn’t impose any specific

structure on the state space, and ensures SS.

Remark 6 (Relation to Compound WTCs) Theorem 2 es-

tablishes that the AVWTC is no worse than the best known

single-letter secrecy rates for the compound WTC. Take the

Q-constrained AVWTC from Theorem 2 with some convex and

closed Q ⊆ P(S). Consider a compound WTC derived from

this AVWTC. The state of the compound WTC is any point

QS ∈ Q. The compound WTC itself follows the probability

law of the AVWTC, with the arbitrarily varying state Sn

replaced by an i.i.d. state according to QS and the Sn

sequence included in the channel output to the eavesdropper.

For this compound WTC, the RHS of (10) coincides with the

sharpest single-letter lower bound on the secrecy-capacity of

the compound WTC in the literature (see [4, Theorem 1] and

[5, Theorem ]).

A general upper bound on the CR-assisted SS-capacity of

a Q-constrained AVWTC is stated next. To state the result,

for any countable alphabet X we defined PQ(X ) as the set of

rational PMFs on X . Namely,

PQ(X ) ,
{

P ∈ P(X )
∣

∣

∣
P (x) ∈ Q, ∀x ∈ X

}

, (11)

where Q is the set of all rational numbers.

Theorem 3 (Upper Bound with Q-constrained States)

For any Q ⊆ P(S), the CR-assisted SS-capacity of the

Q-constrained AVWTC (Wn,Vn,Q) is upper bounded as

CR(W,V,Q) ≤ max
QV,U,X

inf
QS∈

Q∩PQ(S)

[

I(U ;Y |V )− I(U ;S,Z|V )
]

,

(12)

where the mutual information terms are calculated with

respect to a joint PMF QV,U,XQSQY |X,SQZ|X,S with

QY |X,S(y|x, s) = Ws(y|x) and QZ|X,S(z|x, s) = Vs(z|x),
for all (s, x, y, z) ∈ S × X × Y × Z . Furthermore, one may

restrict |U| ≤ |X | and |V| ≤ |X |2 − 1.

The max-inf structure of the RHS of (12) calls for a

derivation that is uniform in QS ∈ Q. The infimum is taken

over Q ∩ PQ(S) (rather than over Q) because the proof

effectively considers only the rational distributions in Q while

leveraging the monotonicity of the CR-assisted SS-capacity

with respect to Q (see Remark 4). The proof shows that

for each QS ∈ Q ∩ PQ(S), reliability and SS under a type

constraint QS imply similar performance for the same channel

but where the state sequence is i.i.d. according to QS . The

main difficulty is in showing that even when transmitting over

a DMC obtained by averaging the Ws ∈ W with respect to

QS , the normalized equivocation of the message given the

output sequence at the legitimate user is still small. This

is established via a novel argument based on distribution

coupling.

Remark 7 (Time-Sharing Random Variable V ) The con-

ditioning on V in the RHS of (12) effectively allows the legit-

imate user to choose a random mixture of QU,X distributions.

The advantage in doing so is that there might not exist a single

state distribution that is bad for the whole mixture. This is

reminiscent of a two-player zero-sum game, where the player

who fixes the strategy first often benefits from a mixed strategy.

When specializing to the type constrained scenario, however,

the time-sharing random variable is removed. This is since

when only one state distribution is allowed, the aforementioned

distribution mixing outcomes with no gain.

Remark 8 (Relation to Compound WTCs) The best previ-

ously known single-letter upper bound on the secrecy-capacity

of the compound WTC is due to Liang et al. [4, Theorem 2].

That upper bound has a min-max structure, and it is derived

by claiming that the secrecy-capacity of the compound WTC is

bounded above by this of the worst WTC in the set. This type

of bounds are commonly related to knowledge of the channel’s

state at the transmitter (cf. e.g., [13]). Indeed, as shown in [5],

the upper bound from [4] is tight for the compound WTC with

encoder CSI.

Specializing the max-inf upper bound from Theorem 3 to

the compound WTC described in Remark 6 (i.e., over an

appropriate constraint set), results in a strengthening of the

claim from [4, Theorem 2]. The obtained bound first minimizes

the difference of mutual information terms from the RHS of

(12) over the constraint set, and then maximizes the outcome

over the input distribution. It is easily observed the difference

between the two bounds can be strict. In fact, for the special

case of a PTP compound channel (i.e., without an eavesdrop-

per) our bound is the actual capacity, while the bound from

[4] is loose. A simple example is a channel that consist of

two orthogonal binary channels: one is noise free while the

other one is purely noise (i.e., binary symmetric channel with

crossover probability 1
2 ). The state determines which channel

is noisy, and the transmitter selects a binary input, which is

unknown to the receiver, specifying which channel to use (both

channels give an output each time, with one being pure noise).

For this instance, the compound capacity is 1
2 [bit/use], but

the looser min-max bound gives 1 [bit/use].

IV. AN EXAMPLE

Let X = Y = {0, 1} and Z = {0, 1, ?}, where ? is an erased

symbol. Further assume that the state space S decomposes as

S = S1×S2, where Sj = {0, 1}, for j = 1, 2. Let (W,V) be

an AVWTC, where the elements of W and V are indexed by

s1 ∈ S1 and s2 ∈ S2, respectively. Define the main channel

Ws1 : X → P(Y), for s1 ∈ S1, as Ws1(y|x) = 1{y=x⊕s1},

where ⊕ denotes the modulo 2 addition. For the eavesdropper,

let V0 : X → P(Z) be a noiseless channel, while V1 : X →
P(Z) outputs the symbol ? with probability 1. Namely,

Vs2(z|x) =

{

1{z=x}, s2 = 0

1{z=?}, s2 = 1
. (13)

Finally, we introduce a type constraint QS1,S2
= QS1

QS2
on

the state sequences, where QS1
(1) = ǫ and QS2

(1) = α, for



some ǫ ∈
[

0, 1
2

]

and α ∈ [0, 1]. Denote the CR-assisted SS-

capacity of this AVWTC by CR(ǫ, α).
By Theorem 1, The CR-assisted SS-capacity is

CR(ǫ, α) = max
QU,X

[

I(U ;Y )− I(U ;Z|S2)
]

, (14)

where the mutual information terms are cal-

culated with respect to the joint distribution

QS1
(s1)QS2

(s2)QU,X(u, x)Ws1(y|x)Vs2(z|x).
Note that for any QU,X ∈ P(U × X ), we have

I(U ;Z|S2)=QS2
(0)I(U ;Z|S2=0)+QS2

(1)I(U ;Z|S2=1)

(a)
= (1− α)I(U ;X), (15)

where (a) is because Z =? whenever S2 = 1 (thus nullifying

the second mutual information term), while given on S2 = 0,

we have Z = X and the conditioning is removed due to the

independence of S2 and (U,X). Consequently, (14) reduces

to

CR(ǫ, α) = max
QU,X

[

I(U ;Y )− (1− α)I(U ;X)
]

, (16)

which is calculated with respect to

QS1
(s1)QU,X(u, x)Ws1(y|x). Now, since S1 does not

appear in any of the mutual information terms, their value

remains unchanged if the above joint distribution is replaced

with QU,X(u, x)WQ1
(y|x), where WQ1

: X → P(Y) is

the average DMC WQ1
(y|x) =

∑

s1∈S1
QS1

(s1)Ws1(y|x)
(see Remark 5). Noting that the DMC WQ1

is a binary

symmetric channel with crossover probability ǫ (BSC(ǫ)), we

have that CR(ǫ, α) is the secrecy-capacity of BS-BE WTC

with a BSC(ǫ) between the legitimate users and a binary

erasure channel with erasure probability α (BEC(α)) to the

eavesdropper [8].

Remark 9 Interestingly, (16) is also the SS-capacity of the

WTC of type II (WTCII) with a BSC(ǫ) to the legitimate user

and an eavesdropper who can actively choose any ⌊n(1 −
α)⌋ of the transmitted symbols to observe. [14]. This is not

surprising since the WTCII with a noisy main channel is a

particular instance of a type constrained AVWTC.

Fig. 2 depicts the CR-assisted SS-capacity of the considered

AVWTC as a function of type constraints on the main and on

the eavesdropper’s channels. The variation of CR(ǫ, α) as a

function of QS1
(1) = ǫ for a fixed α = 0.4 is shown in Fig.

2(a), while Fig. 2(b) presents the SS-capacity as a function of

QS2
(1) = α when ǫ = 0.1 is fixed. The curves are plotted by

parametrizing the joint PMF of the binary random variables

U and X and spanning over the possible probability values.

As mentioned before, CR(ǫ, α) is also the secrecy-capacity

of a BS-BE WTC, which was studied in [8]. In that work it

was shown that the secrecy-capacity is zero if α < 4ǫ(1− ǫ).
When ǫ = 0.1 the threshold value of α is 0.36. Indeed, Fig.

2(b) reveals that CR(0.1, α) = 0 for any α < 0.36. Beyond

0.36, the SS-capacity monotonically increases with α, since

the larger the probability of an erasure, the worse the channel

to the eavesdropper is. From the opposite perspective, a fixed

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

α
(a) (b)

C
R
(ǫ
,α

)

α = 4ǫ(1− ǫ)

ǫ

C
R
(ǫ
,α

)

ǫ1 = 1−
√
1−α
2

ǫ2 = 1+
√
1−α
2

Fig. 2: CR-assisted SS-capacity CR(ǫ, α) versus: (a) the proscribed
type for the main channel QS1(1) = ǫ, which corresponds to the
portion of flipped symbols in the BS-BE WTC; (b) CR-assisted SS-
capacity CR(ǫ, α) versus: (a) the proscribed type for the eavesdrop-
per’s channel QS2(1) = α, which corresponds to the portion of
erasures in the BS-BE WTC.

α = 0.4 induces two real solutions to the equation 0.4 =
4ǫ(1 − ǫ), which are ǫ1 ≈ 0.1127 and ǫ2 ≈ 0.8872. The

condition 0.4 < 4ǫ(1− ǫ) is then satisfied for any ǫ ∈ (ǫ1, ǫ2),
which gives a zero SS-capacity in that region in Fig. 2(b).

Also observe that as a function of ǫ, CR(ǫ, 0.4) grows as the

crossover probability approaches the extreme values of 0 or 1.
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