Gaussian-Smoothed Optimal Transport: Metric Structure and Statistical Efficiency

Ziv Goldfeld

Cornell University

Colloquium, Center of Applied Mathematics, Cornell University

November 1st, 2019

- Generative adversarial networks (GANs)
- Optimal transport (OT) and Wasserstein metric
- Entropic optimal transport
- Gaussian-smoothed optimal transport

• Which face is fake?

• Which face is fake?

• Unsupervised Learning:

• Which face is fake?

• Unsupervised Learning:

Data: $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X \text{ samples (no labels!)}$

- Which face is fake?
- Unsupervised Learning:
 - **Data:** $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X \text{ samples (no labels!)}$
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$

- Which face is fake?
- Unsupervised Learning:
 - **Data:** $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X \text{ samples (no labels!)}$
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$
 - **Examples:** Generative models, clustering, dim. reduction, etc.

- Which face is fake?
- Unsupervised Learning:
 - **Data:** $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X \text{ samples (no labels!)}$
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$
 - Examples: Generative models, clustering, dim. reduction, etc.

- Which face is fake?
- Unsupervised Learning:
 - **Data:** $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X \text{ samples (no labels!)}$
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$
 - **Examples: Generative models**, clustering, dim. reduction, etc.

• GANs [Goodfellow et al'14]:

- Which face is fake?
- Unsupervised Learning:
 - **Data:** $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X \text{ samples (no labels!)}$
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$
 - Examples: Generative models, clustering, dim. reduction, etc.

- GANs [Goodfellow et al'14]:
 - Sample-to-sample

- Which face is fake?
- Unsupervised Learning:
 - **Data:** ${X_i}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X$ samples (no labels!)
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$
 - Examples: Generative models, clustering, dim. reduction, etc.

Data

- GANs [Goodfellow et al'14]:
 - Sample-to-sample

Generated

- Which face is fake?
- Unsupervised Learning:
 - **Data:** ${X_i}_{i=1}^n \stackrel{\text{iid}}{\sim} P_X$ samples (no labels!)
 - **Goal:** Learn underlying structure of data, e.g., $Q_X \approx P_X$
 - **Examples: Generative models**, clustering, dim. reduction, etc.

Artwork, coloring, super-resolution, simulations, etc.

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

• Discriminate: $d_{\varphi}(X)$ and $d_{\varphi}(X_g)$ are maximally different

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

• Discriminate: $d_{\varphi}(X)$ and $d_{\varphi}(X_g)$ are maximally different

⇒ Minimax Game:

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

• Discriminate: $d_{\varphi}(X)$ and $d_{\varphi}(X_g)$ are maximally different

 \implies Minimax Game: $\mathbb{E}d_{\varphi}(X)$

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

• Discriminate: $d_{\varphi}(X)$ and $d_{\varphi}(X_g)$ are maximally different

 \implies Minimax Game: $\mathbb{E}d_{\varphi}(X) - \mathbb{E}d_{\varphi}(g_{\theta}(Z))$

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

Minimax Game:

• Discriminate: $d_{\varphi}(X)$ and $d_{\varphi}(X_g)$ are maximally different

 $\sup_{\varphi} \mathbb{E} d_{\varphi}(X) - \mathbb{E} d_{\varphi} \big(g_{\theta}(Z) \big)$

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

• Discriminate: $d_{\varphi}(X)$ and $d_{\varphi}(X_g)$ are maximally different

 $\implies \mathsf{Minimax Game:} \quad \inf_{\theta} \sup_{\varphi} \mathbb{E} d_{\varphi}(X) - \mathbb{E} d_{\varphi}(g_{\theta}(Z))$

<u>Discriminator</u>: DNN $d_{\varphi} : \mathbb{R}^d \to \mathbb{R}$

• Discriminate: $d_{arphi}(X)$ and $d_{arphi}(X_g)$ are maximally different

 \implies Minimax Game:

$$\inf_{\theta} \sup_{\varphi} \mathbb{E} d_{\varphi}(X) - \mathbb{E} d_{\varphi}(g_{\theta}(Z))$$

Statistical Divergences: Measure 'distance' between prob. distributions

Statistical Divergences: Measure 'distance' between prob. distributions

• $\mathcal{P}(\mathbb{R}^d) = \{ \text{Set of probability distributions on } \mathbb{R}^d \}$

Statistical Divergences: Measure 'distance' between prob. distributions

- $\mathcal{P}(\mathbb{R}^d) = \{ \text{Set of probability distributions on } \mathbb{R}^d \}$
- $\delta:\mathcal{P}(\mathbb{R}^d)\times\mathcal{P}(\mathbb{R}^d)\to [0,+\infty)$ is a divergence if

$$\delta(P,Q)=0\quad\Longleftrightarrow\quad P=Q$$

Statistical Divergences: Measure 'distance' between prob. distributions

- $\mathcal{P}(\mathbb{R}^d) = \{ \text{Set of probability distributions on } \mathbb{R}^d \}$
- $\delta:\mathcal{P}(\mathbb{R}^d)\times\mathcal{P}(\mathbb{R}^d)\to [0,+\infty)$ is a divergence if

 $\delta(P,Q)=0\quad\Longleftrightarrow\quad P=Q$

• If symmetric & $\delta(P,Q) \leq \delta(P,R) + \delta(R,Q)$ then δ is a <u>metric</u>!

Statistical Divergences: Measure 'distance' between prob. distributions

- $\mathcal{P}(\mathbb{R}^d) = \{ \text{Set of probability distributions on } \mathbb{R}^d \}$
- $\delta:\mathcal{P}(\mathbb{R}^d)\times\mathcal{P}(\mathbb{R}^d)\to [0,+\infty)$ is a divergence if

 $\delta(P,Q)=0\quad\Longleftrightarrow\quad P=Q$

• If symmetric & $\delta(P,Q) \leq \delta(P,R) + \delta(R,Q)$ then δ is a <u>metric</u>!

Back to Generative Modeling: Pick $\delta(\cdot, \cdot)$ and train generator to

 $\inf_{\theta} \delta\left(P_X, Q_{X_d}^{(\theta)}\right)$

Statistical Divergences: Measure 'distance' between prob. distributions

- $\mathcal{P}(\mathbb{R}^d) = \{ \text{Set of probability distributions on } \mathbb{R}^d \}$
- $\delta:\mathcal{P}(\mathbb{R}^d)\times\mathcal{P}(\mathbb{R}^d)\to [0,+\infty)$ is a divergence if

 $\delta(P,Q)=0\quad\Longleftrightarrow\quad P=Q$

• If symmetric & $\delta(P,Q) \leq \delta(P,R) + \delta(R,Q)$ then δ is a <u>metric</u>!

Back to Generative Modeling: Pick $\delta(\cdot, \cdot)$ and train generator to

 $\inf_{\theta} \delta\left(P_X, Q_{X_d}^{(\theta)}\right)$

 $oldsymbol{st}$ Both perspectives coincide if $\delta(\cdot,\cdot)$ is the 1-Wasserstein metric

Statistical Divergences: Measure 'distance' between prob. distributions

- $\mathcal{P}(\mathbb{R}^d) = \{ \text{Set of probability distributions on } \mathbb{R}^d \}$
- $\delta:\mathcal{P}(\mathbb{R}^d)\times\mathcal{P}(\mathbb{R}^d)\to [0,+\infty)$ is a divergence if

 $\delta(P,Q)=0\quad\Longleftrightarrow\quad P=Q$

• If symmetric & $\delta(P,Q) \leq \delta(P,R) + \delta(R,Q)$ then δ is a <u>metric</u>!

Back to Generative Modeling: Pick $\delta(\cdot, \cdot)$ and train generator to

 $\inf_{\theta} \delta\left(P_X, Q_{X_d}^{(\theta)}\right)$

st Both perspectives coincide if $\delta(\cdot, \cdot)$ is the 1-Wasserstein metric

B Wasserstein GAN achieves SOTA performance [Arjovsky et al'17]

Optimal Transport: The 1-Wasserstein Metric

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

Optimal Transport: The 1-Wasserstein Metric

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

• Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

• Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$

• Cost: c(x,y) = ||x - y|| for transporting x to y

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

- Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$
- **Cost:** c(x, y) = ||x y|| for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein metric:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

- Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$
- **Cost:** c(x, y) = ||x y|| for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein metric:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Comments:

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

- Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$
- **Cost:** c(x, y) = ||x y|| for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein metric:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X-Y|$$

Comments:

• Operational Meaning: Minimize work of transporting P to Q

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

- Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$
- **Cost:** c(x,y) = ||x y|| for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein metric:
$$\mathsf{W}_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} \| X - Y \|$$

Comments:

- Operational Meaning: Minimize work of transporting P to Q
- Robustness to Supp. Mismatch: $W_1(P,Q) < \infty$, $\forall P,Q \in \mathcal{P}_1(\mathbb{R}^d)$

Setup: $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ (subscript for finite 1st moment)

- Couplings: $\Pi(P,Q) = \left\{ \pi_{X,Y} \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) \mid \pi_X = P \& \pi_Y = Q \right\}$
- **Cost:** c(x, y) = ||x y|| for transporting x to y

Definition (1-Wasserstein)

The 1-Wasserstein metric:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X-Y|$$

Comments:

- Operational Meaning: Minimize work of transporting P to Q
- Robustness to Supp. Mismatch: $W_1(P,Q) < \infty$, $\forall P,Q \in \mathcal{P}_1(\mathbb{R}^d)$
- Metric: $(\mathcal{P}_1(\mathbb{R}^d), \mathsf{W}_1)$ is metric space (metrizes weak* convergence)

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

$$\mathsf{W}_1(P,Q) = \sup_{\|f\|_{\mathsf{Lip}} \le 1} \mathbb{E}_P f(X) - \mathbb{E}_Q f(Y)$$

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

$$\mathsf{W}_1(\boldsymbol{P}, Q) = \sup_{\|f\|_{\mathsf{Lip}} \leq 1} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_Q f(Y)$$

•
$$P = P_X$$
 (X (real) data sample)

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

$$\mathsf{W}_1(\boldsymbol{P},\boldsymbol{Q}) = \sup_{\|f\|_{\mathsf{Lip}} \leq 1} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$$

•
$$P = P_X$$
 (X (real) data sample)
• $Q = Q_{X_q}^{(heta)}$ (Y = $g_{ heta}(Z)$ gen. sample)

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

$$\mathsf{W}_1(\boldsymbol{P},\boldsymbol{Q}) = \sup_{\|f\|_{\mathsf{Lip}} \leq 1} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$$

•
$$P = P_X (X \text{ (real) data sample})$$

•
$$Q = Q_{X_g}^{(b)}$$
 $(Y = g_{ heta}(Z)$ gen. sample

•
$$f=d_{arphi}$$
 (w/ 1-Lip constraint)

1-Wasserstein:
$$W_1(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi} ||X - Y||$$

Kantorovich-Rubinstein Duality: Equivalent representation

$$\mathsf{W}_1(\boldsymbol{P}, \boldsymbol{Q}) = \sup_{\|f\|_{\mathsf{Lip}} \leq 1} \mathbb{E}_{\boldsymbol{P}} f(\boldsymbol{X}) - \mathbb{E}_{\boldsymbol{Q}} f(\boldsymbol{Y})$$

Back to GANs:

•
$$P = P_X$$
 (X (real) data sample)

•
$$Q = Q_{X_g}^{(heta)}$$
 $(Y = g_ heta(Z)$ gen. sample)

•
$$f = d_{arphi}$$
 (w/ 1-Lip constraint)

 \implies Frameworks Coincide:

$$\inf_{\theta} \mathsf{W}_1\Big(P_X, Q_{X_d}^{(\theta)}\Big) \cong \inf_{\theta} \sup_{\varphi: \|d_{\varphi}\|_{\mathsf{Lip}} \leq 1} \mathbb{E} d_{\varphi}(X) - \mathbb{E} d_{\varphi}(g_{\theta}(Z))$$

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)}), X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)})$, $X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)}), X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

• $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P_X \in \mathcal{P}(\mathbb{R}^d)$

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)}), X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

- $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P_X \in \mathcal{P}(\mathbb{R}^d)$
- Empirical distribution $\hat{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)})$, $X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

- $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P_X \in \mathcal{P}(\mathbb{R}^d)$
- Empirical distribution $\hat{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

 \implies Inherently we work with $W_1(\hat{P}_n, Q_{X_d}^{(\theta)})$

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)})$, $X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

- $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P_X \in \mathcal{P}(\mathbb{R}^d)$
- Empirical distribution $\hat{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

 \implies Inherently we work with $W_1(\hat{P}_n, Q_{X_d}^{(\theta)})$

 $\left[\mathsf{W}_1\!\left(\hat{P}_n, Q_{X_d}^{(\theta)}\right) \approx \mathsf{W}_1\!\left(P_X, Q_{X_d}^{(\theta)}\right) \text{ hopefully}...\right]$

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)}), X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

- $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P_X \in \mathcal{P}(\mathbb{R}^d)$
- Empirical distribution $\hat{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

 \implies Inherently we work with $W_1(\hat{P}_n, Q_{X_d}^{(\theta)})$

$$\left[\mathsf{W}_1\left(\hat{P}_n, Q_{X_d}^{(heta)}
ight) pprox \mathsf{W}_1\left(P_X, Q_{X_d}^{(heta)}
ight)$$
 hopefully...]

Theorem (Dudley'69)

For all $d \geq 3$, $\mathbb{E} \left| W_1(\hat{P}_n, Q) - W_1(P, Q) \right| \asymp n^{-\frac{1}{d}}$

<u>Goal</u>: Find gen. g_{θ} to minimize $W_1(P_X, Q_{X_d}^{(\theta)})$, $X_d^{(\theta)} \triangleq g_{\theta}(Z) \sim Q_{X_d}^{(\theta)}$.

Empirical Approximation: In reality we don't have P_X but data

- $\{X_i\}_{i=1}^n$ are i.i.d. samples from $P_X \in \mathcal{P}(\mathbb{R}^d)$
- Empirical distribution $\hat{P}_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$

 \implies Inherently we work with $W_1(\hat{P}_n, Q_{X_d}^{(\theta)})$

 $\left[\mathsf{W}_1\left(\hat{P}_n, Q_{X_d}^{(heta)}
ight) pprox \mathsf{W}_1\left(P_X, Q_{X_d}^{(heta)}
ight)$ hopefully...]

Theorem (Dudley'69)

For all
$$d \geq 3$$
, $\mathbb{E} \left| W_1(\hat{P}_n, Q) - W_1(P, Q) \right| \asymp n^{-\frac{1}{d}}$

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} \| P \otimes Q)$ is the mutual information

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} \| P \otimes Q)$ is the mutual information

The Good:

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} \| P \otimes Q)$ is the mutual information

The Good:

• Regularizer favors weakly-dependent coupling

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Good:

- Regularizer favors weakly-dependent coupling
- $\mathsf{S}_c^{(\epsilon)}(P,Q)$ is strongly convex optimization problem

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Good:

- Regularizer favors weakly-dependent coupling
- $\mathsf{S}_c^{(\epsilon)}(P,Q)$ is strongly convex optimization problem
- Two-sample statistical efficiency (for certain costs):

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Good:

- Regularizer favors weakly-dependent coupling
- $\mathsf{S}_c^{(\epsilon)}(P,Q)$ is strongly convex optimization problem
- Two-sample statistical efficiency (for certain costs):

Theorem (Genevay et al'19)

For C^{∞} and L-Lipschitz cost c, and any $d \ge 1$, $\epsilon > 0$:

$$\mathbb{E} \left| S_c^{(\epsilon)}(\hat{P}_n, \hat{Q}_n) - S_c^{(\epsilon)}(P, Q) \right| \lesssim e^{\frac{c}{\epsilon}} \left(1 + \frac{1}{\epsilon^{\lfloor d/2 \rfloor}} \right) n^{-\frac{1}{2}}$$

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Bad (Specializing to Distance Cost):

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} \| P \otimes Q)$ is the mutual information

The Bad (Specializing to Distance Cost):

• c(x,y) = ||x - y|| does not fall under the theorem's framework

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Bad (Specializing to Distance Cost):

• c(x, y) = ||x - y|| does not fall under the theorem's framework • $S_1^{(\epsilon)}$ is <u>not</u> a metric on $\mathcal{P}_1(\mathbb{R}^d)$ for any $\epsilon > 0$ (nor Sinkhorn loss)

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Bad (Specializing to Distance Cost):

- c(x, y) = ||x − y|| does not fall under the theorem's framework
 S₁^(ϵ) is <u>not</u> a metric on P₁(ℝ^d) for any ϵ > 0 (nor Sinkhorn loss)
- Dual form includes two potentials and regularizer:

$$S_1^{(\epsilon)}(P,Q) = \sup_{u,v \in \mathcal{C}(\mathbb{R}^d)} \mathbb{E}_{P \otimes Q} \left[u(X) + v(Y) - \epsilon e^{\frac{u(X) + v(Y) - \|X - Y\|}{\epsilon}} \right] + \epsilon$$

Entropic Optimal Transport: For $\epsilon > 0$ and cost c(x, y):

$$\mathsf{S}_{c}^{(\epsilon)}(P,Q) \triangleq \inf_{\pi_{X,Y} \in \Pi(P,Q)} \mathbb{E}_{\pi}c(X,Y) + \epsilon I_{\pi}(X;Y)$$

where $I_{\pi}(X;Y) \triangleq \mathsf{D}_{\mathsf{KL}}(\pi_{X,Y} || P \otimes Q)$ is the mutual information

The Bad (Specializing to Distance Cost):

- c(x,y) = ||x − y|| does not fall under the theorem's framework
 S₁^(ε) is <u>not</u> a metric on P₁(ℝ^d) for any ε > 0 (nor Sinkhorn loss)
- Dual form includes two potentials and regularizer:

$$S_1^{(\epsilon)}(P,Q) = \sup_{u,v \in \mathcal{C}(\mathbb{R}^d)} \mathbb{E}_{P \otimes Q} \left[u(X) + v(Y) - \epsilon e^{\frac{u(X) + v(Y) - \|X - Y\|}{\epsilon}} \right] + \epsilon$$

 \implies No direct correspondence to minimax GAN formulation

Gaussian-Smoothed Optimal Transport

Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P \ast \mathcal{N}_{\sigma}, Q \ast \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Gaussian-Smoothed Optimal Transport

Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$

Gaussian-Smoothed Optimal Transport

Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$

$$\begin{aligned} X \perp Z_1 & \Longrightarrow & X + Z_1 \sim P * \mathcal{N}_{\sigma} \\ Y \perp Z_2 & \Longrightarrow & Y + Z_2 \sim Q * \mathcal{N}_{\sigma} \end{aligned}$$
Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$ $X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$ $Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$

 \implies W₁ distance between smoothed distributions

Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P \ast \mathcal{N}_{\sigma}, Q \ast \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation:
$$X \sim P, Y \sim Q$$
 and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$
 $X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$
 $Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$

 \implies W₁ distance between smoothed distributions

Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$ $X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$ $Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$

 \implies W₁ distance between smoothed distributions

GAN-Compatibility: GOT is W_1 but between convolved distributions

Definition (ZG-Greenewald'19)

For $\sigma \geq 0$, the Gaussian-smoothed OT (GOT) between P and Q is

$$\mathsf{W}_{1}^{(\sigma)}(P,Q) \triangleq \mathsf{W}_{1}(P \ast \mathcal{N}_{\sigma}, Q \ast \mathcal{N}_{\sigma}),$$

where $\mathcal{N}_{\sigma} \triangleq \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is a *d*-dimensional isotropic Gaussian.

Interpretation: $X \sim P$, $Y \sim Q$ and $Z_1, Z_2 \sim \mathcal{N}_{\sigma}$ $X \perp Z_1 \implies X + Z_1 \sim P * \mathcal{N}_{\sigma}$ $Y \perp Z_2 \implies Y + Z_2 \sim Q * \mathcal{N}_{\sigma}$

 \implies W₁ distance between smoothed distributions

<u>GAN-Compatibility</u>: GOT is W₁ but between convolved distributions • KR Duality: $W_1^{(\sigma)}(P, Q) = \sup_{\|f\|_{Lip} \le 1} \mathbb{E}f(X + Z) - \mathbb{E}f(Y + Z)$

High Level: GOT inherits the metric structure of 1-Wasserstein

High Level: GOT inherits the metric structure of 1-Wasserstein

Theorem (ZG-Greenewald'19)

$$\left(\mathcal{P}_1(\mathbb{R}^d), \mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak* conv.).

High Level: GOT inherits the metric structure of 1-Wasserstein

Theorem (ZG-Greenewald'19)

$$\left(\mathcal{P}_1(\mathbb{R}^d),\mathsf{W}_1^{(\sigma)}\right)$$
 is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak* conv.).

Key Idea for Proof: Use Characteristic functions $\phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and:

High Level: GOT inherits the metric structure of 1-Wasserstein

Theorem (ZG-Greenewald'19)

 $\left(\mathcal{P}_1(\mathbb{R}^d),\mathsf{W}_1^{(\sigma)}\right)$ is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_1^{(\sigma)}$ metrizes weak* conv.).

Key Idea for Proof: Use Characteristic functions $\phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and: $\phi_{P*\mathcal{N}_{\sigma}}(t) = \phi_P(t)\phi_{\mathcal{N}_{\sigma}}(t)$ together with $\phi_{\mathcal{N}_{\sigma}}(t) = e^{-\frac{\sigma^2 ||t||^2}{2}} \neq 0, \forall t.$

High Level: GOT inherits the metric structure of 1-Wasserstein

Theorem (ZG-Greenewald'19)

$$\left(\mathcal{P}_{1}(\mathbb{R}^{d}),\mathsf{W}_{1}^{(\sigma)}\right)$$
 is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_{1}^{(\sigma)}$ metrizes weak* conv.).

Key Idea for Proof: Use Characteristic functions $\phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and: $\phi_{P*\mathcal{N}_{\sigma}}(t) = \phi_P(t)\phi_{\mathcal{N}_{\sigma}}(t)$ together with $\phi_{\mathcal{N}_{\sigma}}(t) = e^{-\frac{\sigma^2 ||t||^2}{2}} \neq 0, \forall t.$

Corollary (ZG-Greenewald'19)

Let
$$P_n, P \in \mathcal{P}(\mathbb{R}^d)$$
, $n \ge 1$. Then: $\mathsf{W}_1^{(\sigma)}(P_n, P) \to 0$ iff $\mathsf{W}_1(P_n, P) \to 0$

High Level: GOT inherits the metric structure of 1-Wasserstein

Theorem (ZG-Greenewald'19)

$$\left(\mathcal{P}_{1}(\mathbb{R}^{d}),\mathsf{W}_{1}^{(\sigma)}\right)$$
 is metric space, $\forall \sigma \geq 0$ (and $\mathsf{W}_{1}^{(\sigma)}$ metrizes weak* conv.).

Key Idea for Proof: Use Characteristic functions $\phi_P(t) \triangleq \mathbb{E}_P[e^{itX}]$ and: $\phi_{P*\mathcal{N}_{\sigma}}(t) = \phi_P(t)\phi_{\mathcal{N}_{\sigma}}(t)$ together with $\phi_{\mathcal{N}_{\sigma}}(t) = e^{-\frac{\sigma^2 ||t||^2}{2}} \neq 0, \forall t.$

Corollary (ZG-Greenewald'19)

Let
$$P_n, P \in \mathcal{P}(\mathbb{R}^d)$$
, $n \ge 1$. Then: $\mathsf{W}_1^{(\sigma)}(P_n, P) \to 0$ iff $\mathsf{W}_1(P_n, P) \to 0$

❀ GOT induces exact same topology as classic Wasserstein

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{O} \hspace{0.1 in} \mathsf{W}_1^{(\sigma)}(P,Q) \text{ is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{O} \hspace{0.1 in} \mathrm{W}_{1}^{(\sigma)}(P,Q) \text{ is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{O} \hspace{0.1 in} \mathrm{W}_{1}^{(\sigma)}(P,Q) \text{ is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

$$Im_{\sigma \to \infty} \mathsf{W}_1^{(\sigma)}(P,Q) \neq 0, \text{ for some } P,Q \in \mathcal{P}_1(\mathbb{R}^d)$$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{0} \hspace{0.1 cm} \mathrm{W}_{1}^{(\sigma)}(P,Q) \hspace{0.1 cm} \text{is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

$$Im_{\sigma \to \infty} \mathsf{W}_1^{(\sigma)}(P,Q) \neq 0, \text{ for some } P,Q \in \mathcal{P}_1(\mathbb{R}^d)$$

Key Idea for Proof: Use dual form to relate $W_1^{(\sigma)}$ and W_1 as:

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{0} \hspace{0.1 cm} \mathrm{W}_{1}^{(\sigma)}(P,Q) \hspace{0.1 cm} \text{is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

$$Im_{\sigma \to \infty} \mathsf{W}_1^{(\sigma)}(P,Q) \neq 0, \text{ for some } P,Q \in \mathcal{P}_1(\mathbb{R}^d)$$

Key Idea for Proof: Use dual form to relate $W_1^{(\sigma)}$ and W_1 as:

Lemma (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$, and $0 \le \sigma_1 < \sigma_2 < +\infty$. We have

 $\mathsf{W}_{1}^{(\sigma_{2})}(P,Q) \leq \mathsf{W}_{1}^{(\sigma_{1})}(P,Q) \leq \mathsf{W}_{1}^{(\sigma_{2})}(P,Q) + 2d\sqrt{\sigma_{2}^{2} - \sigma_{1}^{2}}.$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{0} \hspace{0.1 cm} \mathrm{W}_{1}^{(\sigma)}(P,Q) \hspace{0.1 cm} \text{is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

$$Im_{\sigma \to \infty} \mathsf{W}_1^{(\sigma)}(P,Q) \neq 0, \text{ for some } P,Q \in \mathcal{P}_1(\mathbb{R}^d)$$

Third Item: Intuitively should decay to 0?

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

 $\textcircled{0} \hspace{0.1 cm} \mathrm{W}_{1}^{(\sigma)}(P,Q) \hspace{0.1 cm} \text{is continuous and mono. non-increasing in } \sigma \in [0,+\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

$$Im_{\sigma \to \infty} \mathsf{W}_1^{(\sigma)}(P,Q) \neq 0, \text{ for some } P,Q \in \mathcal{P}_1(\mathbb{R}^d)$$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

• $W_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma \in [0, +\infty)$

$$lim_{\sigma \to 0} \mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(P,Q)$$

③
$$\lim_{\sigma\to\infty} W_1^{(\sigma)}(P,Q) \neq 0$$
, for some $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$

$$\mathsf{W}_1^{(\sigma)}(P,Q) = \mathsf{W}_1(\mathcal{N}(x,\sigma^2 \mathbf{I}_d), \mathcal{N}(y,\sigma^2 \mathbf{I}_d))$$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

• $W_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma \in [0, +\infty)$

$$Iim_{\sigma \to 0} \operatorname{W}_{1}^{(\circ)}(P,Q) = \operatorname{W}_{1}(P,Q)$$

③
$$\lim_{\sigma\to\infty} W_1^{(\sigma)}(P,Q) \neq 0$$
, for some $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$

$$W_1^{(\sigma)}(P,Q) = W_1(\mathcal{N}(x,\sigma^2 \mathbf{I}_d), \mathcal{N}(y,\sigma^2 \mathbf{I}_d))$$
$$\geq \left\| \mathbb{E}_{\mathcal{N}(x,\sigma^2 \mathbf{I}_d)} X - \mathbb{E}_{\mathcal{N}(y,\sigma^2 \mathbf{I}_d)} Y \right\|$$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$. The following hold:

• $W_1^{(\sigma)}(P,Q)$ is continuous and mono. non-increasing in $\sigma \in [0, +\infty)$

$$\lim_{\sigma \to 0} \mathsf{VV}_1^* (P,Q) = \mathsf{VV}_1(P,Q)$$

③
$$\lim_{\sigma\to\infty} \mathsf{W}_1^{(\sigma)}(P,Q) \neq 0$$
, for some $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$

$$\mathcal{W}_{1}^{(\sigma)}(P,Q) = \mathcal{W}_{1}(\mathcal{N}(x,\sigma^{2}\mathbf{I}_{d}),\mathcal{N}(y,\sigma^{2}\mathbf{I}_{d}))$$

$$\geq \left\|\mathbb{E}_{\mathcal{N}(x,\sigma^{2}\mathbf{I}_{d})}X - \mathbb{E}_{\mathcal{N}(y,\sigma^{2}\mathbf{I}_{d})}Y\right\|$$

$$= \|x - y\|$$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let:

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let:

• $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $\mathsf{W}_1^{(\sigma_k)}(\mu, \nu)$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let: • $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $W_1^{(\sigma_k)}(\mu, \nu)$ Then $\pi_k \xrightarrow[k \to \infty]{} \pi$ (weak*ly) such that:

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

 $\begin{array}{l} \mbox{Fix } P,Q \in \mathcal{P}_1(\mathbb{R}^d) \mbox{ and } \sigma_k \searrow \sigma \geq 0. \mbox{ Let:} \\ \bullet \ \{\pi_k\}, \mbox{ s.t. } \pi_k \in \Pi(P \ast \mathcal{N}_{\sigma_k}, Q \ast \mathcal{N}_{\sigma_k}) \mbox{ is optimal for } \mathbb{W}_1^{(\sigma_k)}(\mu,\nu) \\ \mbox{ Then } \pi_k \xrightarrow[k \to \infty]{} \pi \ (\mbox{weak*ly}) \mbox{ such that:} \\ \bullet \ \pi \in \Pi(P \ast \mathcal{N}_{\sigma}, Q \ast \mathcal{N}_{\sigma}) \end{array}$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let: • $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $W_1^{(\sigma_k)}(\mu, \nu)$ Then $\pi_k \xrightarrow[k \to \infty]{} \pi$ (weak*ly) such that: • $\pi \in \Pi(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma})$ • π is optimal for $W_1^{(\sigma)}(\mu, \nu)$

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let: • $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $W_1^{(\sigma_k)}(\mu, \nu)$ Then $\pi_k \xrightarrow[k \to \infty]{} \pi$ (weak*ly) such that: • $\pi \in \Pi(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma})$ • π is optimal for $W_1^{(\sigma)}(\mu, \nu)$

Comments:

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let: • $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $W_1^{(\sigma_k)}(\mu, \nu)$ Then $\pi_k \xrightarrow[k \to \infty]{} \pi$ (weak*ly) such that: • $\pi \in \Pi(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma})$ • π is optimal for $W_1^{(\sigma)}(\mu, \nu)$

Comments:

• In words: Not only opt. values converge, but also optimizers

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let: • $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $W_1^{(\sigma_k)}(\mu, \nu)$ Then $\pi_k \xrightarrow[k \to \infty]{} \pi$ (weak*ly) such that: • $\pi \in \Pi(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma})$ • π is optimal for $W_1^{(\sigma)}(\mu, \nu)$

Comments:

- In words: Not only opt. values converge, but also optimizers
- $\sigma = 0$: Gaussian-smoothed opt. plans converge to W₁ opt. coupling.

High Level: $W_1^{(\sigma)}(P,Q)$ is well-behaved func. of σ (fixed $P,Q \in \mathcal{P}_1(\mathbb{R}^d)$)

Theorem (ZG-Greenewald'19)

Fix $P, Q \in \mathcal{P}_1(\mathbb{R}^d)$ and $\sigma_k \searrow \sigma \ge 0$. Let: • $\{\pi_k\}$, s.t. $\pi_k \in \Pi(P * \mathcal{N}_{\sigma_k}, Q * \mathcal{N}_{\sigma_k})$ is optimal for $W_1^{(\sigma_k)}(\mu, \nu)$ Then $\pi_k \xrightarrow[k \to \infty]{} \pi$ (weak*ly) such that: • $\pi \in \Pi(P * \mathcal{N}_{\sigma}, Q * \mathcal{N}_{\sigma})$ • π is optimal for $W_1^{(\sigma)}(\mu, \nu)$

Comments:

- In words: Not only opt. values converge, but also optimizers
- $\sigma = 0$: Gaussian-smoothed opt. plans converge to W₁ opt. coupling.
- **Proof Idea:** Γ -convergence (CoV) & Tightness of $\Pi(\mu, \nu)$ (Topology)

<u>High Level</u>: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have:

$$\mathbb{E}\mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have:

$$\mathbb{E}\mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have:

$$\mathbb{E}\mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

• True for any subgauassian P (entropic OT assumes compact supp(P))

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have:

$$\mathbb{E}\mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

- True for any subgauassian P (entropic OT assumes compact ${\rm supp}(P))$
- Generalizes to subgauassian noise distributions with monotone density
High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have:

$$\mathbb{E}\mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

- True for any subgauassian P (entropic OT assumes compact $\mathsf{supp}(P)$)
- Generalizes to subgauassian noise distributions with monotone density
- Implies fast convergence of the other empirical approx. setups:

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have:

$$\operatorname{EW}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

- True for any subgauassian P (entropic OT assumes compact $\mathsf{supp}(P)$)
- Generalizes to subgauassian noise distributions with monotone density
- Implies fast convergence of the other empirical approx. setups:
 - One-Sample: $\mathbb{E} \left| \mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},Q) \mathsf{W}_{1}^{(\sigma)}(P,Q) \right| \in O\left(n^{-\frac{1}{2}}\right)$ (GANs)

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have: $\mathbb{E}V$

$$\operatorname{EW}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

- True for any subgauassian P (entropic OT assumes compact $\mathsf{supp}(P)$)
- Generalizes to subgauassian noise distributions with monotone density
- Implies fast convergence of the other empirical approx. setups:
 - One-Sample: $\mathbb{E}\left|\mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},Q) \mathsf{W}_{1}^{(\sigma)}(P,Q)\right| \in O\left(n^{-\frac{1}{2}}\right)$ (GANs)
 - ► Two-Sample: $\mathbb{E} \left| \mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},\hat{Q}_{n}) \mathsf{W}_{1}^{(\sigma)}(P,Q) \right| \in O\left(n^{-\frac{1}{2}}\right)$

High Level: Fast convergence of empirical approx. under $W_1^{(\sigma)}$

Theorem (ZG-Greenewald-Polyanskiy-Weed'19)

For any $d \ge 1$ and $\sigma > 0$, we have: \mathbb{E}

$$\operatorname{EW}_{1}^{(\sigma)}(\hat{P}_{n},P) \lesssim \left(\frac{c}{\sigma}\right)^{\frac{d}{2}} n^{-\frac{1}{2}}$$

Comments:

- True for any subgauassian P (entropic OT assumes compact $\mathsf{supp}(P)$)
- Generalizes to subgauassian noise distributions with monotone density
- Implies fast convergence of the other empirical approx. setups:

• One-Sample:
$$\mathbb{E} \left| \mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},Q) - \mathsf{W}_{1}^{(\sigma)}(P,Q) \right| \in O\left(n^{-\frac{1}{2}}\right)$$
 (GANs)

► Two-Sample: $\mathbb{E} \left| \mathsf{W}_{1}^{(\sigma)}(\hat{P}_{n},\hat{Q}_{n}) - \mathsf{W}_{1}^{(\sigma)}(P,Q) \right| \in O\left(n^{-\frac{1}{2}}\right)$

8 GOT alleviated curse of dimensionality in GAN framework

GOT preserves fav. properties & alleviates main deficiency

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

• Attain competitive performance

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

- Attain competitive performance
- Consume fewer resources

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

- Attain competitive performance
- Consume fewer resources
- Backed up by (useful) sample complexity guarantees

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

- Attain competitive performance
- Consume fewer resources
- Backed up by (useful) sample complexity guarantees

Ongoing Work:

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

- Attain competitive performance
- Consume fewer resources
- Backed up by (useful) sample complexity guarantees

Ongoing Work:

• Empirical: GOT-GAN design & test

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

- Attain competitive performance
- Consume fewer resources
- Backed up by (useful) sample complexity guarantees

Ongoing Work:

- **Empirical:** GOT-GAN design & test
- Algorithmic: Enhanced alg. tailored for GOT structure

GOT preserves fav. properties & alleviates main deficiency

Next-Generation GANs:

- Attain competitive performance
- Consume fewer resources
- Backed up by (useful) sample complexity guarantees

Ongoing Work:

- Empirical: GOT-GAN design & test
- Algorithmic: Enhanced alg. tailored for GOT structure
- Theoretical: $\sqrt{n}W_1^{(\sigma)}(\hat{P}_n, P)$ limiting dist., hypothesis testing, etc.

- Generative Adversarial Networks: SOTA generative models
 - Two perspectives: 'minimax game' and 'min statistical distance'

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-\frac{1}{d}}$

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-\frac{1}{d}}$
 - Entropic OT: partial solution but not a metric nor GAN compatible

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-rac{1}{d}}$
 - ► Entropic OT: partial solution but not a metric nor GAN compatible
- Gaussian-Smoothed OT: Convolve distributions w/ Gaussians

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-rac{1}{d}}$
 - Entropic OT: partial solution but not a metric nor GAN compatible
- Gaussian-Smoothed OT: Convolve distributions w/ Gaussians
 - ▶ Inherits metric structure from Wasserstein & GAN compatible

• Generative Adversarial Networks: SOTA generative models

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-rac{1}{d}}$
 - Entropic OT: partial solution but not a metric nor GAN compatible

• Gaussian-Smoothed OT: Convolve distributions w/ Gaussians

- ► Inherits metric structure from Wasserstein & GAN compatible
- ▶ Well-behaved function of noise parameter & recovers Wasserstein in limit

• Generative Adversarial Networks: SOTA generative models

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-rac{1}{d}}$
 - Entropic OT: partial solution but not a metric nor GAN compatible

• Gaussian-Smoothed OT: Convolve distributions w/ Gaussians

- ► Inherits metric structure from Wasserstein & GAN compatible
- Well-behaved function of noise parameter & recovers Wasserstein in limit
- ▶ Fast $n^{-\frac{1}{2}}$ convergence of empirical approximation in all dimensions

• Generative Adversarial Networks: SOTA generative models

- Two perspectives: 'minimax game' and 'min statistical distance'
- Under 1-Wasserstein metric both coincide
- Wasserstein GANs produce outstanding empirical results
- Curse of Dimensionality: Approximate distributions from samples
 - Empirical approximation under Wasserstein metric is slow $n^{-rac{1}{d}}$
 - Entropic OT: partial solution but not a metric nor GAN compatible

• Gaussian-Smoothed OT: Convolve distributions w/ Gaussians

- ► Inherits metric structure from Wasserstein & GAN compatible
- Well-behaved function of noise parameter & recovers Wasserstein in limit
- ▶ Fast $n^{-\frac{1}{2}}$ convergence of empirical approximation in all dimensions

Thank you!