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DEEP LEARNING - WHAT’S UNDER THE HOOD?
• Lacking Theory: Macroscopic understanding of Deep Learning

What drives the evolution of internal representations?

What are properties of learned representations?

How fully trained networks process information?

• Attempts to Understand Effectiveness of DL:

– Loss landscape [Saxe et al.’14, Choromanska et al.’15, Kawaguchi’16, Keskar et al.’17]

– Wavelets and sparse coding [Bruna-Mallat’13, Giryes et al.’16, Papyan et al.’16]

– Adversarial examples [Szegedy et al.’14, Nguyen et al.’17, Liu et al.’16, Cisse et al.’16]

– Information Bottleneck Theory [Tishby-Zaslavsky’15, Shwartz-Tishby’17, Saxe et al.’18]

⋆ Goal: IB theory mathematical analysis & test ‘compression’ phenomenon

INFORMATION BOTTLENECK

(Deterministic) Feedforward DNN: Each layer Tℓ = fℓ(Tℓ−1)
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• Information Plane: Evolution of
(

I(X;Tℓ), I(Y ;Tℓ)
)

during training

IB Theory Claim: Training comprises 2 phases

1. Fitting: I(Y ;Tℓ) & I(X;Tℓ) rise (short)

2. Compression: I(X;Tℓ) slowly drops (long)

Proposition 1 (Informal). Det. DNNs with strictly monotone nonlinearities (e.g.,
tanh or sigmoid) =⇒ I(X;Tℓ) is independent of the DNN parameters

Past Measurements: I
(

X;Bin(Tℓ)
)

highly sensitive to user-defined bin size:
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NOISY NEURAL NETWORKS

Modification: Inject (small) Gaussian noise to neurons’ output

• Formally: Tℓ = Sℓ + Zℓ, where Sℓ , fℓ(Tℓ−1) and Zℓ ∼ N (0, σ2Id)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

=⇒ X 7→ Tℓ is a parametrized channel (by DNN’s parameters)

=⇒ I(X;Tℓ) is a function of parameters!

MUTUAL INFORMATION ESTIMATION

Setup: Estimate h(P ∗ Nσ) from n i.i.d. samples Sn,(Si)
n
i=1 of P ∈ Fd.

Theorem 1 (Goldfeld-Greenewald-Polyanskiy-Weed’19). Sample complexity of

any accurate estimator (additive gap η) is Ω
(

2d

ηd

)

.

Structured Estimator: ĥ(Sn, σ) , h(P̂n ∗ Nσ), where P̂n = 1
n

∑n
i=1 δSi

Theorem 2 (GGPW’19). For F
(SG)
d,K , {P |P is K-subgaussian in R

d}, d ≥ 1 and

σ > 0, we have sup
P∈F

(SG)
d,K

ESn

∣

∣h(P ∗ Nσ)− ĥ(Sn, σ)
∣

∣ ≤ cdσ,K · n−
1
2 .

Optimality: ĥ(Sn, σ) attains sharp dependence on both n and d!

CLUSTERING AS THE DRIVER OF COMPRESSION

Single Neuron Classification:

• Input: X ∼ Unif{±1,±3}, Xy=−1 , {−3,−1, 1} , Xy=1 , {3}

=⇒ I(X;T ) is # bits (nats) transmittable over AWGN with symbols
Sw,b,

{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
}

X tanh(wX + b)
Sw,b

Z ∼ N (0, σ2)
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Larger Experiments:

• Binary Classification: 12-bit input & 12–10–7–5–4–3–2 tanh MLP

• Weight orthonormality regularization [Cisse et al.’17]:

RELEVANCE TO DETERMINISTIC NETS

• Noisy DNNs: Compression driven by clustering of representations.

• Clustering is meaningful in deterministic nets and can be measured.

• Binned “mutual information" measured in past works measures clustering.

CONCLUSION AND FUTURE WORK

• Geometric clustering of internal representations is the phenomenon under-
lying observed “information compression”.

• Compression is not necessary for generalization.

• Proposed framework for studying IT quantities over DNNs.

– Optimal estimator (in n and d) for accurate MI estimation.

• Future Work:

– Methods of tracking geometric clustering in high dimensions.

– Further exploration of clustering phenomenon.

– Potential DNN regularization schemes.


