ESTIMATING INFORMATION FLOW IN DNNS

Ziv Goldfeld^{1,3}, Ewout van den Berg^{2,3}, Kristjan Greenewald^{2,3}, Igor Melnyk^{2,3} Brian Kingsbury^{2,3}, Nam Nguyen^{2,3}, Yury Polyanskiy^{1,3} ¹MIT, ²IBM Research, ³MIT-IBM Watson AI Lab

DEEP LEARNING - WHAT'S UNDER THE HOOD?

- Lacking Theory: Macroscopic understanding of Deep Learning
 - What drives the evolution of internal representations?
 - What are properties of learned representations?
 - Output Provide the set of the
- Attempts to Understand Effectiveness of DL:
 - Loss landscape [Saxe *et al.*'14, Choromanska *et al.*'15, Kawaguchi'16, Keskar *et al.*'17]
 - Wavelets and sparse coding [Bruna-Mallat'13, Giryes *et al.*'16, Papyan *et al.*'16]
 - Adversarial examples [Szegedy *et al.*'14, Nguyen *et al.*'17, Liu *et al.*'16, Cisse *et al.*'16]

CLUSTERING AS THE DRIVER OF COMPRESSION

Single Neuron Classification:

- Input: $X \sim \text{Unif}\{\pm 1, \pm 3\}, \mathcal{X}_{y=-1} \triangleq \{-3, -1, 1\}, \mathcal{X}_{y=1} \triangleq \{3\}$
- $\implies I(X;T) \text{ is \# bits (nats) transmittable over AWGN with symbols} \\ \mathcal{S}_{w,b} \triangleq \{ \tanh(-3w+b), \tanh(-w+b), \tanh(w+b), \tanh(3w+b) \}$

- Information Bottleneck Theory [Tishby-Zaslavsky'15, Shwartz-Tishby'17, Saxe et al.'18]
- **★** Goal: IB theory mathematical analysis & test 'compression' phenomenon

INFORMATION BOTTLENECK

(Deterministic) Feedforward DNN: Each layer $T_{\ell} = f_{\ell}(T_{\ell-1})$

• Information Plane: Evolution of $(I(X;T_{\ell}), I(Y;T_{\ell}))$ during training

IB Theory Claim: Training comprises 2 phases

1. Fitting: $I(Y; T_{\ell}) \& I(X; T_{\ell})$ rise (short)

- $Z \sim \mathcal{N}(0, \sigma^2)$ -1 10⁰10¹ 10² 10³ 10⁴ 10⁵ 10⁰ 10² 10³ 10⁴ 10⁵ Epoch Larger Experiments:
- **Binary Classification:** 12-bit input & 12–**10–7–5–4–3–**2 tanh MLP

• Weight orthonormality regularization [Cisse et al.'17]:

2. **Compression:** $I(X; T_{\ell})$ slowly drops (long)

Proposition 1 (Informal). *Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)* $\implies I(X;T_{\ell})$ *is independent of the DNN parameters*

NOISY NEURAL NETWORKS

Modification: Inject (small) Gaussian noise to neurons' output

• Formally: $T_{\ell} = S_{\ell} + Z_{\ell}$, where $S_{\ell} \triangleq f_{\ell}(T_{\ell-1})$ and $Z_{\ell} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$

Relevance to Deterministic Nets

- Noisy DNNs: Compression driven by clustering of representations.
- Clustering is meaningful in deterministic nets and can be measured.

 $\implies X \mapsto T_{\ell} \text{ is a parametrized channel (by DNN's parameters)}$ $\implies I(X;T_{\ell}) \text{ is a function of parameters!}$

MUTUAL INFORMATION ESTIMATION

Setup: Estimate $h(P * \mathcal{N}_{\sigma})$ from *n* i.i.d. samples $S^n \triangleq (S_i)_{i=1}^n$ of $P \in \mathcal{F}_d$.

Theorem 1 (Goldfeld-Greenewald-Polyanskiy-Weed'19). Sample complexity of any accurate estimator (additive gap η) is $\Omega\left(\frac{2^d}{\eta d}\right)$. <u>Structured Estimator:</u> $\hat{h}(S^n, \sigma) \triangleq h(\hat{P}_n * \mathcal{N}_{\sigma})$, where $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{S_i}$

Theorem 2 (GGPW'19). For $\mathcal{F}_{d,K}^{(SG)} \triangleq \{P | P \text{ is } K \text{-subgaussian in } \mathbb{R}^d\}, d \geq 1 \text{ and}$ $\sigma > 0, \text{ we have } \sup_{P \in \mathcal{F}_{d,K}^{(SG)}} \mathbb{E}_{S^n} |h(P * \mathcal{N}_{\sigma}) - \hat{h}(S^n, \sigma)| \leq c_{\sigma,K}^d \cdot n^{-\frac{1}{2}}.$

Optimality: $\hat{h}(S^n, \sigma)$ attains sharp dependence on both n and d!

• Binned "mutual information" measured in past works measures clustering.

CONCLUSION AND FUTURE WORK

- Geometric clustering of internal representations is the phenomenon underlying observed "information compression".
- Compression is not necessary for generalization.
- Proposed framework for studying IT quantities over DNNs.
 - Optimal estimator (in *n* and *d*) for accurate MI estimation.
- Future Work:
 - Methods of tracking geometric clustering in high dimensions.
 - Further exploration of clustering phenomenon.
 - Potential DNN regularization schemes.