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Abstract—We consider the problem of soft-covering with
constant composition superposition codes and characterize the
optimal soft-covering exponent. A double-exponential concen-
tration bound for deviation of the exponent from its mean is
also established. We demonstrate an application of the result to
achieving the secrecy-capacity region of a broadcast channel with
confidential messages under a per-codeword cost constraint. This
generalizes the recent characterization of the wiretap channel
secrecy-capacity under an average cost constraint, highlighting
the potential utility of the superposition soft-covering result to
the analysis of coding problems.

I. INTRODUCTION

Finding its roots in Wyner’s seminal paper [1], soft-covering
(also known as channel resolvability [2]) is by now an ubiq-
uitous tool in information theory. It refers to the problem of
simulating a target distribution by passing a uniformly chosen
codeword through a noisy channel. Simulation can be attained
to any desired accuracy, typically measured by the total vari-
ation (TV) distance or the Kullback-Leibler (KL) divergence,
provided that the coding rate exceeds the channel input-output
mutual information. The ability to simulate distributions turns
out useful in various applications, including physical layer
security [3]–[9], channel synthesis [10], lossy compression
[11], covert communication [12], [13], and privacy [14].

Motivated by applications to multiuser scenarios with in-
put cost constraints, we study soft-covering by superposition
codes, whose inner and outer layer codewords are chosen
uniformly from a constant composition ensemble [15]. We
characterize the optimal soft-covering exponent, i.e., the maxi-
mum asymptotic exponential rate of the expected TV distance
between the distribution induced by the codebook and a target
(average) distribution. We further establish a double expo-
nential concentration bound for the probability of deviation
of this TV distance from its mean. The soft-covering results
are leveraged to establish the the secrecy-capacity region of
a broadcast channel (BC) with confidential messages under a
per-codeword cost constraint. The capacity region recovers the
secrecy-capacity of a cost constrained (CC) wiretap channel
as a special case, whose characterization was recently shown
in [9] to require two auxiliaries in general, even under a less
stringent per-message cost constraint.
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A. Background

The bulk of soft-covering literature focuses on single-layer
random codebooks. The fundamental limit of the codebook
size needed to achieve soft-covering was established in [2] for
the TV distance. Lower bounds on the soft-covering exponents
achievable over memoryless channels under the TV distance
and the KL divergence were obtained in [3]. The TV lower
bound was further improved in [10], where extensions of soft-
covering to more general channels was also considered. Soft-
covering in the quantum context was first explored in [16],
[17], with the latter pointing out that it also holds for KL
divergence (see also [18]). Double exponential concentration
bounds on the deviation of KL divergence or TV distance from
their means were obtained in [5], [19] and [20], respectively.
More recently, [21] and [22] characterized exact soft-covering
exponents with respect to (w.r.t.) KL divergence and TV
distance, respectively. While the above works mostly focus
on the i.i.d. ensemble, soft-covering for constant composition
codebooks were studied in [21] under KL divergence and in
[22] under TV distance. To the best of our knowledge, the only
extensions of the soft-covering phenomena to superposition
codes were given in [10] and [8], both of which focus on i.i.d.
codebooks and derive achievable rates as well as concentration
inequalities, but not exact exponents.

B. Notation

We use standard notation (cf. e.g., [9]). In particular, for a
countable X , the letter-typical set of n-lengthed sequences
w.r.t. a probability mass function (PMF) P ∈P(X ) and δ>0 is

T (n)
δ (P ):={x ∈ Xn :|νx(x)−P (x)|≤δP (x), ∀x∈X} ,

where νx(x) := 1
n

∑n
i=1 1{xi=x} is the empirical PMF of

sequence x ∈ Xn. The set of all n-types over an alphabet
X is Pn(X ) := ∪x∈Xnνx(x). An n-type variable, i.e., a
random variable with PMF P for some P ∈ Pn(X ), is denoted
using an overbar notation, e.g. X̄ . For PX̄,Ȳ ∈ Pn(X × Y),
T̂n(PX̄) := {x ∈ Xn : νx = PX̄}, and for x ∈ T̂n(PX̄),
T̂n(PX̄,Ȳ |x) := {y ∈ Yn : νx,y = PX̄,Ȳ }. The Kullback-
Leibler (KL) divergence and the TV between P and Q are
represented by DKL(P‖Q) and δTV(P,Q), respectively. The
Rényi divergence of order α ∈ (0, 1) ∪ (1,∞) between
P,Q ∈ P(X ) is

Dα(P‖Q) := (α− 1)−1 log
(∑

x∈X
P (x)αQ(x)1−α

)
,



with limα→1 Dα(P‖Q) = DKL(P‖Q). For PX ∈ P(X ) and
PY |X , QY |X∈P(Y|X ), the conditional α-Rényi divergence is

Dα
(
PY |X

∥∥QY |X |PX) :=EPX
[
Dα
(
PY |X(·|X)

∥∥QY |X(·|X)
)]
.

Finally, we follow the convention that when the set over which
summation/product/supremum is taken is not specified, it is
assumed to be over all possible values.

II. SOFT-COVERING VIA CONSTANT COMPOSITION
SUPERPOSITION CODES

We first describe constant composition superposition codes.
Fix m ∈ N and a joint PMF PŪ,V̄,Z := PŪ,V̄ PZ|V̄ , where
PŪ,V̄ ∈ Pm(U × V) and PZ|V̄ ∈ P(Z|V). For n ∈ {mN},
let BU ={U(i), i ∈ In}, |In| = denR1e, be a random inner
layer codebook such that each codeword U(i), i ∈ In, is
a sequence of length n chosen independently according to
Unif

(
T̂n(PŪ )

)
. For a fixed realization BU of BU and each

i ∈ In, let BV (i) := {V(i, j), j ∈ Jn}, |Jn| = denR2e,
denote a collection of n-length random sequences, each chosen
independently according to Unif

(
T̂n(PŪ,V̄ |u(i))

)
. Set BV :=

{BV (i), i ∈ In}, denote the random superposition codebook
by B := {BU ,BV } and let B denote its realization. The set of
all such codebooks is B.

Given a fixed B ∈ B, an inner layer codeword u(i), i ∈ In,
is chosen uniformly at random; then, v(i, j), j ∈ Jn, is uni-
formly chosen from the corresponding outer layer codebook
and is transmitted over the channel P⊗nZ|V . This gives rise to
the following induced distribution

P
(B)
I,U,J,V,Z(i,u, j,v, z) = P

(BU )
I,U (i,u)P

(BV )
J,V,Z|I,U(j,v, z|i,u)

=
1{u=u(i)}

|In|
1{v=v(i,j)}

|Jn|
P⊗nZ|V (z|v).

(1)

The goal of soft-covering is to approximate the induced
conditional output distribution P

(B)
Z|U(·|u(i)) by the target

distribution

P ∗Z|U
(
z
∣∣u(i)

)
:=

1∣∣T̂n(PŪ,V̄ ∣∣u(i)
)∣∣ ∑

v∈T̂n(PŪ,V̄ |u(i))

P⊗nZ|V (z|v),

(2)
for each i ∈ In and on average. Proximity is measured in TV:

θ(B, i) := δTV

(
P

(B)
Z|U(·|u(i)), P ∗Z|U(·|u(i))

)
,

θ̄(B) := δTV

(
P

(BU )
I,U P

(BV )
Z|I,U, P

(BU )
I,U P ∗Z|U

)
. (3)

The following theorem provides an exact characterization
of the soft-covering exponent for the above setup.

Theorem 1 (Soft-covering exponent) For any R1 ≥ 0, R2 >
IP (V̄ ;Z|Ū), and i ∈ In, we have

lim
n→∞

− 1

n
logEµ

[
θ̄(B)

]
= lim
n→∞

− 1

n
logEµ [θ(B, i)]

= S(PŪ,V̄,Z , R2), (4)

S(PŪ,V̄,Z , R2) := min
PZ̄|Ū,V̄

DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)
+ 0.5

[
R2 − IP (V̄ ; Z̄|Ū)

]+
, (5)

and µ is the PMF of B induced by the above codebook
construction (see (13)). In particular, for R2 > IP (V̄ ;Z|Ū),
there exists γ > 0 such that for all n ∈ {mN} sufficiently
large and i ∈ In, we have

Eµ [θ(B, i)] = Eµ
[
θ̄(B)

]
≤ e−nγ . (6)

The next theorem states a double exponential concentration
bound for θ̄(B) about its mean.

Theorem 2 (Concentration bound) If R2 > IP (V̄ ;Z|Ū), then
there exist positive constants γ1, γ2 > 0 such that for all
sufficiently large n and i ∈ In, we have

Pµ
(
θ(B, i)> e−nγ1

)
= Pµ

(
θ̄(B) > e−nγ1

)
≤ e−e

nγ2
. (7)

The following lemma which provides a variational charac-
terization of the optimal soft-covering exponent in terms of
Rényi divergence is useful in the proof of Theorem 1.

Lemma 1 (Dual characterization) It holds that

S(PŪ,V̄,Z , R2)

= max
λ∈[1,2]

λ− 1

λ

(
R2 − min

QZ|Ū
Dλ
(
PZ|V̄

∥∥QZ|Ū |PŪ,V̄ )). (8)

Consequently, if R2 > IP (V̄ ;Z|Ū), then S(PŪ,V̄,Z , R2) > 0.

The proofs of all the above results are given in Section IV.

III. SECRECY-CAPACITY OF COST-CONSTRAINED
BROADCAST CHANNEL WITH CONFIDENTIAL MESSAGES

Let X , Y and Z be finite sets, b ≥ 0 and n ∈ N. Let
C : X → R≥0 be a real-valued non-negative function. The
(X ,Y,Z, PY,Z|X ,C, b) CC BC with confidential messages is
shown in Fig. 1, where PY,Z|X is the channel transition kernel,
C is the cost function and b is the cost constraint. This is
the setup from [23] but with a cost constraint on the channel
input. The common message to both the receivers is denoted
by M0 and the private message to Receiver 1 by M1, each
taking values in M0,n = [1 : 2nR0 ] and M1,n = [1 : 2nR1 ],
respectively. We consider a per-codeword cost constraint:

Cn(X(m0,m1)) ≤ b a.s., ∀ (m0,m1)∈M0,n ×M1,n, (9)

where, X(m0,m1) ∼ fn(·|m0,m1) is the encoder output, and
Cn(x) := 1

n

∑n
i=1 C(xi) is the n-fold extension of C. We

henceforth assume b ≥ cmin := min{C(x) : x ∈ X}. Decoder
1 outputs the estimates (M̂0, M̂1) using gn : Yn →M0,n ×
M1,n, while Decoder 2 outputs M̌0 from hn : Zn →M0,n.

A rate tuple (R0, R1) is said to be achievable if for
every ε > 0 and sufficiently large n, there exists an
(n,R0, R1) code cn = (fn, gn, hn) that satisfies (9) and
max

{
e1(cn), e2(cn), `sem(cn)

}
≤ ε, where

`sem(cn) := max
PM0,M1

I(M1;Z),

e1(cn) := max
m0,m1

∑
x

fn(x|m0,m1)
∑

y: gn(y) 6=(m0,m1)

P⊗nY |X(y|x),

e2(cn) := max
m0,m1

∑
x

fn(x|m0,m1)
∑

z:hn(z) 6=m0

P⊗nZ|X(z|x).



Encoder Decoder 1

Decoder 2

Fig. 1: The CC BC with transition kernel PY,Z|X .

The secrecy-capacity region R(b) of a per-codeword CC BC
with confidential messages under semantic security (see [24])
and maximal error-probability criteria is the closure of achiev-
able (R0, R1) set. We use Theorems 1-2 to characterize R(b).

Let U and V be finite sets. For any PU,V,X ∈ P(U×V×X ),
let R̃(PU,V,X) be the set of (R0, R1) ∈ R2

≥0 satisfying
R0 ≤ min{IP (U ;Y ), IP (U ;Z)}, (10a)
R1 ≤ IP (V ;Y |U)− IP (V ;Z|U), (10b)

where PU,V,X,Y,Z = PU,V,XPY,Z|X . Set
R̂(b) := ∪PU,V,X∈H(C,b)R̃(PU,V,X), (11)

where, U, V, are auxiliaries with |U|≤ |X | + 2, |V|≤ |X |2 +
4|X |+ 2, and

H(C,b):=
{
PU,V,X :PU,V,X =PU,VPX|V ,EP

[
C(X)

]
≤ b
}
. (12)

Theorem 3 (Capacity region) It holds that R(b) = R̂(b).

The proof of Theorem 3 is given in Section IV-C. The
achievability of (R0, R1) ∈ R̂(b) relies on superposition cod-
ing, while the converse adapts the classic BC with confidential
messages converse to accommodate the cost constraint.

IV. PROOFS

A. Proof of Theorem 1

The proof is a generalization of [22, Theorem 2] to constant-
composition superposition codebooks. We first prove the ≥
implication in (4). Denoting the set of all possible values of
BU , BV , and B by BU , BV , and B, respectively, the codebook
construction induces a PMF µ ∈ P(B), given by

µ(B) =
∏
i∈In

∣∣T̂n(PŪ )
∣∣−1
( ∏
j∈Jn

∣∣T̂n(PŪ,V̄ |u(i))
∣∣−1
)
. (13)

Denote the BU and BV marginals of µ by µBU and µBV ,
respectively. For a fixed BU , we use the shorthand Eµ|BU [·]
for the conditional expectation Eµ

[
· |BU = BU

]
.

We define several quantities used throughout the proof. Fix
BU and i ∈ In, henceforth, and let

L(BV )(u(i), z)

:=

 1
|Jn|

∑|Jn|
j=1

P⊗n
Z|V̄ (z|V(i,j))

P∗
Z|U(z|u(i)) , if P ∗Z|U(z|u(i)) > 0,

1, otherwise,
L∗(u(i), z) := Eµ|BU

[
L(BV )(u(i), z)

]
.

Note that L∗(u(i), z)=1. For (u(i),v, z) ∈ Tn(PŪ,V̄,Z̄), set

L̃PŪ,V̄,Z̄ :=
1

|Jn|
P⊗n
Z|V̄ (z|v)

P ∗Z|U(z|u(i))
,

N
(BV )
PV̄ |Ū,Z̄

(u(i), z) :=
∣∣∣j ∈ Jn : V(i, j) ∈ T̂n(PŪ,Z̄,V̄ |u(i), z)

∣∣∣ ,
W

(BV )
PV̄ |Ū,Z̄

(u(i), z) := |Jn|−1
L̃PV̄ |Ū,Z̄N

(BV )
PV̄ |Ū,Z̄

(u(i), z),

W ∗PV̄ |Ū,Z̄ (u(i), z) := Eµ|BU
[
W

(BV )
PV̄ |Ū,Z̄

(u(i), z)
]
.

Lastly, for u ∈ T̂n(PŪ ) and V ∼ Unif
(
T̂n(PŪ,V̄ |u)

)
, define

qV̄ |Ū,Z̄(u, z) := P
(
V ∈ T̂n(PŪ,Z̄,V̄ |u, z)

)
,

F (|Jn| , PV̄ |Ū,Z̄) := min
{

2qV̄ |Ū,Z̄(u, z), |Jn|−
1
2 q

1
2

V̄ |Ū,Z̄(u, z)
}
.

We have the following lemma.
Lemma 2 (Bounds on intermediate quantities)

Eµ|BU
[∣∣∣W (BV )

PV̄ |Ū,Z̄
(u(i), z)−W ∗PV̄ |Ū,Z̄ (u(i), z)

∣∣∣]
≤ |Jn| L̃PV̄ |Ū,Z̄F (|Jn| , PV̄ |Ū,Z̄), (14)

qV̄ |Ū,Z̄(u(i), z) ≤ (n+ 1)|U||V|e−nI(V̄ ;Z̄|Ū), (15)

qV̄ |Ū,Z̄(u(i), z) ≥ (n+ 1)−|U||V||Z|e−nI(V̄ ;Z̄|Ū). (16)

Proof: The proof of (14) follows similar to that of [22,
Lemma 3] and is omitted. To establish (15) and (16), note that
T̂n(PŪ,Z̄,V̄ |u(i), z)⊆ T̂n(PŪ,V̄ |u(i)), which implies

qV̄ |Ū,Z̄(u(i), z) =
∣∣∣T̂n(PŪ,Z̄,V̄ |u(i), z)

∣∣∣ ∣∣∣T̂n(PŪ,V̄ |u(i))
∣∣∣−1

.

The claims then follows from [15, Lemma 2.5].
Continuing, for (i,u) ∈ In × T̂n(PŪ ) such that u(i) = u,

we have

ρ (BU , i) := Eµ|BU
[
θ
({
BU ,BV

}
, i
)]

=
∑
z∈Zn

P ∗Z|U(z|u(i))Eµ|BU
[∣∣∣L(BV )(u(i), z)− 1

∣∣∣]
(a)
=

∑
PZ̄|Ū∈Pn(Z|U)

∑
z∈T̂n(PŪ,Z̄ |u(i))

P ∗Z|U(z|u(i))

Eµ|BU
[∣∣∣L(BV )(u(i), z)− L∗(u(i), z)

∣∣∣]
=

∑
PZ̄|Ū∈Pn(Z|U)

∑
z∈T̂n(PŪ,Z̄ |u(i))

P ∗Z|U(z|u(i))

Eµ|BU

∣∣∣∣∣∣
∑

PV̄ |Ū,Z̄

W
(BV )
PV̄ |Ū,Z̄

(u(i), z)−W ∗PV̄ |Ū,Z̄ (u(i), z)

∣∣∣∣∣∣


=
∑

PZ̄,V̄ |Ū∈
Pn(Z×V|U)

∑
z∈T̂n(PŪ,Z̄ |u(i))

P ∗Z|U(z|u(i))

Eµ|BU
[∣∣∣W (BV )

PV̄ |Ū,Z̄
(u(i), z)−W ∗PV̄ |Ū,Z̄ (u(i), z)

∣∣∣]
(b)

≤
∑

PZ̄,V̄ |Ū

∑
z∈T̂n(PŪ,Z̄ |u(i))

P⊗n
Z|V̄ (z|v)F (|Jn| , PV̄ |Ū,Z̄)

≤
∑

PZ̄,V̄ |Ū

∑
z∈T̂n(PŪ,Z̄ |u(i))

e
nEPV̄,Z̄ [logPZ|V̄ ]F (|Jn| , PV̄ |Ū,Z̄)

(c)

≤ (n+ 1)
3
2 |U||V||Z| max

PZ̄|Ū,V̄
e
n
(
H(Z̄|Ū)+EPV̄,Z̄ [logPZ|V̄ ]

)

(n+ 1)|U||V|e−nIP (V̄ ;Z̄|Ū)e−n
1
2 [R2−IP (V̄ ;Z̄|Ū)]

+

=: Sn(PŪ,V̄,Z , R2), (17)



where (a) follows since L∗(u(i), z) = 1; (b) is due to (14) in
Lemma 2; (c) follows from [15, Lemma 2.2], the definition
of F (|Jn| , PV̄ |Ū,Z̄) and (15)-(16) in Lemma 2. Thus, noting
that ρ

(
BU , i

)
is independent of i and BU , we have

ρ̃(BU ) := Eµ|BU
[
δTV

(
P

(BU )
I,U P

(BV )
Z|I,U, P

(BU )
I,U P ∗Z|U

)]
=E

P
(BU )

I,U

[ρ (BU , I)] ≤ Sn(PŪ,V̄,Z , R2). (18)

Taking limit and combining the resulting terms yields

lim inf
n→∞

− 1

n
log (ρ̃(BU )) ≥ S(PŪ,V̄,Z , R2). (19)

Similarly, taking expectation w.r.t. µBU on both sides of (17)
and (18), followed by limits leads to (4). Eqn. (6) then follows
from Lemma 1.

The converse proof follows by fixing BU , (I,U) =
(i,u(i)), and adapting the optimality argument of soft-
covering exponent for single-layer codebooks from [22]. We
omit further details due to space constraints.

B. Proof of Theorem 2

Fix BU = {u(i), i ∈ In}. Since ρ (BU , i) is independent of
BU and i ∈ In, we denote it simply by ρ. From [22, Lemma
2]1, it follows that for any t, R2 > 0,

Pµ
(
θ
({
BU ,BV

}
, i
)
− ρ ≥ t | BU = BU

)
≤ e− 1

2 e
nR2 t2 .

Taking expectation w.r.t. to µBU , for any i ∈ In, we have

Pµ
(
θ̄(B) ≥ t+ ρ

)
= Pµ (θ(B, i) ≥ t+ ρ) ≤ e− 1

2 e
nR2 t2 .

Since ρ ≤ e−nγ for γ > 0, by (19) and Lemma 1, if R2 >
IP (V̄ ;Z|Ū), then taking t = e−nγ̄ for some 0 < γ̄ < γ yields

Pµ
(
θ(B, i)≥ 2e−nγ̄

)
=Pµ

(
θ̄(B)≥2e−nγ̄

)
≤e− 1

2 e
n(R2−2γ̄)

.

Choosing γ̄ > 0 such that R2 > 2γ̄ > 0 (possible since
R2 > 0 by assumption) yields the desired result.

C. Proof of Theorem 3

We first prove R̂(b) ⊆ R(b). By continuity of mutual
information and the expected cost constraint in P , it suffices
to show that (R0, R1) ∈ R̂(b) is achievable, for any b>cmin.

Coding scheme: Fix ε > 0 and a PMF PU,V,X,Y,Z :=
PU,V PX|V PY,Z|X such that EP

[
C(X)

]
<b. Fix ε′ ∈

(
0, b−

EP
[
C(X)

])
. Choose l ∈ N, and QŪ,V̄ ∈ Pl(U × V) such

that δTV
(
PU,V,X,Y,Z , QŪ,V̄,X,Y,Z

)
< ε′ and EQ

[
C(X)

]
−

EP
[
C(X)

]
< ε′, where QŪ,V̄,X,Y,Z = QŪ,V̄ PX|V PY,Z|X .

This is possible since ∪l∈NPl(U × V) is dense in P(U × V).
Let n ∈ {lN}. Consider the random superposition codebook

B := {BU ,BV } constructed in Theorem 1, with M0,n and
M1,n×Jn in place of In and Jn, respectively. Let µ̄ ∈ P(B)
denote the PMF induced by codebook construction as given
in (13) with QŪ,V̄ in place of PŪ,V̄ . Given a codebook B
and messages (M0,M1) = (m0,m1), the encoder chooses

1Although [22, Lemma 2] is stated for the case of memoryless channels,
the proof based on McDiarmid’s inequality shows that the double exponential
bound holds more generally.

an index pair j uniformly at random from Jn, and transmits
X = fn(·|m0,m1) ∼ P⊗nX|V

(
·
∣∣v(m0,m1, j)

)
.

Given y, Decoder 1 looks for a unique tuple
(
m̂0, m̂1, ĵ

)
∈

M0,n ×M1,n × Jn such that
(
u
(
m̂0),v(m̂0, m̂1, ĵ

)
,y
)
∈

T (n)
δ (QŪ,V̄,Y ), for some δ > 0. If such a unique tuple exists,

it sets gn(y) = (m̂0, m̂1); else, gn(y) = (1, 1). Given z,
Decoder 2 looks for a unique index m̌0 ∈ M0,n such that(
u
(
m̌0), z

)
∈ T (n)

δ (QŪZ), and sets hn(z) = m̌0 if its exists;
else, hn(z) = 1. Denote the joint PMF induced by the code
cn = (fn, gn, hn) w.r.t. B by P (B)

M0,M1,J,U,V,X,Y,Z,M̂0,M̌0,M̂1
.

Cost Analysis: Since for any (m0,m1, j) ∈M0,n×M1,n×
Jn, v(m0,m1, j) ∈ T̂n(QV̄ ) and X ∼ P⊗nX|V ,

E
P

(B)

X|V(·|v(m0,m1,j))

[
Cn(X)

]
= EQX

[
C(X)

]
< b.

It follows that for some γ′ > 0 and all n ∈ N,

Eµ̄
[
E
P

(B)
X

[
Cn(X)

]]
≤ b− γ′.

Error probability analysis: Under conditions stated in the
lemma below, the expected maximal error-probability over
Bn decays exponentially with n. The proof is standard, and
omitted due to space constraints.
Lemma 3 (Error-probability bound) If (R0, R1, R2) ∈ R3

≥0

satisfy R0 < IQ(Ū ;Z), R1 +R2 < IQ(V̄ ;Y |Ū), R0 +R1 +
R2 < IQ(Ū, V̄ ;Y ), then there exists a ζ(δ) > 0 such that

Eµ̄
[
PP (B)

(
(M̂0,M̂1) 6=(M0,M1)

)
+PP (B)

(
M̌0 6=M0

)]
≤e−nζ(δ).

Security analysis: For u ∈ T̂n(QŪ ), recall
the distribution P ∗Z|U(z|u) from (2). Note that

Eµ̄
[
P

(B)
Z|U
]

= Eµ̄
[
P

(B)
Z|M0,M1,U

]
= P ∗Z|U. Following

steps leading to [9, Eqns. (31)-(34)] with P ∗Z|U in
place of P⊗nZ|U , it follows that for `sem(cn) −−→

n
0

to hold, it is sufficient that there exists B satisfying
maxm0,m1 θ̃(B,m0,m1) ≤ e−nγ1 , where θ̃(B,m0,m1) :=

δTV

(
P

(B)
Z|M0,M1,U

(·|m0,m1,u(m0)), P ∗Z|U(·|u(m0))
)

. This
existence is implied by the following lemma.

Lemma 4 (Security bound) If R2 > IQ(V̄ ;Z|Ū), then there
exists γ1, γ2 > 0 such that for all sufficiently large n,

Pµ̄
(

max
(m0,m1)

θ̃(B,m0,m1) > e−nγ1
)
≤ e−e

nγ2
. (20)

The proof of (20) easily follows from (7) via the union
bound by noting that |M0,n| ≤ enR0 and |M1,n| ≤ enR1 .

Following the expurgation steps detailed in steps 1-3
in the proof of [9, Theorem 1] yields the existence of
M′0,n,M′1,n, B, fn, gn such that |M′0,n| ≥ enR0

4(n+2) , |M′1,n| ≥
enR1

4(n+2) and for all (m0,m1) ∈M′0,n ×M′1,n,

EP (B)

[
Cn(X)|(M0,M1) = (m0,m1)

]
≤ (1 + n−1)2b′, (21)

PP (B)

(
(M̂0, M̂1) 6= (m0,m1)|(M0,M1) = (m0,m1)

)
+ PP (B)

(
M̌0 6= m0|M0 = m0

)
≤ 4(n+ 2)2e−nζ(δ), (22)

max
(m0,m1)∈M′0,n×M′1,n

θ̃(B,m0,m1) ≤ e−nγ1 . (23)



The final step is to replace fn by f̃n to satisfy the per-
codeword cost constraint, where, for (m0,m1,x) ∈ M′0,n ×
M′1,n × T

(n)
δ (QX), the definition of f̃n is

f̃n(x|m0,m1) :=

∑
j P
⊗n
X|V

(
x
∣∣v(m0,m1, j)

)
|Jn|ηn(m0,m1, δ)

,

ηn(m0,m1, δ) :=
1

|Jn|
∑
j

∑
x∈T (n)

δ (QX)

P⊗nX|V
(
x
∣∣v(m0,m1, j)

)
,

and f̃n(x|m0,m1) = 0, otherwise. Since v(m0,m1, j) ∈
T̂n(QV̄ ), [15, Lemma 2.12] implies2 that for any δ > 0, there
is γ̃n → 0 such that ηn(m0,m1, δ) ≥ 1− γ̃n for all (m0,m1)
∈M′0,n ×M′1,n. The typical average lemma [25] and defini-
tion of f̃n then yield Cn(X(m0,m1))<b, with probability one
for all (m0,m1) ∈ M′0,n ×M′1,n, provided δ is sufficiently
small.

Let P̃ (B) denote P (B) with fn replaced by f̃n.
Slightly abusing notation, we use the shorthands p

(B)
m0,m1

and p̃
(B)
m0,m1 for P

(B)
Z|M0,M1,U

(·|m0,m1,u(m0)) and

P̃
(B)
Z|M0,M1,U

(·|m0,m1,u(m0)), respectively, and define

θ′(B,m0,m1) := δTV

(
p(B)
m0,m1

, p̃(B)
m0,m1

)
,

κ(B,m0,m1) := DKL

(
p̃(B)
m0,m1

∥∥∥p(B)
m0,m1

)
.

Then, for all (m0,m1) ∈M′0,n ×M′1,n, we have

PP̃ (B)

(
(M̂0, M̂1) 6= (m0,m1)|(M0,M1) = (m0,m1)

)
+ PP̃ (B)

(
M̌0 6= m0|M0 = m0

)
≤ 4(n+ 2)2(1− γ̃n)−1e−nζ(δ),

max
(m0,m1)∈M′0,n×M′1,n

δTV

(
p̃(B)
m0,m1

, P ∗Z|U(·|u(m0))
)

(a)

≤ max
(m0,m1)

θ̃(B,m0,m1) + max
(m0,m1)

θ′(B,m0,m1)

(b)

≤ max
(m0,m1)

θ̃(B,m0,m1) + 2−1/2 max
(m0,m1)

κ(B,m0,m1)

(c)

≤ e−nγ1 − log(1− γ̃n),

where (a) is via triangle inequality for TV metric; (b) is due
to Pinsker’s inequality; and (c) follows from ηn(m0,m1, δ) ≥
1 − γ̃n and (23). Thus, for sufficiently large n, we have
shown the existence of B and a (n,R0− 1

n log(4n+ 8), R1−
1
n log(4n + 8)) code cn = (f̃n, gn, hn) with message sets
M′0,n,M′1,n, such that max

{
e1(cn), e2(cn), `sem(cn)

}
≤ ε,

and with probability one

E
[
Cn(X(m0,m1))

]
≤ (1 + n−1)2b′ < b,

provided R0, R1, R2 satisfy the constraints in Lemma 3 and 4.
Eliminating R2 via the Fourier-Motzkin elimination [26]

yields R0 < IQ(Ū ;Z), R1 < IQ(V̄ ;Y |Ū) − IQ(V̄ ;Z|Ū),
R0 + R1 < IQ(Ū, V̄ ;Y )− IQ(V̄ ;Z|Ū). Since ε′ is arbitrary,
continuity of mutual information implies that (R0, R1) ∈ R(b)
provided the above constraints hold with P in place of Q. The

2This step utilizes the constant composition nature of superposition codes.

proof is completed by noting that the resulting rate region is
equivalent to R̂(b) and R(b) is a closed set by definition.

Next, we show the converse by relaxing the constraints
to weak secrecy, i.e., I(M1;Z) ≤ nε and average error
probability. Accordingly, we may assume without loss of
generality that PM = P̄M . By noting that the probability of
error of M0 at Decoder 2 and that of M1 at Decoder 1 is less
than ε, an application of Fano’s inequality and the semantic
security constraint [27] yields

H(M1|M0,Y) ≤ H(M1|Y) ≤ 1 + εnR1, (24)
I(M1;Z|M0) = I(M1,M0;Z)− I(M0;Z)

= I(M1;Z) + I(M0;Z|M1)− I(M0;Z)

= I(M1;Z) +H(M0|M1)−H(M0|M1, Z)−H(M0)

+H(M0|Z)

≤ I(M1;Z) +H(M0|Z) ≤ nε+ 1 + εnR0. (25)

Then, defining εn = 2 + εn(1 +R1 +R0), we have

nR1 = H(M1)

= H(M1|M0)

(a)

≤ I(M1;Y|M0) + 1 + εnR1

(b)

≤ I(M1;Y|M0)− I(M1;Z|M0) + εn

=

n∑
i=1

I(M1;Yi|M0, Y
i−1)− I(M1;Zi|M0, Z

n
i+1) + εn

(c)
=

n∑
i=1

I(M1;Yi|M0, Y
i−1)− I(M1;Zi|M0, Z

n
i+1) + εn

+ I(Zni+1;Yi|M0,M1, Y
i−1)− I(Y i−1;Zi|M0,M1, Z

n
i+1)

=

n∑
i=1

I(M1, Z
n
i+1;Yi|M0, Y

i−1)− I(M1, Y
i−1;Zi|M0, Z

n
i+1)

+ εn

(d)
=

n∑
i=1

I(M1;Yi|M0, Y
i−1, Zni+1)− I(M1;Zi|M0, Y

i−1, Zni+1)

+ εn

=

n∑
i=1

I(M1,M0, Y
i−1, Zni+1;Yi|M0, Y

i−1, Zni+1) + εn

− I(M1,M0, Y
i−1, Zni+1;Zi|M0, Y

i−1, Zni+1)

(e)
=

n∑
i=1

I(Vi;Yi|Ui)− I(Vi;Zi|Ui) + εn

(f)
= n (I(VQ;YQ|UQ, Q)− I(VQ;ZQ|UQ, Q)) + εn, (26)

where

(a) follows from (24);
(b) is because of (25);
(c) and (d) use the Csiszár-sum identity [25];
(e) is due to the auxiliary random variable identification Ui =

(M0, Y
i−1, Zni+1) and Vi = (M1,M0, Y

i−1, Zni+1);
(f) uses Q ∼ Unif[1 : n] independent of all other r.v.’s;



Also, we have

nR0 ≤ H(M0) ≤ I(M0;Y n) + 1 + εnR0

=

n∑
i=1

I(M0;Yi|Y i−1) + 1 + εnR0

≤
n∑
i=1

I(M0, Y
i−1, Zni+1;Yi|) + 1 + εnR0

= nI(UQ, Q;YQ) + 1 + εnR0. (27)

Similarly, it follows that

nR0 ≤ H(M0) ≤ I(M0;Zn) + 1 + εnR0

= nI(UQ, Q;ZQ) + 1 + εnR0. (28)

Then, defining U = (UQ, Q), V = VQ, X = XQ and noting
that U−V −X−YQ form a Markov chain with PYQ|X = PY |X
and

E [C(XQ)] =
1

n

n∑
i=1

E [C(Xi)] ≤ b (29)

since the code satisfies the per-message cost constraint, it
follows from (26)-(28) that

R1 ≤ I(V ;Y |U)− I(V ;Z|U) +
2

n(1− ε)
+
ε(1 +R0)

1− ε
,

R0 ≤ min {I(U ;Y ), I(U ;Z)}+
1

n(1− ε)
.

For any given δ > 0, 2
n(1−ε) + ε(1+R0)

1−ε may be made smaller
than δ by taking n large enough and ε sufficiently small. The
proof of the converse is then completed via the definition of
secrecy-capacity region being a closed set.

Remark 1 (Channel input type) In the proof of Theorem 3,
we fixed the joint type of the inner and outer layers of
the superposition codebook, without restricting the type of
the channel input x. However, scenarios in which a fixed
type of x is desired (cf. [28]–[30]) can be handled within
our framework by identifying V̄ = (V̄ ′, X̄) for some V̄ ′,
where PX̄ is the desired channel input type, and setting
X = fn(·|m0,m1) = x(m0,m1).

D. Proof of Lemma 1
We extend [22, Proposition 2] to superposition codes. Set

S̃(PŪ,V̄,Z̄ , R2) := 1
2

[
R2 − IP (V̄ ; Z̄|Ū)

]
, and observe:

S(PŪ,V̄,Z , R2)

:= min
PZ̄|Ū,V̄

DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)+ 1

2

[
R2 − IP (V̄ ; Z̄|Ū)

]+
= min
PZ̄|Ū,V̄

max
λ∈[0,1]

DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)+ λS̃(PŪ,V̄,Z̄ , R2)

(a)
= max

λ∈[0,1]
min
PZ̄|Ū,V̄

DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)+ λS̃(PŪ,V̄,Z̄ , R2)

= max
λ∈[0,1]

min
PZ̄|Ū,V̄

λR2

2
+ (1− 0.5λ)DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)
+ 0.5 λ

[
−HP (Z̄|Ū)− EPV̄,Z̄

[
logPZ|V̄

]]
(b)
= max

λ∈[0,1]
min
PZ̄|Ū,V̄

λR2

2
+ (1− 0.5λ)DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)

+ 0.5 λ
[

max
QZ|Ū

EPŪ,Z̄
[
logQZ|Ū

]
− EPV̄,Z̄

[
logPZ|V̄

] ]
= max
λ∈[0,1]

min
PZ̄|Ū,V̄

max
QZ|Ū

0.5λR2 + (1− 0.5λ)[
DKL

(
PŪ,V̄,Z̄

∥∥PŪ,V̄ PZ|V̄)− λ

2− λ
EPŪ,V̄,Z̄

[
log

PZ|V̄

QZ|Ū

]]
= max
λ∈[0,1]

max
QZ|Ū

EPŪ,V̄

[
min
PZ̄|Ū,V̄

DKL

(
PZ̄|Ū,V̄ (·|Ū, V̄ )

∥∥PZ|V̄ (·|V̄ )
)

− λ(2− λ)−1EPZ̄|Ū,V̄

[
log

PZ|V̄

QZ|Ū

]]
(1− 0.5λ) + 0.5λR2

(c)
= max

λ∈[0,1]
max
QZ|Ū

λR2

2
− (1− 0.5λ)EPŪ,V̄

logEPZ|V̄

P λ
2−λ
Z|V̄

Q
λ

2−λ
Z|Ū


(d)
= max

λ∈[0,1]
max
QZ|Ū

λR2

2
− 0.5λ D 2

2−λ

(
PZ|V̄

∥∥QZ|Ū |PŪ,V̄ )
= max
λ∈[1,2]

(
1−λ−1

)(
R2−min

QZ|Ū
Dλ
(
PZ|V̄

∥∥QZ|Ū |PŪ,V̄ )), (30)

where (a) follows from from the minimax theorem; (b) follows
since HP (Z̄|Ū) = minQZ|Ū EPŪ,Z̄

[
− logQZ|Ū

]
; (c) is due to

[22, Lemma 20]; and (d) follows from the definition of Rényi
divergence of order α. Next, note that

lim
λ→1

min
QZ|Ū

Dλ
(
PZ|V̄

∥∥QZ|Ū |PŪ,V̄ ) = IP (V̄ ;Z|Ū).

Thus, if R2 > IP (V̄ ;Z|Ū), there exists a λ ∈ (1, 2] such that
RHS of (30) is strictly positive. This completes the proof.
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