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Lacking theory:
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◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

◮ Opt. in parameter space [Saxe’14, Choromanska’15, Wei’18]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

◮ Information theory [Tishby’17, Saxe’18, Gabrié’18]

⋆ Goal: Explain ‘compression’ in Information Bottleneck framework
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Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

IB Theory: Track MI pairs
(
I(X; Tℓ), I(Y ; Tℓ)

)
(information plane)
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Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

Past Works:

[Schwartz-Ziv&Tishby’17,

Saxe et al. ’18]
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=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

⊛⊛⊛ Real Problem: I(X; Tℓ) is meaningless in det. DNNs
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(
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(k)
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) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Operational Perspective:

Performance & learned representations similar to det. DNNs (β ≈ 10−1)
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Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X ), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate
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General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P ) est.:
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Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2]
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General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P ) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2] =⇒Inapplicable*

⋆ Except sub-Gaussian result from [Han-Jiao-Weissman-Wu’17]
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General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P ) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2] =⇒Inapplicable*

Rate: Risk ≤ O
(

n
− αs

βs+d

)

, w/ α, β ∈ N, s smoothness, d dimension
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Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:
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⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:
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(sample Tℓ−1 & apply fℓ)
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⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).
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⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)
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The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣
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The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define
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⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P ) , h(P ∗ ϕ)

Mixture: ĥSP is the diff. entropy of a known Gaussian mixture

Computing: Can be efficiently computed via MC integration
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The Sample Propagation Estimator - Convergence
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Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P ) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.
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}
and any β > 0 and d ≥ 1, we have

sup
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∣
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∣
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∣
∣
∣

≤ 1

2(4πβ2)
d

4

log






n
(

2 + 2β
√

(2 + ǫ) log n
)d

(πβ2)
d

2






(

2+2β
√

(2 + ǫ) log n
)d

2 1√
n

+

(

c2

β,d +
2cβ,dd(1 + β2)

β2
+

8d(d + 2β4 + dβ4)

β4

)
2

n

where cβ,d , d
2

log(2πβ2) + d
β2 .
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∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.



The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P ) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)
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Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations
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Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

✓ Does track clustering!

=⇒ Past works were not showing MI but clustering (via binned-MI)!
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Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T ) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T ) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ SP estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

=⇒ Clustering is the common phenomenon of interest!
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Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

◮ Is compression necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

◮ Better understanding of internal representation evolution & final state

◮ Enhanced DNN training algorithms

Estimating Information Flow in DNNs 16/16
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decay via Chi-squared distribution tail bounds
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Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

=⇒ Past works were not showing MI but clustering (via binned-MI)!
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