
Estimating the Information Flow in Deep Neural

Networks

Ziv Goldfeld

MIT

IT Forum, Information Systems Laboratory, Stanford University

November 9th, 2018

Collaborators: E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen,
B. Kingsbury and Y. Polyanskiy

MIT-IBM Watson AI Lab

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

◮ Opt. in parameter space [Saxe’14, Choromanska’15, Wei’18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

◮ Opt. in parameter space [Saxe’14, Choromanska’15, Wei’18]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

◮ Opt. in parameter space [Saxe’14, Choromanska’15, Wei’18]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

◮ Information theory [Tishby’17, Saxe’18, Gabrié’18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

◮ Opt. in parameter space [Saxe’14, Choromanska’15, Wei’18]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

◮ Information theory [Tishby’17, Saxe’18, Gabrié’18]

Estimating Information Flow in DNNs 2/16

How do Deep Neural Networks Learn?

Unprecedented practical success in hosts of tasks

Lacking theory:

◮ What drives the evolution of hidden representations?

◮ What are properties of learned representations?

◮ How fully trained networks process information?
...

Some past attempts to understand effectiveness of deep learning

◮ Shallow networks [Ge-Lee-Ma’17, Mei-Montanari-Nguyen’18]

◮ Opt. in parameter space [Saxe’14, Choromanska’15, Wei’18]

◮ Classes of efficiently representable functions [Montufar’14, Poggio’17]

◮ Information theory [Tishby’17, Saxe’18, Gabrié’18]

⋆ Goal: Explain ‘compression’ in Information Bottleneck framework

Estimating Information Flow in DNNs 2/16

Setup and Preliminaries

Feedforward DNN for Classification:

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

Deterministic DNN: Tℓ = fℓ(Tℓ−1) (MLP: Tℓ = σ(WℓTℓ−1 + bℓ))

Joint Distribution: PX,Y =⇒ PX,Y · PT1,...,TL|X

IB Theory: Track MI pairs
(
I(X; Tℓ), I(Y ; Tℓ)

)
(information plane)

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

Compression: I(X; Tℓ) slowly drops (long)

Estimating Information Flow in DNNs 3/16

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Setup and Preliminaries

Feedforward DNN for Classification:

IB Theory Claim: Training comprises 2 phases

Fitting: I(Y ; Tℓ) & I(X; Tℓ) rise (short)

Compression: I(X; Tℓ) slowly drops (long)

Estimating Information Flow in DNNs 3/16

[Tishby’17]

(Label)

(Feature/Image)

=

(Input Layer)

Cat

Dog

(Hidden Layer 1)

(Hidden Layer 1)

(Hidden Layer 1)

(Output Layer)

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X:

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h(Tℓ|X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h(Tℓ|X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

︸ ︷︷ ︸

=−∞

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X:

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆

⋆ For almost all weight matrices and bias vectors

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

⋆ For almost all weight matrices and bias vectors

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

Estimating Information Flow in DNNs 4/16

Meaningless Mutual Information

Observation

Det. DNNs with strictly monotone nonlinearities (e.g., tanh or sigmoid)

=⇒ I(X; Tℓ) is independent of the DNN parameters

Why?

Continuous X: I(X; Tℓ) = h(Tℓ) − h
(

f̃ℓ(X)
∣
∣X
)

= ∞
Discrete X: The map X 7→ Tℓ is injective⋆ =⇒ I(X; Tℓ) = H(X)

Past Works:

[Schwartz-Ziv&Tishby’17,

Saxe et al. ’18]

Estimating Information Flow in DNNs 4/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

)

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ)

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

Estimating Information Flow in DNNs 5/16

What is going on here?

Plots via binning-based estimator of I(X; Tℓ), for X ∼ Unif(dataset)

=⇒ Plotted values are I
(
X; Bin(Tℓ)

) ??≈ I(X; Tℓ) No!

Smaller bins =⇒ Closer to truth: I(X; Tℓ) = ln(212) ≈ 8.31

Binning introduces “noise” into estimator (not present in the DNN)

Plots showing estimation errors

⊛⊛⊛ Real Problem: I(X; Tℓ) is meaningless in det. DNNs

Estimating Information Flow in DNNs 5/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Operational Perspective:

Estimating Information Flow in DNNs 6/16

Auxiliary Framework - Noisy Deep Neural Networks

Modification: Inject (small) Gaussian noise to neurons’ output

Formally: Tℓ = fℓ(Tℓ−1) + Zℓ, where Zℓ ∼ N (0, β2I)

Tℓ−1
σ
(

W
(k)
ℓ Tℓ−1+bℓ(k)

) Sℓ(k)

Zℓ(k) ∼ N (0, β2)

Tℓ(k)

=⇒ X 7→ Tℓ is a parametrized channel that depends on DNN param.!

=⇒ I(X; Tℓ) is a function of weights and biases!

Operational Perspective:

Performance & learned representations similar to det. DNNs (β ≈ 10−1)

Estimating Information Flow in DNNs 6/16

Mutual Information in Noisy DNNs

Mutual Information in Noisy DNNs

Estimating Information Flow in DNNs 7/16

Noisy DNN:

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Estimating Information Flow in DNNs 7/16

Noisy DNN:

X f1f1 S1S1

Z1Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Estimating Information Flow in DNNs 7/16

Noisy DNN:

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1f1 S1S1

Z1Z1

T1T1 f2f2 S2S2

Z2Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1 tℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

x2

tℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

x2

tℓ,1

tℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

x1

x2

...
...

tℓ,1

tℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi t
(i)
ℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

xi

t
(i)
ℓ,1

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

xi

t
(i)
ℓ,1

t
(i)
ℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Mutual Information in Noisy DNNs

Assume: X ∼ Unif(X), where X , {xi}m
i=1 is empirical dataset

=⇒ Mutual Information: I(X; Tℓ) = h(Tℓ) − 1
m

∑m
i=1 h(Tℓ|X = xi)

⊛⊛⊛ PTℓ
and PTℓ|X are extremely complicated to compute/evaluate

⊛⊛⊛ But both are easily sampled via the DNN forward pass

◮ Sampling PTℓ
: Feed randomly chosen xi’s & read Tℓ values

◮ Sampling PTℓ|X=xi
: Feed xi multiples times & read Tℓ values

Estimating Information Flow in DNNs 7/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

xi

xi
...

...

t
(i)
ℓ,1

t
(i)
ℓ,2

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2]

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2] =⇒Inapplicable*

⋆ Except sub-Gaussian result from [Han-Jiao-Weissman-Wu’17]

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

General-Purpose Differential Entropy Estimators

=⇒ Estimate I(X; Tℓ) from samples via general-purpose h(P) est.:

Most results assume lower bounded density =⇒ Inapplicable

2 Works Drop Assumption:

1 KDE + Best poly. approximation [Han-Jiao-Weissman-Wu’17]

2 Kozachenko-Leonenko (kNN) estimator [Jiao-Gao-Han’17]

Assume: supp = [0, 1]d & Periodic BC & s∈(0,2] =⇒Inapplicable*

Rate: Risk ≤ O
(

n
− αs

βs+d

)

, w/ α, β ∈ N, s smoothness, d dimension

Estimating Information Flow in DNNs 8/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Estimating Information Flow in DNNs 9/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Estimating Information Flow in DNNs 9/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Estimating Information Flow in DNNs 9/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Estimating Information Flow in DNNs 9/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

Exploit Structure - Ad Hoc Estimation

⊛⊛⊛ Exploit structure: We know Tℓ = Sℓ + Zℓ ∼ P ∗ ϕ and:

Genie1: Sample P = PSℓ
and P = PSℓ|X=xi

(sample Tℓ−1 & apply fℓ)

Genie2: Know the distribution ϕ of Zℓ (noise injected by design)

Differential Entropy Estimation under Gaussian Convolutions

Estimate h(P ∗ ϕ) based on n i.i.d. samples from P ∈ Fd (nonparametric

class) and knowledge of ϕ (PDF of N (0, β2Id)).

Nonparametric Class: Depends on DNN architecture (nonlinearities)

Estimating Information Flow in DNNs 9/16

Noisy DNN: Sℓ , fℓ(Tℓ−1) =⇒ Tℓ = Sℓ + Zℓ, Zℓ ∼ N (0, β2I)

X f1 S1

Z1

T1 f2 S2

Z2

T2 · · ·

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P) , h(P ∗ ϕ)

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P) , h(P ∗ ϕ)

Mixture: ĥSP is the diff. entropy of a known Gaussian mixture

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator

Abs. Error Minimax Risk: Sn are n i.i.d. samples from P , define

R⋆
d(n, β) , inf

ĥ
sup

P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥ(Sn, β)

∣
∣
∣

⊛⊛⊛ Curse of Dimensionality: Sample complexity exponential in d

‘Sample Propagation’ Estimator: Empirical distribution P̂n = 1
n

n∑

i=1
δSi

ĥSP(Sn, β) , h(P̂n ∗ ϕ)

Comments:

Plug-in: ĥSP is just plug-in est. for the functional Tϕ(P) , h(P ∗ ϕ)

Mixture: ĥSP is the diff. entropy of a known Gaussian mixture

Computing: Can be efficiently computed via MC integration

Estimating Information Flow in DNNs 10/16

The Sample Propagation Estimator - Convergence

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣

≤ 1

2(4πβ2)
d

4

log

n
(

2 + 2β
√

(2 + ǫ) log n
)d

(πβ2)
d

2

(

2+2β
√

(2 + ǫ) log n
)d

2 1√
n

+

(

c2

β,d +
2cβ,dd(1 + β2)

β2
+

8d(d + 2β4 + dβ4)

β4

)
2

n

where cβ,d , d
2

log(2πβ2) + d
β2 .

The Sample Propagation Estimator - Convergence

Pf. Technique:

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n
− αs

βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n
− αs

βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Explicit expression enables concrete error bounds in simulations

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

The Sample Propagation Estimator - Convergence

Pf. Technique: Split analysis to R , [−1, 1]d + B(0,
√

c log n) and Rc

Inside R: Modulus of cont. & Convex analysis & Functional opt.

Outside R: Chi-squared distribution tail bounds

Comments:

Faster rate than O
(

n
− αs

βs+d

)

for kNN/KDE est. via ‘noisy’ samples

Explicit expression enables concrete error bounds in simulations

Extension: P with sub-Gaussian marginals (ReLU + Weight regular.)

Estimating Information Flow in DNNs 11/16

Theorem (ZG-Greenewald-Polyanskiy ’18)

For Fd ,
{
P
∣
∣supp(P) ⊆ [−1, 1]d

}
and any β > 0 and d ≥ 1, we have

sup
P ∈Fd

ESn

∣
∣
∣h(P ∗ ϕ) − ĥSP(Sn, β)

∣
∣
∣ ≤ Oβ

(

(log n)d/4

√
n

)

.

Back to Noisy DNNs

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:
X tanh(wX + b)

Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0

⊛⊛⊛ Center & sharpen transition (⇐⇒ increase w and keep b = −2w)

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0 S5,−10

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

3 3 3 3

S1,0 S5,−10

✓ Correct classification performance

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}
Mutual Information:

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN w. symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN w. symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN w. symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

I(X;Tℓ) Dynamics - Illustrative Minimal Example

Estimating Information Flow in DNNs 12/16

Single Neuron Classification:

Input: X ∼ Unif
(X−1 ∪ X1

)

X−1 , {−3, −1, 1} , X1 , {3}
Mutual Information: I(X; T) = I(Sw,b; Sw,b + Z)

=⇒ I(X; T) is # bits (nats) transmittable over AWGN w. symbols

Sw,b,
{

tanh(−3w+b), tanh(−w+b), tanh(w+b), tanh(3w+b)
} −→ {±1}

X tanh(wX + b)
Sw,b

Z ∼ N (0, β2)

T

10
0

10
2

10
4

10
6

Epoch

0

0.5

1

1.5

M
u
tu

a
l
in

fo
rm

a
ti
o
n

ln(3)

ln(2)

ln(4)

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Estimating Information Flow in DNNs 13/16

⊛⊛⊛ weight orthonormality regularization

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Verified in multiple additional experiments

Estimating Information Flow in DNNs 13/16

Clustering of Representations - Larger Networks

Noisy version of DNN from [Schwartz-Ziv&Tishby’17]:

Binary Classification: 12-bit input & 12–10–7–5–4–3–2 MLP arch.

Noise std.: Set to β = 0.01

Verified in multiple additional experiments

=⇒ Compression of I(X; Tℓ) driven by clustering of representations

Estimating Information Flow in DNNs 13/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)
↑

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)
↓

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

* When bin size chosen ∝ noise std.

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

* When bin size chosen ∝ noise std.

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

✓ Does track clustering!

Estimating Information Flow in DNNs 14/16

Circling back to Deterministic DNNs

I(X; Tℓ) is constant =⇒ Doesn’t measure clustering

Alternative measures for clustering (det. and noisy DNNs):

◮ Scatter plots (up to 3D layers)

◮ Binned entropy H
(
Bin(Tℓ)

)

Noisy DNNs: I(X; Tℓ) and H
(

Bin(Tℓ)
)

highly correlated!⋆

Det. DNNs: H
(
Bin(Tℓ)

)
= I

(
X; Bin(Tℓ)

)
compresses

✗ Incapable of accurately estimating MI values

✓ Does track clustering!

=⇒ Past works were not showing MI but clustering (via binned-MI)!

Estimating Information Flow in DNNs 14/16

Summary

Reexamined Information Bottleneck Compression:

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T) dynamics during training

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ SP estimator for accurate MI estimation over this framework

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ SP estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ SP estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

Estimating Information Flow in DNNs 15/16

Summary

Reexamined Information Bottleneck Compression:

◮ I(X ; T) fluctuations in det. DNNs are theoretically impossible

◮ Yet, past works presented I(X ; T) dynamics during training

Noisy DNN Framework: Studying IT quantities over DNNs

◮ SP estimator for accurate MI estimation over this framework

◮ Clustering of the learned representations is the source of compression

Clarify Past Observations of Compression: in fact show clustering

=⇒ Clustering is the common phenomenon of interest!

Estimating Information Flow in DNNs 15/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

◮ Is compression necessary? Desirable?

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

◮ Is compression necessary? Desirable?

◮ Design tool for DNN architectures

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

◮ Is compression necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

◮ Is compression necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

◮ Better understanding of internal representation evolution & final state

Estimating Information Flow in DNNs 16/16

Future Research

Curse of Dimensionality: Track clustering in high-dimensions?

◮ Lower-dimensional embedding

◮ Summarizing statistics

◮ Graph clusterability measures [Czumaj-Peng-Sohler’15]

The Role of Compression:

◮ Is compression necessary? Desirable?

◮ Design tool for DNN architectures

Algorithmic Perspective:

◮ Better understanding of internal representation evolution & final state

◮ Enhanced DNN training algorithms

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Estimating Information Flow in DNNs 16/16

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

◮ Plug back in & Convex analysis

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

◮ Plug back in & Convex analysis

=⇒ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)| ≤ c2 log
(

nλ(R)
c3

)√
λ(R)

n

The Sample Propagation Estimator - Proof Ideas

Strategy: Split analysis to R ,,, [−1,1]d + B(0,
√

c log n) and R
c

Restricted Entropy: hR(p),E
[−log p(X)1{X∈R}

]

supE
∣
∣h(P∗ϕ)−h(P̂n∗ϕ)

∣
∣ ≤ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)|+2 sup

∣
∣hRc(P ∗ϕ)

∣
∣

Inside R:

Outside R: O
(

1
n

)

decay via Chi-squared distribution tail bounds

Estimating Information Flow in DNNs 16/16

◮ −t log t modulus of cont. for x 7→ x log x & Jensen’s ineq.

=⇒ Focus on analyzing E

∣
∣
∣(P ∗ ϕ)(x) − (P̂n ∗ ϕ)(x)

∣
∣
∣

◮ Bias & variance analysis

=⇒ E

∣
∣
∣(P ∗ϕ)(x)−(P̂n ∗ϕ)(x)

∣
∣
∣≤ c1

√
(P ∗ϕ̃)(x)

n , ϕ̃ = N
(

0, β2

2 I
)

◮ Plug back in & Convex analysis

=⇒ supE|hR(P ∗ϕ) − hR(P̂n ∗ϕ)| ≤ c2 log
(

nλ(R)
c3

)√
λ(R)

n

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

Estimating Information Flow in DNNs 16/16

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

Estimating Information Flow in DNNs 16/16

Binning vs True Mutual Information

Comparing to Previously Shown MI Plots:

=⇒ Past works were not showing MI but clustering (via binned-MI)!

Estimating Information Flow in DNNs 16/16

References

[1] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen, B.
Kingsbury and Y. Polyanskiy, “Estimating information flow in DNNs,”
Submitted to the International Conference on Learning Representations
(ICLR-2019), New Orleans, Louisiana, US, May 2019.
Arxiv (extended): https://arxiv.org/abs/1810.05728

[2] Z. Goldfeld, K. Greenewald and Y. Polyanskiy, “Estimating differential
entropy under Gaussian convolutions,” Submitted to the IEEE
Transactions on Information Theory, October 2018.
Arxiv: https://arxiv.org/abs/1810.11589

Estimating Information Flow in DNNs 16/16

https://arxiv.org/abs/1810.05728
https://arxiv.org/abs/1810.11589

