Information Storage in the Stochastic Ising Model at Zero Temperature

Ziv Goldfeld, Guy Bresler and Yury Polyanskiy

MIT

The 2019 International Symposium on Information Theory Paris, France

July 9th, 2019

Storing Information Inside Matter

Storing Information Inside Matter

(1) Writing data

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states
(Stable for "long"

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states
(3) Stable for "long" \Longrightarrow Enables later data recovery

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states
(3) Stable for "long" \Longrightarrow Enables later data recovery

Goals:

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states
(3) Stable for "long" \Longrightarrow Enables later data recovery

Goals:

- Distill notion of storage from particular technology

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states
(3) Stable for "long" \Longrightarrow Enables later data recovery

Goals:

- Distill notion of storage from particular technology
- Capture interparticle interaction and system's dynamics

Storing Information Inside Matter

(1) Writing data \Longrightarrow Perturb local state of particles
(2) Atomic/subatomic interactions evolves local states
(3) Stable for "long" \Longrightarrow Enables later data recovery

Goals:

- Distill notion of storage from particular technology
- Capture interparticle interaction and system's dynamics
- How much data can be stored and for how long?

Operational Framework

Operational Framework

Stochastic Ising Model:

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}
$$

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}=e^{\beta \sum_{\{u, v\} \in \mathcal{E}} \sigma(u) \sigma(v)}
$$

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}=e^{\beta \sum_{\{u, v\} \in \mathcal{E}} \sigma(u) \sigma(v)}
$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}=e^{\beta \sum_{\{u, v\} \in \mathcal{E}} \sigma(u) \sigma(v)}
$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}=e^{\beta \sum_{\{u, v\} \in \mathcal{E}} \sigma(u) \sigma(v)}
$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
(1) Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh $\sigma(v) \sim \pi\left(\cdot \mid\{\sigma(w)\}_{w \neq v}\right)$

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}=e^{\beta \sum_{\{u, v\} \in \mathcal{E}} \sigma(u) \sigma(v)}
$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
(1) Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh $\sigma(v) \sim \pi\left(\cdot \mid\{\sigma(w)\}_{w \neq v}\right)$

Warm (β small) \Longrightarrow Weak interactions

Operational Framework

Stochastic Ising Model:

- Graph $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- Gibbs measure: on $\Omega \triangleq\{-1,+1\}^{\mathcal{V}}$ at inverse temp. β

$$
\pi(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)}=e^{\beta \sum_{\{u, v\} \in \mathcal{E}} \sigma(u) \sigma(v)}
$$

- Glauber dynamics (discrete time): At config. $\sigma \in \Omega$
(1) Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh $\sigma(v) \sim \pi\left(\cdot \mid\{\sigma(w)\}_{w \neq v}\right)$

Warm (β small) \Longrightarrow Weak interactions
Cold $\quad(\beta$ large $) \Longrightarrow$ Strong interactions

Measuring Information Storage

Measuring Information Storage

Information Capacity:

Measuring Information Storage

Information Capacity:

$$
I_{n}(t) \triangleq \max _{P_{X_{0}}} I\left(X_{0} ; X_{t}\right)
$$

Measuring Information Storage

Information Capacity: $\quad I_{n}(t) \triangleq \max _{P_{X_{0}}} I\left(X_{0} ; X_{t}\right)$

- Joint distribution: $X_{0} \sim P_{X_{0}}, X_{t} \mid X_{0}=x_{0} \sim P^{t}\left(x_{0}, \cdot\right)$
(P - transition kernel)

Measuring Information Storage

Information Capacity: $\quad I_{n}(t) \triangleq \max _{P_{X_{0}}} I\left(X_{0} ; X_{t}\right)$

- Joint distribution: $X_{0} \sim P_{X_{0}}, X_{t} \mid X_{0}=x_{0} \sim P^{t}\left(x_{0}, \cdot\right)$
(P - transition kernel)
- Operational meaning: $I_{n}(t) \approx \log$ (size of maximal codebook)

Measuring Information Storage

Information Capacity: $\quad I_{n}(t) \triangleq \max _{P_{X_{0}}} I\left(X_{0} ; X_{t}\right)$

- Joint distribution: $X_{0} \sim P_{X_{0}}, X_{t} \mid X_{0}=x_{0} \sim P^{t}\left(x_{0}, \cdot\right)$
(P - transition kernel)
- Operational meaning: $I_{n}(t) \approx \log$ (size of maximal codebook)
- Graph: 2D $\sqrt{n} \times \sqrt{n}$ grid

Measuring Information Storage

Information Capacity: $\quad I_{n}(t) \triangleq \max _{P_{X_{0}}} I\left(X_{0} ; X_{t}\right)$

- Joint distribution: $X_{0} \sim P_{X_{0}}, X_{t} \mid X_{0}=x_{0} \sim P^{t}\left(x_{0}, \cdot\right)$
(P - transition kernel)
- Operational meaning: $I_{n}(t) \approx \log$ (size of maximal codebook)
- Graph: 2D $\sqrt{n} \times \sqrt{n}$ grid
$\circledast \operatorname{Warm}(\beta \rightarrow \mathbf{0}): \operatorname{BSC}\left(\frac{1}{2}+o(1)\right)^{\otimes n}$ after $t=O(n)$.

Measuring Information Storage

Information Capacity: $\quad I_{n}(t) \triangleq \max _{P_{X_{0}}} I\left(X_{0} ; X_{t}\right)$

- Joint distribution: $X_{0} \sim P_{X_{0}}, X_{t} \mid X_{0}=x_{0} \sim P^{t}\left(x_{0}, \cdot\right)$
(P - transition kernel)
- Operational meaning: $I_{n}(t) \approx \log$ (size of maximal codebook)
- Graph: 2D $\sqrt{n} \times \sqrt{n}$ grid
\circledast Warm $(\beta \rightarrow \mathbf{0}): \operatorname{BSC}\left(\frac{1}{2}+o(1)\right)^{\otimes n}$ after $t=O(n)$.
* Cold: Can interactions (memory) help?

Previously: Zero-Temperature Dynamics $\quad(\beta \rightarrow \infty)$

Majority Update:

Previously: Zero-Temperature Dynamics $\quad(\beta \rightarrow \infty)$

Majority Update:

(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$

Previously: Zero-Temperature Dynamics
 $(\beta \rightarrow \infty)$

Majority Update:

(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh spin $\sigma(v)= \begin{cases}\text { spin of maj. }, & \text { if } \exists \text { maj. } \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text { if no maj. }\end{cases}$

Previously: Zero-Temperature Dynamics $\quad(\beta \rightarrow \infty)$

Majority Update:

(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh spin $\sigma(v)= \begin{cases}\text { spin of maj. }, & \text { if } \exists \text { maj. } \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text { if no maj. }\end{cases}$

Previously: Zero-Temperature Dynamics $\quad(\beta \rightarrow \infty)$

Majority Update:

(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh spin $\sigma(v)= \begin{cases}\text { spin of maj. }, & \text { if } \exists \text { maj. } \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text { if no maj. }\end{cases}$

Previously: Zero-Temperature Dynamics $\quad(\beta \rightarrow \infty)$

Majority Update:

(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh spin $\sigma(v)= \begin{cases}\text { spin of maj. }, & \text { if } \exists \text { maj. } \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text { if no maj. }\end{cases}$

Previously: Zero-Temperature Dynamics $\quad(\beta \rightarrow \infty)$

Majority Update:

(Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(2) Refresh spin $\sigma(v)= \begin{cases}\text { spin of maj. }, & \text { if } \exists \text { maj. } \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text { if no maj. }\end{cases}$

Previously: Zero-Temperature Dynamics

Majority Update:

- Select site for update $v \sim \operatorname{Unif}(\mathcal{V})$
(- Refresh spin $\sigma(v)= \begin{cases}\text { spin of maj., } & \text { if } \exists \text { maj. } \\ \sim \operatorname{Ber}\left(\frac{1}{2}\right), & \text { if no maj. }\end{cases}$

Time	Information Capacity	Comments
$t=0$	$I_{n}(t)=n$	Upper bound $\forall t$
$t=O(n)$	$I_{n}(t)=\Theta(n)$	Constant 'physical' time
$t=a(n) \cdot n$ $a(n) \in \omega(1)$	$I_{n}(t)=\Omega\left(\frac{n}{a(n)}\right)$	$I_{n}(n \log n)=\Omega\left(\frac{n}{\log n}\right)$ $I_{n}\left(n^{1+\alpha}\right)=\Omega\left(n^{1-\alpha}\right)$
$t \rightarrow \infty$ ind. of n	$I_{n}(\infty)=\Theta(\sqrt{n})$	Lower bound $\forall t$

Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Q: How long can we hope for?

Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (Goldfeld-Bresler-Polyanskiy'19)

Fix $\epsilon \in\left(0, \frac{1}{2}\right), \gamma>0$. For β sufficiently large there exist $c>0$ s.t.

$$
I\left(X_{0} ; X_{t}\right) \leq \log 2+\epsilon_{n}(\beta)
$$

for all $t \geq n \cdot e^{c \beta n^{\frac{1}{4}+\epsilon}}$, where $X_{0} \sim \pi$ and $\lim _{n \rightarrow \infty} \epsilon_{n}(\beta)=0$.

Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (Goldfeld-Bresler-Polyanskiy'19)

Fix $\epsilon \in\left(0, \frac{1}{2}\right), \gamma>0$. For β sufficiently large there exist $c>0$ s.t.

$$
I\left(X_{0} ; X_{t}\right) \leq \log 2+\epsilon_{n}(\beta)
$$

for all $t \geq n \cdot e^{c \beta n^{\frac{1}{4}+\epsilon}}$, where $X_{0} \sim \pi$ and $\lim _{n \rightarrow \infty} \epsilon_{n}(\beta)=0$.
\Longrightarrow Storage beyond exponential time ≤ 1 bit ($X_{0} \sim$ Gibbs $)$

Proof Outline

- $\left\{X_{t}^{\sigma}\right\}_{t}$ is the chain initiated at $\sigma \in \Omega_{n}$

Proof Outline

- $\left\{X_{t}^{\sigma}\right\}_{t}$ is the chain initiated at $\sigma \in \Omega_{n}$
- Couple $\left\{X_{t}^{\sigma}\right\}_{t}$, for all $\sigma \in \Omega_{n}$, via monotonic coupling

Proof Outline

- $\left\{X_{t}^{\sigma}\right\}_{t}$ is the chain initiated at $\sigma \in \Omega_{n}$
- Couple $\left\{X_{t}^{\sigma}\right\}_{t}$, for all $\sigma \in \Omega_{n}$, via monotonic coupling
- $m(\sigma)=\frac{1}{n} \sum v \in \mathcal{V}_{n} \sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

Proof Outline

- $\left\{X_{t}^{\sigma}\right\}_{t}$ is the chain initiated at $\sigma \in \Omega_{n}$
- Couple $\left\{X_{t}^{\sigma}\right\}_{t}$, for all $\sigma \in \Omega_{n}$, via monotonic coupling
- $m(\sigma)=\frac{1}{n} \sum v \in \mathcal{V}_{n} \sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

Proposition (Martinelli'94)

Let ϵ, γ be as before. For β sufficiently large there exist $c>0$ s.t.

$$
\sum_{\substack{\sigma \in \Omega_{n}: \\ m(\sigma)>0}} \pi(\sigma) \mathbb{P}\left(X_{t}^{\sigma} \neq X_{t}^{\boxplus}\right) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c \beta n^{\frac{1}{4}+\epsilon}}
$$

Proof Outline

- $\left\{X_{t}^{\sigma}\right\}_{t}$ is the chain initiated at $\sigma \in \Omega_{n}$
- Couple $\left\{X_{t}^{\sigma}\right\}_{t}$, for all $\sigma \in \Omega_{n}$, via monotonic coupling
- $m(\sigma)=\frac{1}{n} \sum v \in \mathcal{V}_{n} \sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

Proposition (Martinelli'94)

Let ϵ, γ be as before. For β sufficiently large there exist $c>0$ s.t.

$$
\sum_{\substack{\sigma \in \Omega_{n}: \\ m(\sigma)>0}} \pi(\sigma) \mathbb{P}\left(X_{t}^{\sigma} \neq X_{t}^{\boxplus}\right) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c \beta n^{\frac{1}{4}+\epsilon}}
$$

(1) $I\left(X_{0} ; X_{t}\right) \leq H\left(\operatorname{sign}\left(m\left(X_{0}\right)\right)\right)+I\left(X_{0} ; X_{t} \mid \operatorname{sign}\left(m\left(X_{0}\right)\right)\right)$

Proof Outline

- $\left\{X_{t}^{\sigma}\right\}_{t}$ is the chain initiated at $\sigma \in \Omega_{n}$
- Couple $\left\{X_{t}^{\sigma}\right\}_{t}$, for all $\sigma \in \Omega_{n}$, via monotonic coupling
- $m(\sigma)=\frac{1}{n} \sum v \in \mathcal{V}_{n} \sigma(v)$ is magnetization ; $\sigma=\boxplus$ is all-plus state

Proposition (Martinelli'94)

Let ϵ, γ be as before. For β sufficiently large there exist $c>0$ s.t.

$$
\sum_{\substack{\sigma \in \Omega_{n}: \\ m(\sigma)>0}} \pi(\sigma) \mathbb{P}\left(X_{t}^{\sigma} \neq X_{t}^{\boxplus}\right) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c \beta n^{\frac{1}{4}+\epsilon}}
$$

(-1 $I\left(X_{0} ; X_{t}\right) \leq H\left(\operatorname{sign}\left(m\left(X_{0}\right)\right)\right)+I\left(X_{0} ; X_{t} \mid \operatorname{sign}\left(m\left(X_{0}\right)\right)\right)$
(2) $H\left(\operatorname{sign}\left(m\left(X_{0}\right)\right)\right) \leq \log 2 \quad ; \quad I\left(X_{0} ; X_{t} \mid \operatorname{sign}\left(m\left(X_{0}\right)\right)=o(1)\right.$

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Theorem (Goldfeld-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in(0,1)$, we have:

$$
I_{n}(t)=\Omega(\sqrt{n}), \quad \forall t \leq e^{c \beta}
$$

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Theorem (Goldfeld-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in(0,1)$, we have:

$$
I_{n}(t)=\Omega(\sqrt{n}), \quad \forall t \leq e^{c \beta}
$$

Storage Scheme:

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Theorem (Goldfeld-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in(0,1)$, we have:

$$
I_{n}(t)=\Omega(\sqrt{n}), \quad \forall t \leq e^{c \beta} .
$$

Storage Scheme:

- Codebook: Set of all 2-striped configurations

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Theorem (Goldfeld-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in(0,1)$, we have:

$$
I_{n}(t)=\Omega(\sqrt{n}), \quad \forall t \leq e^{c \beta} .
$$

Storage Scheme:

- Codebook: Set of all 2-striped configurations
- \# 2-Stripes: $2^{\Theta(\sqrt{n})}$

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Theorem (Goldfeld-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in(0,1)$, we have:

$$
I_{n}(t)=\Omega(\sqrt{n}), \quad \forall t \leq e^{c \beta} .
$$

Storage Scheme:

- Codebook: Set of all 2-striped configurations
- \# 2-Stripes: $2^{\Theta(\sqrt{n})}$
- Input: $X_{0} \sim \operatorname{Unif}(\{2$-Stripes $\})$

Long-Term Storage: Scaling t with β

- In low-temperature regime we may scale t with β
- Can store \sqrt{n} bits for $\exp (\beta)$ time!

Theorem (Goldfeld-Bresler-Polyanskiy'19)

For β and n sufficiently large, and $c \in(0,1)$, we have:

$$
I_{n}(t)=\Omega(\sqrt{n}), \quad \forall t \leq e^{c \beta} .
$$

Storage Scheme:

- Codebook: Set of all 2-striped configurations
- \# 2-Stripes: $2^{\Theta(\sqrt{n})}$
- Input: $X_{0} \sim \operatorname{Unif}(\{2-S t r i p e s\})$
- Decoding: Majority decoding per stripe

Reduction to Single Stripe Analysis

- Denote: $\quad t_{f} \triangleq e^{c \beta} ;\left.X_{t}^{(j)} \triangleq X_{t}\right|_{\text {Stripe } j} ; X_{t}^{[j]} \triangleq\left(X_{t}^{(k)}\right)_{k=1}^{j}$

Reduction to Single Stripe Analysis

- Denote: $\quad t_{f} \triangleq e^{c \beta} ;\left.X_{t}^{(j)} \triangleq X_{t}\right|_{\text {Stripe } j} ; X_{t}^{[j]} \triangleq\left(X_{t}^{(k)}\right)_{k=1}^{j}$
- Decoder: $\psi_{j}\left(X_{t}^{(j)}\right)$ is majority decoder inside $X_{t}^{(j)}$

Reduction to Single Stripe Analysis

- Denote: $\quad t_{f} \triangleq e^{c \beta} ;\left.X_{t}^{(j)} \triangleq X_{t}\right|_{\text {Stripe } j} ; X_{t}^{[j]} \triangleq\left(X_{t}^{(k)}\right)_{k=1}^{j}$
- Decoder: $\psi_{j}\left(X_{t}^{(j)}\right)$ is majority decoder inside $X_{t}^{(j)}$

$$
\begin{aligned}
I_{n}^{(\beta)}(t) & \geq \sum_{j} I\left(X_{0}^{(j)} ; X_{t_{f}} \mid X_{0}^{[j-1]}\right) \\
& \geq \sum_{j} I\left(X_{0}^{(j)} ; \psi_{j}\left(X_{t_{f}}\right) \mid X_{0}^{[j-1]}\right) \\
& \geq \Theta(\sqrt{n}) \cdot C_{\mathrm{BSC}}(\mathbb{P}(\text { More than half stripe flipped }))
\end{aligned}
$$

Reduction to Single Stripe Analysis

- Denote: $\quad t_{f} \triangleq e^{c \beta} ;\left.X_{t}^{(j)} \triangleq X_{t}\right|_{\text {Stripe } j} ; X_{t}^{[j]} \triangleq\left(X_{t}^{(k)}\right)_{k=1}^{j}$
- Decoder: $\psi_{j}\left(X_{t}^{(j)}\right)$ is majority decoder inside $X_{t}^{(j)}$

$$
\begin{aligned}
I_{n}^{(\beta)}(t) & \geq \sum_{j} I\left(X_{0}^{(j)} ; X_{t_{f}} \mid X_{0}^{[j-1]}\right) \\
& \geq \sum_{j} I\left(X_{0}^{(j)} ; \psi_{j}\left(X_{t_{f}}\right) \mid X_{0}^{[j-1]}\right) \\
& \geq \Theta(\sqrt{n}) \cdot C_{\mathrm{BSC}}(\mathbb{P}(\text { More than half stripe flipped }))
\end{aligned}
$$

\Longrightarrow Suffices to analyze \mathbb{P} (More than half stripe flipped)

Single Stripe Case: Main Result

Bottom 1-Stripe:

Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by gluing horizontal spins

Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by gluing horizontal spins
- Strategy:

Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by gluing horizontal spins
- Strategy:

- Bound $\mathbb{E} N^{(+)}\left(t_{f}\right)$, where $N^{(+)}\left(t_{f}\right) \triangleq$ \#pluses in bottom stripe of X_{t}

Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by gluing horizontal spins
- Strategy:

- Bound $\mathbb{E} N^{(+)}\left(t_{f}\right)$, where $N^{(+)}\left(t_{f}\right) \triangleq$ \#pluses in bottom stripe of X_{t}
- High probability claim via Chebyshev

Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by gluing horizontal spins
- Strategy:

- Bound $\mathbb{E} N^{(+)}\left(t_{f}\right)$, where $N^{(+)}\left(t_{f}\right) \triangleq$ \#pluses in bottom stripe of X_{t}
- High probability claim via Chebyshev

Theorem (Goldfeld-Bresler-Polyanskiy'19)

Fix any $c, C \in(0,1)$. For β and n sufficiently large, we have

$$
\mathbb{E} N^{(+)}(t) \geq C \sqrt{n}, \quad \forall t \leq e^{c \beta}
$$

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

(3) Initially chain stays close to $X_{0} \mathrm{w} /$ occasional sprinkles

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

(3) Initially chain stays close to $X_{0} \mathrm{w} /$ occasional sprinkles
(3) After sufficiently many sprinkle, drift driven by erosion

Single Stripe Case: Challenges \& Solutions

* Pluses may spread out above bottom stripe

Fix: Prohibit minuses from flipping (monotonicity)

* Interleaved Dynamics: 2 types of flips
- Sprinkle: Flip w/ all-plus horizontal neighbors

- Erosion: Flip w/ at least one minus horizontal neighbor

Expected Behavior:

(3) Initially chain stays close to $X_{0} \mathrm{w} /$ occasional sprinkles
(2) After sufficiently many sprinkle, drift driven by erosion
\Longrightarrow Dominate $\left\{X_{t}\right\}_{t}$ by a phase-separated dynamics

Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)

Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- $0<t_{1}<\ldots<t_{k}<t_{f}$ are the k clock rings (at v_{1}, \ldots, v_{k}) until t_{f}

Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- $0<t_{1}<\ldots<t_{k}<t_{f}$ are the k clock rings (at v_{1}, \ldots, v_{k}) until t_{f}
- Define new dynamics $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ with first $2 k$ clock rings and flips

$$
\tau_{j}=\left\{\begin{array}{ll}
t_{j}, & j \in[k] \\
t_{j-k}+t_{f}, & j \in[k+1: 2 k]
\end{array}, u_{j}= \begin{cases}v_{j}, & j \in[k] \\
v_{j-k}, & j \in[k+1: 2 k]\end{cases}\right.
$$

Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- $0<t_{1}<\ldots<t_{k}<t_{f}$ are the k clock rings (at v_{1}, \ldots, v_{k}) until t_{f}
- Define new dynamics $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ with first $2 k$ clock rings and flips

$$
\begin{aligned}
& \tau_{j}=\left\{\begin{array}{ll}
t_{j}, & j \in[k] \\
t_{j-k}+t_{f}, & j \in[k+1: 2 k]
\end{array}, u_{j}= \begin{cases}v_{j}, & j \in[k] \\
v_{j-k}, & j \in[k+1: 2 k]\end{cases} \right. \\
& \qquad \begin{array}{lllllll}
\left\{X_{t}\right\}_{t \in\left[0, t_{f}\right]}
\end{array} \\
& \begin{array}{lllllll}
0 & t_{1} & t_{2} & t_{3} & t_{4} t_{5} & t_{6} t_{7} t_{8} & t_{f}
\end{array}
\end{aligned}
$$

Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- $0<t_{1}<\ldots<t_{k}<t_{f}$ are the k clock rings (at v_{1}, \ldots, v_{k}) until t_{f}
- Define new dynamics $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ with first $2 k$ clock rings and flips

$$
\tau_{j}=\left\{\begin{array}{ll}
t_{j}, & j \in[k] \\
t_{j-k}+t_{f}, & j \in[k+1: 2 k]
\end{array}, u_{j}= \begin{cases}v_{j}, & j \in[k] \\
v_{j-k}, & j \in[k+1: 2 k]\end{cases}\right.
$$

Single Stripe Case: Phase-Separated Dynamics (2)

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips
(2) For $t_{f} \leq t \leq 2 t_{f}$ allow only erosion flips

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips
(2) For $t_{f} \leq t \leq 2 t_{f}$ allow only erosion flips
\circledast Adjust $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ Poisson rates to neighborhoods

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips
(2) For $t_{f} \leq t \leq 2 t_{f}$ allow only erosion flips
\circledast Adjust $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ Poisson rates to neighborhoods Observations:

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips
(2) For $t_{f} \leq t \leq 2 t_{f}$ allow only erosion flips
\circledast Adjust $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ Poisson rates to neighborhoods

Observations:

- Erosion flips in $\left\{X_{t}\right\}_{t \in\left[0, t_{f}\right]} \Longrightarrow$ Erosion flips in $\left\{\tilde{X}_{t}\right\}_{t \in\left[t_{f}, 2 t_{f}\right]}$

Single Stripe Case: Phase-Separated Dynamics (2)

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips
(2) For $t_{f} \leq t \leq 2 t_{f}$ allow only erosion flips
\circledast Adjust $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ Poisson rates to neighborhoods Observations:

- Erosion flips in $\left\{X_{t}\right\}_{t \in\left[0, t_{f}\right]} \Longrightarrow$ Erosion flips in $\left\{\tilde{X}_{t}\right\}_{t \in\left[t_{f}, 2 t_{f}\right]}$
- Erosion flip rates in $\left\{\tilde{X}_{t}\right\}_{t \in\left[t_{f}, 2 t_{f}\right]}$ are faster

Single Stripe Case: Phase-Separated Dynamics (2)

$$
\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}
$$

Blocking Rule:

(1) For $t<t_{f}$ allow only sprinkle flips
(2) For $t_{f} \leq t \leq 2 t_{f}$ allow only erosion flips
\circledast Adjust $\left\{\tilde{X}_{t}\right\}_{t \in\left[0,2 t_{f}\right]}$ Poisson rates to neighborhoods Observations:

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig $i^{\prime} \approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of ' + 's separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig i ' $\approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$
$\Longrightarrow \mathbb{E} \mathrm{L}_{i} \gtrsim \ell_{\beta} \triangleq \frac{1}{p_{\beta}}$

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig i ' $\approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$
$\Longrightarrow \mathbb{E} \mathrm{L}_{i} \gtrsim \ell_{\beta} \triangleq \frac{1}{p_{\beta}}$
- $\mathbb{E}[$ Number of contigs of this length $] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig i ' $\approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$
$\Longrightarrow \mathbb{E} \mathrm{L}_{i} \gtrsim \ell_{\beta} \triangleq \frac{1}{p_{\beta}}$
- \mathbb{E} [Number of contigs of this length $] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$
$\Longrightarrow \mathbb{E} \tilde{N}^{(+)}\left(2 t_{f}\right) \gtrsim \frac{\sqrt{n}}{2-p_{\beta}} \mathbb{E}\left[\#\right.$ pluses in contig i after t_{f}-long erosion $]$

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig $i \prime \approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$
$\Longrightarrow \mathbb{E} \mathrm{L}_{i} \gtrsim \ell_{\beta} \triangleq \frac{1}{p_{\beta}}$
- $\mathbb{E}[$ Number of contigs of this length $] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$
$\Longrightarrow \mathbb{E} \tilde{N}^{(+)}\left(2 t_{f}\right) \gtrsim \frac{\sqrt{n}}{2-p_{\beta}} \mathbb{E}\left[\#\right.$ pluses in contig i after t_{f}-long erosion $]$
Erosion Analysis $\left(t_{f}, 2 t_{f}\right]$: Contig eaten $\mathrm{w} /$ speed $\phi_{\beta} \triangleq \frac{e^{\beta}}{e^{\beta}+e^{-\beta}}$ (2 sides)

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig i ' $\approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$
$\Longrightarrow \mathbb{E} \mathrm{L}_{i} \gtrsim \ell_{\beta} \triangleq \frac{1}{p_{\beta}}$
- $\mathbb{E}[$ Number of contigs of this length $] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$
$\Longrightarrow \mathbb{E} \tilde{N}^{(+)}\left(2 t_{f}\right) \gtrsim \frac{\sqrt{n}}{2-p_{\beta}} \mathbb{E}\left[\#\right.$ pluses in contig i after t_{f}-long erosion $]$
Erosion Analysis $\left(t_{f}, 2 t_{f}\right]$: Contig eaten $\mathrm{w} /$ speed $\phi_{\beta} \triangleq \frac{e^{\beta}}{e^{\beta}+e^{-\beta}}$ (2 sides)
- $\mathbb{E}\left[\#\right.$ pluses in contig i after t_{f}-long erosion $] \gtrsim \frac{\ell_{\beta}}{4 \phi_{\beta}}$

Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $\left[0, t_{f}\right]$: Ends w/ runs of '+'s separated by '-' sprinkles

Q: What is the typical length of a run (contig) \& how many of them?

- $\mathrm{L}_{i}=$ 'Length of Contig i ' $\approx \operatorname{Geo}\left(p_{\beta}\right), p_{\beta} \triangleq \mathbb{P}($ Sprinkle $)$
$\Longrightarrow \mathbb{E} \mathrm{L}_{i} \gtrsim \ell_{\beta} \triangleq \frac{1}{p_{\beta}}$
- $\mathbb{E}[$ Number of contigs of this length $] \gtrsim \frac{\sqrt{n}}{2-p_{\beta}}$
$\Longrightarrow \mathbb{E} \tilde{N}^{(+)}\left(2 t_{f}\right) \gtrsim \frac{\sqrt{n}}{2-p_{\beta}} \mathbb{E}\left[\#\right.$ pluses in contig i after t_{f}-long erosion $]$
Erosion Analysis $\left(t_{f}, 2 t_{f}\right]$: Contig eaten $\mathrm{w} /$ speed $\phi_{\beta} \triangleq \frac{e^{\beta}}{e^{\beta}+e^{-\beta}}$ (2 sides)
- $\mathbb{E}\left[\#\right.$ pluses in contig i after t_{f}-long erosion $] \gtrsim \frac{\ell_{\beta}}{4 \phi_{\beta}}$
- Insert back to above bound and conclude proof

Summary

- New model for information storage inside physical matter:

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology
- Accounts for interparticle interactions

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology
- Accounts for interparticle interactions
- Study effect of interactions (low temperature) on storage capability:

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology
- Accounts for interparticle interactions
- Study effect of interactions (low temperature) on storage capability:
- 1-bit upper bound on storage for exponential (in n) time

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology
- Accounts for interparticle interactions
- Study effect of interactions (low temperature) on storage capability:
- 1-bit upper bound on storage for exponential (in n) time
- \sqrt{n} storage achievability for $e^{c \beta}$ time (store in stripes)

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology
- Accounts for interparticle interactions
- Study effect of interactions (low temperature) on storage capability:
- 1-bit upper bound on storage for exponential (in n) time
- \sqrt{n} storage achievability for $e^{c \beta}$ time (store in stripes)
- Available on arXiv: https://arxiv.org/abs/1805.03027

Summary

- New model for information storage inside physical matter:
- Distilled from any particular storage technology
- Accounts for interparticle interactions
- Study effect of interactions (low temperature) on storage capability:
- 1-bit upper bound on storage for exponential (in n) time
- \sqrt{n} storage achievability for $e^{c \beta}$ time (store in stripes)
- Available on arXiv: https://arxiv.org/abs/1805.03027

Thank you!

