Sliced Mutual Information:
 A Scalable Measure of Statistical Dependence

Ziv Goldfeld

Cornell University
Joint work with Kristjan Greenewald, Theshani Nuradha, and Galen Reeves

Mutual Information

Definition (Shannon'48)

The mutual information (MI) between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{I}(X ; Y):=\int_{\mathbb{R}^{d_{x}}} \int_{\mathbb{R}^{d_{y}}} \log \left(\frac{d P_{X Y}}{d P_{X} \otimes P_{Y}}\right) d P_{X Y}=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

Mutual Information

Definition (Shannon'48)

The mutual information (MI) between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{I}(X ; Y):=\int_{\mathbb{R}^{d_{x}}} \int_{\mathbb{R}^{d_{y}}} \log \left(\frac{d P_{X Y}}{d P_{X} \otimes P_{Y}}\right) d P_{X Y}=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

Fundamental measure of statistical dependence:

Mutual Information

Definition (Shannon'48)

The mutual information (MI) between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{I}(X ; Y):=\int_{\mathbb{R}^{d_{x}}} \int_{\mathbb{R}^{d_{y}}} \log \left(\frac{d P_{X Y}}{d P_{X} \otimes P_{Y}}\right) d P_{X Y}=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

Fundamental measure of statistical dependence:

- Meaningful units \& structural properties

Mutual Information

Definition (Shannon'48)

The mutual information (MI) between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{I}(X ; Y):=\int_{\mathbb{R}^{d_{x}}} \int_{\mathbb{R}^{d_{y}}} \log \left(\frac{d P_{X Y}}{d P_{X} \otimes P_{Y}}\right) d P_{X Y}=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

Fundamental measure of statistical dependence:

- Meaningful units \& structural properties
- Obtained axiomatically as the only natural measure of information

Mutual Information

Definition (Shannon'48)

The mutual information (MI) between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{I}(X ; Y):=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d_{y}}} \log \left(\frac{d P_{X Y}}{d P_{X} \otimes P_{Y}}\right) d P_{X Y}=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

Fundamental measure of statistical dependence:

- Meaningful units \& structural properties
- Obtained axiomatically as the only natural measure of information
- Emerges as solution to operational problems

Mutual Information

Definition (Shannon'48)

The mutual information (MI) between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{I}(X ; Y):=\int_{\mathbb{R}^{d_{x}}} \int_{\mathbb{R}^{d_{y}}} \log \left(\frac{d P_{X Y}}{d P_{X} \otimes P_{Y}}\right) d P_{X Y}=\mathrm{D}_{\mathrm{KL}}\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

Fundamental measure of statistical dependence:

- Meaningful units \& structural properties
- Obtained axiomatically as the only natural measure of information
- Emerges as solution to operational problems
- Applications in information theory, tatistics, machine learning.

Mutual Information: Structural Properties

(1) Identification of independence: $\quad \mathrm{I}(X ; Y)=0 \quad \Longleftrightarrow X \perp Y$

Mutual Information: Structural Properties

(1) Identification of independence: $\quad \mathrm{I}(X ; Y)=0 \quad \Longleftrightarrow X \perp Y$
(2) Invariance: f, g bijections $\Longrightarrow I(f(X) ; g(Y))=I(X ; Y)$

Mutual Information: Structural Properties

(1) Identification of independence: $\mathrm{I}(X ; Y)=0 \quad \Longleftrightarrow X \perp Y$
(2) Invariance: f, g bijections $\Longrightarrow I(f(X) ; g(Y))=I(X ; Y)$
(3) Decomposition: $\mathrm{H}(X)$ is the (Shannon or differential) entropy

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{H}(X)-\mathrm{H}(X \mid Y) \\
& =\mathrm{H}(Y)-\mathrm{H}(Y \mid X) \\
& =\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)
\end{aligned}
$$

Mutual Information: Structural Properties

(1) Identification of independence: $\mathrm{I}(X ; Y)=0 \quad \Longleftrightarrow X \perp Y$
(2) Invariance: f, g bijections $\Longrightarrow I(f(X) ; g(Y))=I(X ; Y)$
(3) Decomposition: $\mathrm{H}(X)$ is the (Shannon or differential) entropy

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{H}(X)-\mathrm{H}(X \mid Y) \\
& =\mathrm{H}(Y)-\mathrm{H}(Y \mid X) \\
& =\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)
\end{aligned}
$$

(0) Tensorization: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are mutually independent

$$
\Longrightarrow \mathrm{I}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n} \mathrm{I}\left(X_{i} ; Y_{i}\right)
$$

Mutual Information: Structural Properties

(1) Identification of independence: $\mathrm{I}(X ; Y)=0 \quad \Longleftrightarrow X \perp Y$
(2) Invariance: f, g bijections $\Longrightarrow I(f(X) ; g(Y))=I(X ; Y)$
(3) Decomposition: $\mathrm{H}(X)$ is the (Shannon or differential) entropy

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{H}(X)-\mathrm{H}(X \mid Y) \\
& =\mathrm{H}(Y)-\mathrm{H}(Y \mid X) \\
& =\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)
\end{aligned}
$$

(0) Tensorization: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are mutually independent

$$
\Longrightarrow \mathrm{I}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n} \mathrm{I}\left(X_{i} ; Y_{i}\right)
$$

(0) DPI: $X \leftrightarrow Y \leftrightarrow Z \Longrightarrow \mathrm{I}(X ; Y) \geq \mathrm{I}(X ; Z) \quad$ (in par. $Z=f(Y))$

Mutual Information: Structural Properties

(1) Identification of independence: $\mathrm{I}(X ; Y)=0 \quad \Longleftrightarrow \quad X \perp Y$
(2 Invariance: f, g bijections $\Longrightarrow I(f(X) ; g(Y))=I(X ; Y)$

- Decomposition: $\mathrm{H}(X)$ is the (Shannon or differential) entropy

$$
\begin{aligned}
\mathrm{I}(X ; Y) & =\mathrm{H}(X)-\mathrm{H}(X \mid Y) \\
& =\mathrm{H}(Y)-\mathrm{H}(Y \mid X) \\
& =\mathrm{H}(X)+\mathrm{H}(Y)-\mathrm{H}(X, Y)
\end{aligned}
$$

- Tensorization: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are mutually independent

$$
\Longrightarrow \quad \mathrm{I}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n} \mathrm{I}\left(X_{i} ; Y_{i}\right)
$$

- DPI: $X \leftrightarrow Y \leftrightarrow Z \quad \Longrightarrow \quad \mathrm{I}(X ; Y) \geq \mathrm{I}(X ; Z) \quad$ (in par. $Z=f(Y))$
- Donsker-Varadhan: $\mathrm{I}(X ; Y)=\sup _{f} \mathbb{E}[f(X, Y)]-\log \left(\mathbb{E}\left[e^{f(\tilde{X}, \tilde{Y})}\right]\right)$

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Modern applications

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Modern applications

- Rep. learning: Deep InfoMax [Hjelm et al.'18], CPC [Oord et al.'19]

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Modern applications

- Rep. learning: Deep InfoMax [Hjelm et al.'18], CPC [Oord et al.'19]
- Generative modeling: InfoGAN [Chen et al.'16], [Belghazi et al.'18]

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Modern applications

- Rep. learning: Deep InfoMax [Hjelm et al.'18], CPC [Oord et al.'19]
- Generative modeling: InfoGAN [Chen et al.'16], [Belghazi et al.'18]

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Modern applications

- Rep. learning: Deep InfoMax [Hjelm et al.'18], CPC [Oord et al.'19]
- Generative modeling: InfoGAN [Chen et al.'16], [Belghazi et al.'18]

Challenge: MI estimation in high dim. sample complexity $n^{\star}(\epsilon, d) \asymp \epsilon^{-d}$

Mutual Information: Applications \& Challenges

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$
- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Modern applications

- Rep. learning: Deep InfoMax [Hjelm et al.'18], CPC [Oord et al.'19]
- Generative modeling: InfoGAN [Chen et al.'16], [Belghazi et al.'18]

Challenge: MI estimation in high dim. sample complexity $n^{\star}(\epsilon, d) \asymp \epsilon^{-d}$

* Goal: Scalable MI surrogate that preserves its structure

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Illustration:

$$
P_{X} \in \mathcal{P}\left(\mathbb{R}^{d_{x}}\right)
$$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Illustration:

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Illustration:

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Illustration:

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Illustration:

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI btw. $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is (here $\left.\sigma_{d}=\operatorname{Unif}\left(\mathbb{S}^{d-1}\right)\right)$

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{d_{x}}(\theta) d \sigma_{d_{y}}(\phi)
$$

Illustration:

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)
SMI preserves many of the properties of MI, including:

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)
SMI preserves many of the properties of MI, including:
(1) Independence: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow X \perp Y$

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)

SMI preserves many of the properties of MI, including:
(1) Independence: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow X \perp Y$

$$
\theta^{\top} X \perp \phi^{\top} Y, \quad \forall(\theta, \phi) \in \mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1} \quad \Longleftrightarrow \quad X \perp Y
$$

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)

SMI preserves many of the properties of MI, including:
(1) Independence: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow X \perp Y$
(2) Sliced entropy: $\mathrm{SI}(X ; Y)=\operatorname{sh}(X)-\operatorname{sh}(X \mid Y)=\ldots$
where $\operatorname{sh}(X):=\mathrm{h}\left(\Theta^{\top} X \mid \Theta\right)$

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)

SMI preserves many of the properties of MI, including:
(1) Independence: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow X \perp Y$
(2) Sliced entropy: $\mathrm{SI}(X ; Y)=\operatorname{sh}(X)-\operatorname{sh}(X \mid Y)=\ldots$

$$
\text { where } \operatorname{sh}(X):=\mathrm{h}\left(\Theta^{\top} X \mid \Theta\right)
$$

(0) Max sliced entropy: $\triangleright \Sigma_{P} \preccurlyeq \Sigma \Longrightarrow P^{\star}=\mathcal{N}(0, \Sigma)$

$$
>\operatorname{spt}(P) \subseteq \mathbb{B}_{d}(r) \Longrightarrow P^{\star}=\operatorname{Unif}\left(r \mathbb{S}^{d-1}\right)
$$

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)

SMI preserves many of the properties of MI, including:
(1) Independence: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow X \perp Y$
(2) Sliced entropy: $\mathrm{SI}(X ; Y)=\operatorname{sh}(X)-\operatorname{sh}(X \mid Y)=\ldots$ where $\operatorname{sh}(X):=\mathrm{h}\left(\Theta^{\top} X \mid \Theta\right)$
(3) Max sliced entropy: $\Sigma_{P} \preccurlyeq \Sigma \Longrightarrow P^{\star}=\mathcal{N}(0, \Sigma)$

$$
>\operatorname{spt}(P) \subseteq \mathbb{B}_{d}(r) \Longrightarrow P^{\star}=\operatorname{Unif}\left(r \mathbb{S}^{d-1}\right)
$$

(9) Tensorization: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are mutually independent

$$
\Longrightarrow \operatorname{SI}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n} \operatorname{SI}\left(X_{i} ; Y_{i}\right)
$$

Properties of Sliced Mutual Information

Theorem (ZG-Greenewald'21)

SMI preserves many of the properties of MI, including:
(1) Independence: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow X \perp Y$
(2) Sliced entropy: $\mathrm{SI}(X ; Y)=\operatorname{sh}(X)-\operatorname{sh}(X \mid Y)=\ldots$ where $\operatorname{sh}(X):=\mathrm{h}\left(\Theta^{\top} X \mid \Theta\right)$
(3) Max sliced entropy: $\Sigma_{P} \preccurlyeq \Sigma \Longrightarrow P^{\star}=\mathcal{N}(0, \Sigma)$

$$
>\operatorname{spt}(P) \subseteq \mathbb{B}_{d}(r) \Longrightarrow P^{\star}=\operatorname{Unif}\left(r \mathbb{S}^{d-1}\right)
$$

(9) Tensorization: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are mutually independent

$$
\Longrightarrow \mathrm{SI}\left(X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}\right)=\sum_{i=1}^{n} \mathrm{SI}\left(X_{i} ; Y_{i}\right)
$$

(3) DV: $\mathrm{SI}(X ; Y)=\sup _{f} \mathbb{E}\left[f\left(\Theta, \Phi, \Theta^{\top} X, \Phi^{\top} Y\right)\right]-\log \left(\mathbb{E}\left[e^{f\left(\Theta, \Phi, \Theta^{\top} \tilde{X}, \Phi^{\top} \tilde{Y}\right)}\right]\right)$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathbf{I}(X ; Y) \geq \mathbf{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right)$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathbf{I}(X ; Y) \geq \mathbf{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=X_{1}$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=X_{1}$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=X_{1}, g_{a}\left(x_{1}, x_{2}\right)=\left(x_{1} a x_{2}\right)^{\top}$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\mathrm{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=X_{1}, g_{a}\left(x_{1}, x_{2}\right)=\left(x_{1} a x_{2}\right)^{\top}$
$\Longrightarrow \mathrm{SI}(X ; Y)<\operatorname{SI}\left(g_{a}(X) ; Y\right), \quad \forall a<1$

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathbf{I}(X ; Y) \geq \mathbf{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=X_{1}, g_{a}\left(x_{1}, x_{2}\right)=\left(x_{1} a x_{2}\right)^{\top}$

$$
\Longrightarrow \mathrm{SI}(X ; Y)<\mathrm{SI}\left(g_{a}(X) ; Y\right), \quad \forall a<1
$$

$\Longrightarrow \mathrm{SMI}$ can increase via processing (violates DPI)

Sliced Mutual Information \& Processing

Mutual information: Satisfies DPI $\quad \mathrm{I}(X ; Y) \geq \mathrm{I}(f(X) ; Y)$
$\Longrightarrow \mathrm{MI}$ cannot grow via processing

Sliced mutual information: Follows the DPI?

- Only considers projections of RVs
- If $f(X)$ has more informative projections: $\mathrm{SI}(X ; Y)<\operatorname{SI}(f(X) ; Y)$
- Example: $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=X_{1}, g_{a}\left(x_{1}, x_{2}\right)=\left(x_{1} a x_{2}\right)^{\top}$
$\Longrightarrow \mathrm{SI}(X ; Y)<\mathrm{SI}\left(g_{a}(X) ; Y\right), \quad \forall a<1$
\Longrightarrow SMI can increase via processing (violates DPI)

Can be used for feature extraction via SMI maximization

Scalable Estimation from Samples

Estimator: Given samples $\left(X^{n}, Y^{n}\right)$ i.i.d. from $P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$

Scalable Estimation from Samples

Estimator: Given samples $\left(X^{n}, Y^{n}\right)$ i.i.d. from $P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$
(1) Take scalar MI estimator $\hat{\mathrm{I}}\left(A^{n}, B^{n}\right) \mathrm{w} /$ error $\delta(n)$ over some class

Scalable Estimation from Samples

Estimator: Given samples $\left(X^{n}, Y^{n}\right)$ i.i.d. from $P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$
(1) Take scalar MI estimator $\hat{\mathrm{I}}\left(A^{n}, B^{n}\right) \mathrm{w} /$ error $\delta(n)$ over some class
(2) Sample m random directions Θ^{m} and Φ^{m} from corresponding spheres

Scalable Estimation from Samples

Estimator: Given samples $\left(X^{n}, Y^{n}\right)$ i.i.d. from $P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$
(1) Take scalar MI estimator $\hat{\mathrm{I}}\left(A^{n}, B^{n}\right) \mathrm{w} /$ error $\delta(n)$ over some class
(2) Sample m random directions Θ^{m} and Φ^{m} from corresponding spheres
(3) Compute $\left(\Theta_{i}^{\top} X\right)^{n}:=\left(\Theta_{i}^{\top} X_{1}, \ldots, \Theta_{i}^{\top} X_{n}\right), i \in[m]$, and $\left(\Phi_{i}^{\top} Y\right)^{n}$.

Scalable Estimation from Samples

Estimator: Given samples $\left(X^{n}, Y^{n}\right)$ i.i.d. from $P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$
(1) Take scalar MI estimator $\hat{\mathrm{I}}\left(A^{n}, B^{n}\right) \mathrm{w} /$ error $\delta(n)$ over some class
(2) Sample m random directions Θ^{m} and Φ^{m} from corresponding spheres
(3) Compute $\left(\Theta_{i}^{\top} X\right)^{n}:=\left(\Theta_{i}^{\top} X_{1}, \ldots, \Theta_{i}^{\top} X_{n}\right), i \in[m]$, and $\left(\Phi_{i}^{\top} Y\right)^{n}$.
((Estimate SMI via MC:

$$
\widehat{\mathrm{S}}_{m, n}:=\frac{1}{m} \sum_{i=1}^{m} \hat{\mathrm{I}}\left(\left(\Theta_{i}^{\top} X\right)^{n},\left(\Phi_{i}^{\top} Y\right)^{n}\right)
$$

Scalable Estimation from Samples

Estimator: Given samples $\left(X^{n}, Y^{n}\right)$ i.i.d. from $P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$
(1) Take scalar MI estimator $\hat{\mathrm{I}}\left(A^{n}, B^{n}\right) \mathrm{w} /$ error $\delta(n)$ over some class
(2) Sample m random directions Θ^{m} and Φ^{m} from corresponding spheres
(3) Compute $\left(\Theta_{i}^{\top} X\right)^{n}:=\left(\Theta_{i}^{\top} X_{1}, \ldots, \Theta_{i}^{\top} X_{n}\right), i \in[m]$, and $\left(\Phi_{i}^{\top} Y\right)^{n}$.
(ㄷ) Estimate SMI via MC:

$$
\widehat{\mathrm{S}} \mathrm{~m}_{m, n}:=\frac{1}{m} \sum_{i=1}^{m} \hat{\mathrm{I}}\left(\left(\Theta_{i}^{\top} X\right)^{n},\left(\Phi_{i}^{\top} Y\right)^{n}\right)
$$

Theorem (ZG-Greenewald-Reeves'22)

If $P_{X Y}$ has finite 2nd moments \& Fisher information $\mathrm{J}\left(P_{X Y}\right)<\infty$, then

$$
\mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{m, n}\right|\right] \leq C\left(P_{X Y}\right) \sqrt{\frac{d_{x}+d_{y}}{d_{x} d_{y}}} m^{-\frac{1}{2}}+\delta(n),
$$

where $C\left(P_{X Y}\right)=21 \sqrt{\left\|\mathrm{~J}_{F}\left(P_{X Y}\right)\right\|_{\mathrm{op}}\left(\left\|\Sigma_{X}\right\|_{\mathrm{op}} \vee\left\|\Sigma_{Y}\right\|_{\mathrm{op}}\right)}$.

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}} \mathrm{m}_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}}{ }_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term

$$
\begin{aligned}
(\mathbb{I}) & \left.\leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{\imath}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad \text { (assumption on } \hat{\imath}\right) \\
(\mathrm{II}) & \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)
\end{aligned}
$$

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}} \mathrm{m}_{m, n}-\circledast\right|\right]}_{(\mathrm{I})}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)
$(\mathbb{I I}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)($ via HWI)

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}} \mathrm{m}_{m, n}-\circledast\right|\right]}_{(\mathrm{I})}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\left.\hat{\mathrm{I}}\right)$
$(\mathrm{III}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)$ (via HWI)
Compare to [Polyanskiy-Wu'16]

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{\mathrm{I}}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)
$(\mathrm{III}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)$ (via HWI)
Compare to [Polyanskiy-Wu'16]

- Relax $\left(c_{1}, c_{2}\right)$-regularity

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)
$(\mathbb{I I}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)$ (via HWI)
Compare to [Polyanskiy-Wu'16]

- Relax $\left(c_{1}, c_{2}\right)$-regularity
- Sharp constant (optimal)

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{\mathrm{I}}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)
$(\mathbb{I I}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)$ (via HWI)
(1) $\mathrm{I}_{X Y}$ is Lipschitz on $\mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}}_{m, n}-\circledast\right|\right]}_{\text {(I) }}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)
$(\mathbb{I I}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)$ (via HWI)
(1) $\mathrm{I}_{X Y}$ is Lipschitz on $\mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$
(2) Concentration of Lip. functions on \mathbb{S}^{d-1} \& Efron-Stein-Steele ineq.

Estimation Error Bound: Proof Outline

Define: $\mathrm{I}_{X Y}(\theta, \phi):=\mathrm{I}\left(\theta^{\top} X, \phi^{\top} Y\right) \& *:=\frac{1}{m} \sum_{i=1}^{m} \mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)$
Decompose: $\mathbb{E}\left[\left|\widehat{\mathrm{SI}}_{m, n}-\mathrm{SI}(X ; Y)\right|\right] \leq \underbrace{\mathbb{E}\left[\left|\widehat{\mathrm{S}} \mathrm{m}_{m, n}-\circledast\right|\right]}_{(\mathrm{I})}+\underbrace{\mathbb{E}[|\circledast-\mathrm{SI}(X ; Y)|]}_{\text {(II) }}$
Bound: For each term
$(\mathbb{I}) \leq \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left[\left|\hat{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)-\mathrm{I}_{X Y}\left(\Theta_{i}, \Phi_{i}\right)\right|\right] \leq \delta(n) \quad$ (assumption on $\hat{\mathrm{I}}$)
$(\mathbb{I I}) \leq m^{-1 / 2} \sqrt{\operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right)} \quad\left(\mathbb{E}[\circledast]=\mathrm{SI}(X ; Y) \& L^{1}(P) \leq L^{2}(P)\right)$
Variance: New continuity result $\mathrm{h}(P)-\mathrm{h}(Q) \leq \sqrt{\mathrm{J}(Q)} \mathrm{W}_{2}(P, Q)$ (via HWI)
(1) $\mathrm{I}_{X Y}$ is Lipschitz on $\mathbb{S}^{d_{x}-1} \times \mathbb{S}^{d_{y}-1}$
(2) Concentration of Lip. functions on \mathbb{S}^{d-1} \& Efron-Stein-Steele ineq.

$$
\Longrightarrow \operatorname{Var}\left(\mathrm{I}_{X Y}(\Theta, \Phi)\right) \leq C\left(P_{X Y}\right)^{2}\left(d_{x}^{-1}+d_{y}^{-1}\right)
$$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

$$
\Longrightarrow \mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{m, n}^{(\mathrm{Lip})}\right|\right] \lesssim m^{-1 / 2}+n^{-1 / 2}\left(1+(\log n)^{1 / 4}\right)
$$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

$$
\Longrightarrow \mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{m, n}^{(\mathrm{Lip})}\right|\right] \lesssim m^{-1 / 2}+n^{-1 / 2}\left(1+(\log n)^{1 / 4}\right)
$$

Neural est.: Minimax optimal DKL est. over Barron class [Sreekumar-ZG'22]

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

$$
\Longrightarrow \mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{m, n}^{(\mathrm{Lip})}\right|\right] \lesssim m^{-1 / 2}+n^{-1 / 2}\left(1+(\log n)^{1 / 4}\right)
$$

Neural est.: Minimax optimal DKL est. over Barron class [Sreekumar-ZG'22]

- $\mathrm{I}(X ; Y)=\sup _{f} \mathbb{E}[f(X, Y)]-\log \left(\mathbb{E}\left[e^{f(\tilde{X}, \tilde{Y})}\right]\right)$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

$$
\Longrightarrow \mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{m, n}^{(\mathrm{Lip})}\right|\right] \lesssim m^{-1 / 2}+n^{-1 / 2}\left(1+(\log n)^{1 / 4}\right)
$$

Neural est.: Minimax optimal DKL est. over Barron class [Sreekumar-ZG'22]

- $\mathrm{I}(X ; Y)=\sup _{f} \mathbb{E}[f(X, Y)]-\log \left(\mathbb{E}\left[e^{f(\tilde{X}, \tilde{Y})}\right]\right)$

$$
\approx \sup _{g \in \mathcal{F}_{\mathrm{nn}}^{k}} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, Y_{i}\right)-\log \left(\frac{1}{n} \sum_{i=1}^{n} e^{g\left(X_{\sigma(i)}, Y_{i}\right)}\right)
$$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al.'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

$$
\Longrightarrow \mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{SI}}_{m, n}^{(\mathrm{Lip})}\right|\right] \lesssim m^{-1 / 2}+n^{-1 / 2}\left(1+(\log n)^{1 / 4}\right)
$$

Neural est.: Minimax optimal DKL est. over Barron class [Sreekumar-ZG'22]

- $\mathrm{I}(X ; Y)=\sup _{f} \mathbb{E}[f(X, Y)]-\log \left(\mathbb{E}\left[e^{f(\tilde{X}, \tilde{Y})}\right]\right)$

$$
\begin{aligned}
& \approx \sup _{g \in \mathcal{F}_{n n}^{k}} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, Y_{i}\right)-\log \left(\frac{1}{n} \sum_{i=1}^{n} e^{g\left(X_{\sigma(i)}, Y_{i}\right)}\right) \\
\Longrightarrow & \mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{S}}_{k, m, n}^{(\mathrm{NE})}\right|\right] \lesssim m^{-1 / 2}+k^{-1 / 2}+n^{-1 / 2}
\end{aligned}
$$

SMI Estimation: Examples

Upshot: The SMI estimator attains error $\lesssim m^{-1 / 2}+\delta(n)$
KDE \& BPA: Minimax optimal $\mathrm{h}(X)$ est. over Lipschitz balls [Han et al:'20]

- Plug-in KDE of f_{X} into best polynomial approximation of $\mathrm{h}(X)$

$$
\mathbb{E}\left[\left|\mathrm{SI}(X ; Y)-\widehat{\mathrm{S}}_{m, n}^{\mathrm{Lip})}\right|\right] \lesssim m^{-1 / 2}+n^{-1 / 2}\left(1+(\log n)^{1 / 4}\right)
$$

Neural est.: Minimax optimal DKL est. over Barron class [Sreekumar-ZG'22]

- $\mathrm{I}(X ; Y)=\sup _{f} \mathbb{E}[f(X, Y)]-\log \left(\mathbb{E}\left[e^{f(\tilde{X}, \tilde{Y}}\right]\right)$

$$
\begin{aligned}
& \approx \sup _{g \in \mathcal{F}_{n n}^{k}} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, Y_{i}\right)-\log \left(\frac{1}{n} \sum_{i=1}^{n} e^{g\left(X_{\sigma(i)}, Y_{i}\right)}\right) \\
\Longrightarrow & \mathbb{E}\left[\left|\operatorname{SI}(X ; Y)-\widehat{\mathrm{S}}_{k, m, n}^{(\mathrm{NE})}\right|\right] \lesssim m^{-1 / 2}+k^{-1 / 2}+n^{-1 / 2}
\end{aligned}
$$

$*$ No curse of dimensionality: Compare to classic MI rate $n^{-1 /\left(d_{x}+d_{y}\right)}$

Experiments: Independence Testing

Recall: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow(X, Y)$ independent

Experiments: Independence Testing

Recall: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow(X, Y)$ independent
\Longrightarrow Compute SMI \& threshold for independence testing

Experiments: Independence Testing

Recall: $\mathrm{SI}(X ; Y)=0 \Longleftrightarrow(X, Y)$ independent
\Longrightarrow Compute SMI \& threshold for independence testing

Figure: Area under the ROC curve

(a) Y encodes a single feature.

$$
Y=\frac{1}{\sqrt{d}}\left(\mathbf{1}^{\top} X\right) \mathbf{1}+Z
$$

$$
Y_{i}= \begin{cases}\frac{1}{d}\left(\mathbf{1}_{[d / 2]} 0 \ldots 0\right)^{\top} X+Z_{i}, & i \leq \frac{d}{d} \\ \frac{1}{d}\left(0 \ldots 01_{[d / 2]}\right)^{\top} X+Z_{i}, & i>\frac{d}{2}\end{cases}
$$

(c) Low rank common signal.

$$
\begin{aligned}
& X=\mathrm{P}_{1} V+Z_{1} \\
& Y=\mathrm{P}_{2} V+Z_{2}
\end{aligned}
$$

(d) Independent coordinates.

$$
Y=X+Z
$$

Experiments: Feature Extraction

Goal: Maximize $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y), X, Y$ i.i.d. from same MNIST class (0 or 1)

Experiments: Feature Extraction

Goal: Maximize $\operatorname{SI}(\mathrm{A} X ; \mathrm{A} Y), X, Y$ i.i.d. from same MNIST class (0 or 1)

- Upper bound: $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y) \leq \mathrm{I}(X ; Y)=1$ bit

Experiments: Feature Extraction

Goal: Maximize $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y), X, Y$ i.i.d. from same MNIST class (0 or 1)

- Upper bound: $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y) \leq \mathrm{I}(X ; Y)=1$ bit
- Interpretation: A is linear features most useful for label classification

Experiments: Feature Extraction

Goal: Maximize $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y), X, Y$ i.i.d. from same MNIST class (0 or 1)

- Upper bound: $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y) \leq \mathrm{I}(X ; Y)=1$ bit
- Interpretation: A is linear features most useful for label classification

Figure: Feature extraction for MNIST

Rows 0 and 1 of optimized A (rearranged as MNIST image)

Experiments: Feature Extraction

Goal: Maximize $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y), X, Y$ i.i.d. from same MNIST class (0 or 1)

- Upper bound: $\mathrm{SI}(\mathrm{A} X ; \mathrm{A} Y) \leq \mathrm{I}(X ; Y)=1$ bit
- Interpretation: A is linear features most useful for label classification

Figure: Feature extraction for MNIST

Rows 0 and 1 of optimized A (rearranged as MNIST image)
$\Longrightarrow \mathrm{SI}\left(\mathrm{A}^{\star} X ; \mathrm{A}^{\star} Y\right)=0.68$ (compare to 0.0752 for random A)

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate
- Applications: Independence testing \& feature extraction

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate
- Applications: Independence testing \& feature extraction

Future directions: Theoretical and applied

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate
- Applications: Independence testing \& feature extraction

Future directions: Theoretical and applied

- Extensions to k-dimensional projections, max-slicing,...

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate
- Applications: Independence testing \& feature extraction

Future directions: Theoretical and applied

- Extensions to k-dimensional projections, max-slicing, ...
- Decomposition to Gaussian SMI plus residual (negligible?)

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate
- Applications: Independence testing \& feature extraction

Future directions: Theoretical and applied

- Extensions to k-dimensional projections, max-slicing,...
- Decomposition to Gaussian SMI plus residual (negligible?)
- Applications to more complex learning tasks (InfoGAN, InfoMAX, ...)

Summary

Sliced mutual information: Avg. scalar MI terms btw. 1D projections

- Structure: Preserves many properties of classic MI (not DPI)
- Estimation: Efficiently computable \& fast to estimate
- Applications: Independence testing \& feature extraction

Future directions: Theoretical and applied

- Extensions to k-dimensional projections, max-slicing,...
- Decomposition to Gaussian SMI plus residual (negligible?)
- Applications to more complex learning tasks (InfoGAN, InfoMAX, ...)

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

- Gaussian SMI: $\left(X_{*}, Y_{*}\right) \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\Sigma_{X} & \mathrm{C}_{X Y} \\ \mathrm{C}_{X Y}^{\top} & \Sigma_{Y}\end{array}\right]\right)$ bdd. condition $\#$ \& corr.
$\Longrightarrow \operatorname{SI}\left(X_{*} ; Y_{*}\right) \asymp \frac{\left\|\mathrm{C}_{X Y}\right\|_{\mathrm{F}}^{2}}{2 \operatorname{tr}\left(\Sigma_{X}\right) \operatorname{tr}\left(\Sigma_{Y}\right)}$

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

- Gaussian SMI: $\left(X_{*}, Y_{*}\right) \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\Sigma_{X} & \mathrm{C}_{X Y} \\ \mathrm{C}_{X Y}^{\top} & \Sigma_{Y}\end{array}\right]\right)$ bdd. condition $\#$ \& corr.
$\Longrightarrow \operatorname{SI}\left(X_{*} ; Y_{*}\right) \asymp \frac{\left\|\mathrm{C}_{X Y}\right\|_{\mathrm{F}}^{2}}{2 \operatorname{tr}\left(\Sigma_{X}\right) \operatorname{tr}\left(\Sigma_{Y}\right)} \leq \frac{\left(d_{x} \wedge d_{y}\right) \rho^{2}\left\|\Sigma_{X}\right\|_{\text {op }}\left\|\Sigma_{Y}\right\|_{\text {op }}}{d_{x} d_{y}\left\|\Sigma_{X}^{-1}\right\|_{\text {op }}\left\|\Sigma_{Y}^{-1}\right\|_{\text {op }}}$

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

- Gaussian SMI: $\left(X_{*}, Y_{*}\right) \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\Sigma_{X} & \mathrm{C}_{X Y} \\ \mathrm{C}_{X Y}^{\top} & \Sigma_{Y}\end{array}\right]\right)$ bdd. condition $\#$ \& corr.
$\Longrightarrow \operatorname{SI}\left(X_{*} ; Y_{*}\right) \asymp \frac{\left\|\mathrm{C}_{X Y}\right\|_{\mathrm{F}}^{2}}{2 \operatorname{tr}\left(\Sigma_{X}\right) \operatorname{tr}\left(\Sigma_{Y}\right)} \leq \frac{\left(d_{x} \wedge d_{y}\right) \rho^{2}\left\|\Sigma_{X}\right\|_{\text {op }}\left\|\Sigma_{Y}\right\|_{\text {op }}}{d_{x} d_{y}\left\|\Sigma_{X}^{-1}\right\|_{\text {op }}\left\|\Sigma_{Y}^{-1}\right\|_{\text {op }}} \in O\left(\frac{1}{d_{x}} \wedge \frac{1}{d_{y}}\right)$

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

- Gaussian SMI: $\left(X_{*}, Y_{*}\right) \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\Sigma_{X} & \mathrm{C}_{X Y} \\ \mathrm{C}_{X Y}^{\top} & \Sigma_{Y}\end{array}\right]\right)$ bdd. condition $\#$ \& corr.
$\Longrightarrow \operatorname{SI}\left(X_{*} ; Y_{*}\right) \asymp \frac{\left\|\mathrm{C}_{X Y}\right\|_{\mathrm{F}}^{2}}{2 \operatorname{tr}\left(\Sigma_{X}\right) \operatorname{tr}\left(\Sigma_{Y}\right)} \leq \frac{\left(d_{x} \wedge d_{y}\right) \rho^{2}\left\|\Sigma_{X}\right\|_{\text {op }}\left\|\Sigma_{Y}\right\|_{\text {op }}}{d_{x} d_{y}\left\|\Sigma_{X}^{-1}\right\|_{\text {op }}\left\|\Sigma_{Y}^{-1}\right\|_{\text {op }}} \in O\left(\frac{1}{d_{x}} \wedge \frac{1}{d_{y}}\right)$
- Decomp.: $\left(X_{*}, Y_{*}\right)$ Gaussian $\mathrm{w} /$ same $1^{\text {st }} 2^{\text {nd }}$ moments as (X, Y)
$\Longrightarrow \mathrm{SI}(X ; Y)=\mathrm{SI}\left(X_{*} ; Y_{*}\right)+\mathrm{D}_{\mathrm{KL}}\left(\left(\mathfrak{p}^{\Theta}, \mathfrak{p}^{\Phi}\right)_{\sharp} \mu_{X Y} \|\left(\mathfrak{p}^{\Theta}, \mathfrak{p}^{\Phi}\right)_{\sharp} \gamma_{X Y} \mid \Theta, \Phi\right)$

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

- Gaussian SMI: $\left(X_{*}, Y_{*}\right) \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\Sigma_{X} & \mathrm{C}_{X Y} \\ \mathrm{C}_{X Y}^{\top} & \Sigma_{Y}\end{array}\right]\right)$ bdd. condition $\#$ \& corr.
$\Longrightarrow \operatorname{SI}\left(X_{*} ; Y_{*}\right) \asymp \frac{\left\|\mathrm{C}_{X Y}\right\|_{\mathrm{F}}^{2}}{2 \operatorname{tr}\left(\Sigma_{X}\right) \operatorname{tr}\left(\Sigma_{Y}\right)} \leq \frac{\left(d_{x} \wedge d_{y}\right) \rho^{2}\left\|\Sigma_{X}\right\|_{\text {op }}\left\|\Sigma_{Y}\right\|_{\text {op }}}{d_{x} d_{y}\left\|\Sigma_{X}^{-1}\right\|_{\text {op }}\left\|\Sigma_{Y}^{-1}\right\|_{\text {op }}} \in O\left(\frac{1}{d_{x}} \wedge \frac{1}{d_{y}}\right)$
- Decomp.: $\left(X_{*}, Y_{*}\right)$ Gaussian $\mathrm{w} /$ same $1^{\text {st }} 2^{\text {nd }}$ moments as (X, Y)
$\Longrightarrow \mathrm{SI}(X ; Y)=\operatorname{SI}\left(X_{*} ; Y_{*}\right)+\mathrm{D}_{\mathrm{KL}}\left(\left(\mathfrak{p}^{\Theta}, \mathfrak{p}^{\Phi}\right)_{\sharp} \mu_{X Y} \|\left(\mathfrak{p}^{\Theta}, \mathfrak{p}^{\Phi}\right)_{\sharp} \gamma_{X Y} \mid \Theta, \Phi\right)$
- Residual: Vanishes as $d_{x}, d_{y} \rightarrow 0$ by conditional CLT [Reeves'16]

Asymptotics via Decomposition

Question: Asymptotics of $\mathrm{SI}(X ; Y)$ as $d_{x}, d_{y} \rightarrow \infty$?

- Gaussian SMI: $\left(X_{*}, Y_{*}\right) \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\Sigma_{X} & \mathrm{C}_{X Y} \\ \mathrm{C}_{X Y}^{\top} & \Sigma_{Y}\end{array}\right]\right)$ bdd. condition $\#$ \& corr.
$\Longrightarrow \operatorname{SI}\left(X_{*} ; Y_{*}\right) \asymp \frac{\left\|\mathrm{C}_{X Y}\right\|_{\mathrm{F}}^{2}}{2 \operatorname{tr}\left(\Sigma_{X}\right) \operatorname{tr}\left(\Sigma_{Y}\right)} \leq \frac{\left(d_{x} \wedge d_{y}\right) \rho^{2}\left\|\Sigma_{X}\right\|_{\text {op }}\left\|\Sigma_{Y}\right\|_{\text {op }}}{d_{x} d_{y}\left\|\Sigma_{X}^{-1}\right\|_{\text {op }}\left\|\Sigma_{Y}^{-1}\right\|_{\text {op }}} \in O\left(\frac{1}{d_{x}} \wedge \frac{1}{d_{y}}\right)$
- Decomp.: $\left(X_{*}, Y_{*}\right)$ Gaussian $\mathrm{w} /$ same $1^{\text {st }} 2^{\text {nd }}$ moments as (X, Y)
$\Longrightarrow \mathrm{SI}(X ; Y)=\operatorname{SI}\left(X_{*} ; Y_{*}\right)+\mathrm{D}_{\mathrm{KL}}\left(\left(\mathfrak{p}^{\Theta}, \mathfrak{p}^{\Phi}\right)_{\sharp} \mu_{X Y} \|\left(\mathfrak{p}^{\Theta}, \mathfrak{p}^{\Phi}\right)_{\sharp} \gamma_{X Y} \mid \Theta, \Phi\right)$
- Residual: Vanishes as $d_{x}, d_{y} \rightarrow 0$ by conditional CLT [Reeves'16]
* Known rates too slow! Is $\mathbf{S I}\left(X_{*} ; \boldsymbol{Y}_{*}\right)$ the leading term?

Mutual Information: Applications

Information Theory: Emerges as solution to operation problems

Mutual Information: Applications

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$

Mutual Information: Applications

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$

- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$

Mutual Information: Applications

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$

- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$
- More: Distribution simulation, privacy \& security, common info...

Mutual Information: Applications

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$

- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$
- More: Distribution simulation, privacy \& security, common info...

Statistics: Ind. testing, impossibility results, dependence quantification...

Mutual Information: Applications

Information Theory: Emerges as solution to operation problems

- Noisy communication: Channel capacity $\mathrm{C}\left(P_{Y \mid X}\right)=\max _{P_{X}} \mathrm{I}(X ; Y)$

- Compression: Rate-distortion $\mathrm{R}\left(D, P_{X}\right)=\min _{P_{\hat{X} \mid X}: \mathbb{E}[d(X, \hat{X})] \leq D} \mathrm{I}(X ; \hat{X})$
- More: Distribution simulation, privacy \& security, common info...

Statistics: Ind. testing, impossibility results, dependence quantification...

Machine Learning: Hosts of modern applications

Mutual Information in Machine Learning

Representation learning: InfoMax principle

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$
- Objective: $\sup _{\theta \in \Theta} \mathrm{I}\left(e_{\theta}(X) ; X\right)$

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

(1) DIM [Hjelm et al.'18]: Parameterized DV lower bound

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

"Real"
\square
- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$
- Objective: $\sup _{\theta \in \Theta} \mathrm{I}\left(e_{\theta}(X) ; X\right)$

(1) DIM [Hjelm et al.'18]: Parameterized DV lower bound
(2) CPC [Oord et al.'19]: Contrastive $\mathcal{L}_{\text {InfoNCE }}$ lower bound

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$
- Objective: $\sup _{\theta \in \Theta} \mathrm{I}\left(e_{\theta}(X) ; X\right)$

(1) DIM [Hjelm et al.'18]: Parameterized DV lower bound
(2) CPC [Oord et al.'19]: Contrastive $\mathcal{L}_{\text {InfoNCE }}$ lower bound

Generative modeling : Disentangled latent space

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$
- Objective: $\sup _{\theta \in \Theta} \mathrm{I}\left(e_{\theta}(X) ; X\right)$

(1) DIM [Hjelm et al.'18]: Parameterized DV lower bound
(2) CPC [Oord et al.'19]: Contrastive $\mathcal{L}_{\text {InfoNCE }}$ lower bound

Generative modeling : Disentangled latent space

- Goal: Learn $g_{\theta}(Z) \sim Q_{\theta}$ that mimics $X \sim P_{X}$

Mutual Information in Machine Learning

Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$

Discriminato

- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$
- Objective: $\sup _{\theta \in \Theta} \mathrm{I}\left(e_{\theta}(X) ; X\right)$
(1) DIM [Hjelm et al.'18]: Parameterized DV lower bound
(2) CPC [Oord et al.'19]: Contrastive $\mathcal{L}_{\text {InfoNCE }}$ lower bound

Generative modeling : Disentangled latent space

- Goal: Learn $g_{\theta}(Z) \sim Q_{\theta}$ that mimics $X \sim P_{X}$
- GAN: $\min _{\theta \in \Theta} \max _{\phi \in \Phi} \mathcal{L}_{\mathrm{GAN}}\left(g_{\theta}, d_{\phi}\right)$

Mutual Information in Machine Learning

$M \times M$ feature map
Representation learning: InfoMax principle

- Data: $X \sim P_{X} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$
- Encoder: $e_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}, m \ll d$
- Objective: $\sup _{\theta \in \Theta} \mathrm{I}\left(e_{\theta}(X) ; X\right)$

(1) DIM [Hjelm et al.'18]: Parameterized DV lower bound
(2) CPC [Oord et al.'19]: Contrastive $\mathcal{L}_{\text {InfoNCE }}$ lower bound

Generative modeling : Disentangled latent space

- Goal: Learn $g_{\theta}(Z) \sim Q_{\theta}$ that mimics $X \sim P_{X}$
- GAN: $\min _{\theta \in \Theta} \max _{\phi \in \Phi} \mathcal{L}_{\mathrm{GAN}}\left(g_{\theta}, d_{\phi}\right)$
- InfoGAN [Chen et al.'16], [Belghazi et al.'18]:

- Model $Z=(N C) \&$ regularize $\mathcal{L}_{\text {GAN }}\left(g_{\theta}, d_{\phi}\right)$ by $\beta \mathrm{I}\left(g_{\theta}(N, C) ; C\right)$

Sliced InfoGAN: MNIST Results

Regular InfoGAN (MI)

Sliced InfoGAN (SMI)

6	6	6	5	6	6	6	6	6	6
5	5	5	5	5	5	5	4	5	5
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	9	9	4	4	4	4	4
9	4	4	9	9	9	4	9	9	4
1	1	1	1	1	1	1	1	1	1
7	8	8	8	8	8	8	8	8	8
6	0	0	0	0	0	0	0	6	0
7	7	7	7	7	7	7	7	7	7

Codes: $C_{1} \in[0: 9]$ (digits), $C_{2} \in[-2,2]$ (rotation), $C_{3} \in[-2,2]$ (width)

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{I}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.
\Longrightarrow Can we approximate $\mathrm{I}(X ; Y) \approx \hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$?

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.
\Longrightarrow Can we approximate $\mathrm{I}(X ; Y) \approx \hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$?

Main challenge: Estimation in high dim. is infeasible

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{I}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.
\Longrightarrow Can we approximate $\mathrm{I}(X ; Y) \approx \hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$?

Main challenge: Estimation in high dim. is infeasible

- Sample complexity: $n^{\star}(\epsilon, d) \asymp \epsilon^{-d}$ (under regularity)
- Hölder smooth [Jiao-Gao-Han'18]
- (Gen.) Lipschitz smooth [Han-Jiao-Weissman-Wu'20]

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{I}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.
\Longrightarrow Can we approximate $\mathrm{I}(X ; Y) \approx \hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$?

Main challenge: Estimation in high dim. is infeasible

- Sample complexity: $n^{\star}(\epsilon, d) \asymp \epsilon^{-d}$ (under regularity)
- Hölder smooth [Jiao-Gao-Han'18]
- (Gen.) Lipschitz smooth [Han-Jiao-Weissman-Wu'20]

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{(}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.
\Longrightarrow Can we approximate $\mathrm{I}(X ; Y) \approx \hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$?
Main challenge: Estimation in high dim. is infeasible
- Sample complexity: $n^{\star}(\epsilon, d) \asymp \epsilon^{-d}$ (under regularity)
- Hölder smooth [Jiao-Gao-Han'18]
- (Gen.) Lipschitz smooth [Han-Jiao-Weissman-Wu'20]
- Formal limitations: $n^{\star}(\epsilon, d) \gtrsim \exp (\mathbf{I}(X ; Y))$ [McAllester-Stratos'20]

Mutual Information Estimation

In practice: Don't have $P_{X Y}$ but samples $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} P_{X Y}$

- Estimation: $\hat{(}\left(X^{n}, Y^{n}\right)$ via k-NN, KDE, etc.
\Longrightarrow Can we approximate $\mathrm{I}(X ; Y) \approx \hat{\mathrm{I}}\left(X^{n}, Y^{n}\right)$?
Main challenge: Estimation in high dim. is infeasible
- Sample complexity: $n^{\star}(\epsilon, d) \asymp \epsilon^{-d}$ (under regularity)
- Hölder smooth [Jiao-Gao-Han'18]
- (Gen.) Lipschitz smooth [Han-Jiao-Weissman-Wu'20]
- Formal limitations: $n^{\star}(\epsilon, d) \gtrsim \exp (\mathrm{I}(X ; Y))$ [McAllester-Stratos'20]
* Goal: Scalable MI surrogate that preserves its structure

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d y-1}} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi)
$$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi)
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi)
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi)
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$
\Longrightarrow Scalable \& preserves properties

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi),
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$
\Longrightarrow Scalable \& preserves properties
Difference: 2 proj. for $\operatorname{SI}(X ; Y)$ vs. 1 for $\bar{\delta}(P, Q)$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi),
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$
\Longrightarrow Scalable \& preserves properties
Difference: 2 proj. for $\operatorname{SI}(X ; Y)$ vs. 1 for $\bar{\delta}(P, Q)$
- 1-proj. SMI can nullify btw dependent (X, Y)

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi)
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$
\Longrightarrow Scalable \& preserves properties
Difference: 2 proj. for $\operatorname{SI}(X ; Y)$ vs. 1 for $\bar{\delta}(P, Q)$
- 1-proj. SMI can nullify btw dependent (X, Y)
- $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=\left(-X_{2} X_{1}\right)^{\top}$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi)
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$
\Longrightarrow Scalable \& preserves properties
Difference: 2 proj. for $\operatorname{SI}(X ; Y)$ vs. 1 for $\bar{\delta}(P, Q)$
- 1-proj. SMI can nullify btw dependent (X, Y)
- $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=\left(-X_{2} X_{1}\right)^{\top}$

Sliced Mutual Information (SMI)

Definition (ZG-Greenewald'21)

The SMI between $(X, Y) \sim P_{X Y} \in \mathcal{P}\left(\mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}}\right)$ is

$$
\mathrm{SI}(X ; Y):=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d} y-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) d \sigma_{x}(\theta) d \sigma_{y}(\phi),
$$

Sliced divergences: $\delta(P, Q)$ btw $P, Q \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (Wasserstein, f-div., IPM)

- Slicing: $\bar{\delta}(P, Q):=\int_{\mathbb{S}^{d-1}} \delta\left(\mathfrak{p}_{\sharp}^{\theta} P, \mathfrak{p}_{\sharp}^{\theta} Q\right) d \sigma(\theta)$, where $\mathfrak{p}^{\theta}(x)=\theta^{\top} x$
\Longrightarrow Scalable \& preserves properties
Difference: 2 proj. for $\operatorname{SI}(X ; Y)$ vs. 1 for $\bar{\delta}(P, Q)$
- 1-proj. SMI can nullify btw dependent (X, Y)
- $X=\left(X_{1} X_{2}\right)^{\top} \sim \mathcal{N}\left(0, \mathrm{I}_{2}\right), Y=\left(-X_{2} X_{1}\right)^{\top}$
${ }^{\bullet} \operatorname{cov}\left(\theta^{\top} X, \theta^{\top} Y\right)=0 \Longrightarrow \widetilde{\mathrm{SI}}(X ; Y)=0$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad$ \& $\varphi_{X}(t):=\varphi_{X, Y}(t, 0)$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad$ \& $\varphi_{X}(t):=\varphi_{X, Y}(t, 0)$
Recall: $X \perp Y \Longleftrightarrow \varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad$ \& $\varphi_{X}(t):=\varphi_{X, Y}(t, 0)$
Recall: $X \perp Y \Longleftrightarrow \varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}$
Consider: $\quad \operatorname{SI}(X ; Y)=\int_{\mathbb{S}^{d_{x}-1}} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) \mathrm{d} \sigma_{d_{x}}(\theta) \mathrm{d} \sigma_{d_{y}}(\phi)=0$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad$ \& $\varphi_{X}(t):=\varphi_{X, Y}(t, 0)$
Recall: $X \perp Y \Longleftrightarrow \varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}$
Consider: $\quad \operatorname{SI}(X ; Y)=\int_{\mathbb{S}^{d} x-1} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) \mathrm{d} \sigma_{d_{x}}(\theta) \mathrm{d} \sigma_{d_{y}}(\phi)=0$

$$
\mathbf{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)=0, \quad \forall \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad \& \quad \varphi_{X}(t):=\varphi_{X, Y}(t, 0)$
Recall: $X \perp Y \Longleftrightarrow \varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}$
Consider: $\quad \operatorname{SI}(X ; Y)=\int_{\mathbb{S}^{d_{x}-1}} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) \mathrm{d} \sigma_{d_{x}}(\theta) \mathrm{d} \sigma_{d_{y}}(\phi)=0$

$$
\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)=0, \quad \forall \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

$\varphi_{\theta \top X, \phi \top Y}(u, v)=\varphi_{\theta \top X}(u) \varphi_{\phi \top Y}(v), \quad \forall u, v \in \mathbb{R}, \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad \& \quad \varphi_{X}(t):=\varphi_{X, Y}(t, 0)$
Recall: $X \perp Y \Longleftrightarrow \varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}$
Consider: $\quad \operatorname{SI}(X ; Y)=\int_{\mathbb{S}^{d_{x}-1}} \int_{\mathbb{S}^{d y}-1} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) \mathrm{d} \sigma_{d_{x}}(\theta) \mathrm{d} \sigma_{d_{y}}(\phi)=0$

$$
\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)=0, \quad \forall \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

$\varphi_{\theta \top X, \phi \top Y}(u, v)=\varphi_{\theta \top X}(u) \varphi_{\phi \top Y}(v), \quad \forall u, v \in \mathbb{R}, \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}$

$$
\varphi_{X, Y}(u \theta, v \phi)=\varphi_{X}(u \theta) \varphi_{Y}(v \phi), \quad \forall u, v \in \mathbb{R}, \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

Independence Identification: Proof Outline

Char. functions: $\varphi_{X, Y}(t, s):=\mathbb{E}\left[e^{i t^{\top} X+i s^{\top} Y}\right] \quad \& \quad \varphi_{X}(t):=\varphi_{X, Y}(t, 0)$
Recall: $X \perp Y \Longleftrightarrow \varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}$
Consider: $\quad \operatorname{SI}(X ; Y)=\int_{\mathbb{S}^{d_{x}-1}} \int_{\mathbb{S}^{d_{y}-1}} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) \mathrm{d} \sigma_{d_{x}}(\theta) \mathrm{d} \sigma_{d_{y}}(\phi)=0$

$$
\mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)=0, \quad \forall \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

$$
\varphi_{\theta \top X, \phi \top Y}(u, v)=\varphi_{\theta \top X}(u) \varphi_{\phi \top}(v), \quad \forall u, v \in \mathbb{R}, \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

$$
\varphi_{X, Y}(u \theta, v \phi)=\varphi_{X}(u \theta) \varphi_{Y}(v \phi), \quad \forall u, v \in \mathbb{R}, \theta \in \mathbb{S}^{d_{x}-1}, \phi \in \mathbb{S}^{d_{y}-1}
$$

$$
\varphi_{X, Y}(t, s)=\varphi_{X}(t) \varphi_{Y}(s), \quad \forall t \in \mathbb{R}^{d_{x}}, s \in \mathbb{R}^{d_{y}}
$$

Sliced Mutual Information \& Processing (Cont.)

Proposition (ZG-Greenewald'21)

Extracting maximum-SMI linear feature:

$$
\sup _{\mathrm{A}_{x}, \mathrm{~A}_{y}, b_{x}, b_{y}} \mathrm{SI}\left(\mathrm{~A}_{x} X+b_{x} ; \mathrm{A}_{y} Y+b_{y}\right)=\sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) .
$$

Also, if $\left(\theta_{\star}, \phi_{\star}\right) \in \operatorname{argmax} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$, then $\left[\mathrm{A}_{x}^{\star}\right]_{1:}=\theta_{\star}^{\top},\left[\mathrm{A}_{y}^{\star}\right]_{1:}=\phi_{\star}^{\top}$.

Sliced Mutual Information \& Processing (Cont.)

Proposition (ZG-Greenewald'21)

Extracting maximum-SMI linear feature:

$$
\sup _{\mathrm{A}_{x}, \mathrm{~A}_{y}, b_{x}, b_{y}} \mathrm{SI}\left(\mathrm{~A}_{x} X+b_{x} ; \mathrm{A}_{y} Y+b_{y}\right)=\sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) .
$$

Also, if $\left(\theta_{\star}, \phi_{\star}\right) \in \operatorname{argmax} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$, then $\left[\mathrm{A}_{x}^{\star}\right]_{1:}=\theta_{\star}^{\top},\left[\mathrm{A}_{y}^{\star}\right]_{1:}=\phi_{\star}^{\top}$.

Extensions: Similar results for

Sliced Mutual Information \& Processing (Cont.)

Proposition (ZG-Greenewald'21)

Extracting maximum-SMI linear feature:

$$
\sup _{\mathrm{A}_{x}, \mathrm{~A}_{y}, b_{x}, b_{y}} \mathrm{SI}\left(\mathrm{~A}_{x} X+b_{x} ; \mathrm{A}_{y} Y+b_{y}\right)=\sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) .
$$

Also, if $\left(\theta_{\star}, \phi_{\star}\right) \in \operatorname{argmax} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$, then $\left[\mathrm{A}_{x}^{\star}\right]_{1:}=\theta_{\star}^{\top},\left[\mathrm{A}_{y}^{\star}\right]_{1:}=\phi_{\star}^{\top}$.

Extensions: Similar results for

- Rank-constrained matrices

Sliced Mutual Information \& Processing (Cont.)

Proposition (ZG-Greenewald'21)

Extracting maximum-SMI linear feature:

$$
\sup _{\mathrm{A}_{x}, \mathrm{~A}_{y}, b_{x}, b_{y}} \mathrm{SI}\left(\mathrm{~A}_{x} X+b_{x} ; \mathrm{A}_{y} Y+b_{y}\right)=\sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) .
$$

Also, if $\left(\theta_{\star}, \phi_{\star}\right) \in \operatorname{argmax} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$, then $\left[\mathrm{A}_{x}^{\star}\right]_{1:}=\theta_{\star}^{\top},\left[\mathrm{A}_{y}^{\star}\right]_{1:}=\phi_{\star}^{\top}$.

Extensions: Similar results for

- Rank-constrained matrices
- Shallow NNs

Sliced Mutual Information \& Processing (Cont.)

Proposition (ZG-Greenewald'21)

Extracting maximum-SMI linear feature:

$$
\sup _{\mathrm{A}_{x}, \mathrm{~A}_{y}, b_{x}, b_{y}} \mathrm{SI}\left(\mathrm{~A}_{x} X+b_{x} ; \mathrm{A}_{y} Y+b_{y}\right)=\sup _{\theta, \phi} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right) .
$$

Also, if $\left(\theta_{\star}, \phi_{\star}\right) \in \operatorname{argmax} \mathrm{I}\left(\theta^{\top} X ; \phi^{\top} Y\right)$, then $\left[\mathrm{A}_{x}^{\star}\right]_{1:}=\theta_{\star}^{\top},\left[\mathrm{A}_{y}^{\star}\right]_{1:}=\phi_{\star}^{\top}$.

Extensions: Similar results for

- Rank-constrained matrices
- Shallow NNs
- Analysis extends to other non-linear settings

Experiments: Empirical Convergence

Estimator: $\widehat{\mathrm{SI}}_{m, n}$ with k-NN MI estimator [Kozachenko-Leonenko'87]

Experiments: Empirical Convergence

Estimator: $\widehat{\mathrm{SI}}_{m, n}$ with k-NN MI estimator [Kozachenko-Leonenko' 87]

- Let $Z \sim \mathcal{N}\left(0, \mathrm{I}_{15}\right)$ and define:

$$
\begin{aligned}
& \text { d}=\mathbf{3}: X=Z_{[1: 3]} \& Y=Z_{[2: 4]} \\
& \boldsymbol{d}=\mathbf{1 0}: X=Z_{[1: 10]} \& Y=Z_{[5: 15]}
\end{aligned}
$$

Experiments: Empirical Convergence

Estimator: $\widehat{\mathrm{SI}}_{m, n}$ with k-NN MI estimator [Kozachenko-Leonenko' 87]

- Let $Z \sim \mathcal{N}\left(0, \mathrm{I}_{15}\right)$ and define:
- $\boldsymbol{d}=\mathbf{3 :} X=Z_{[1: 3]} \& Y=Z_{[2: 4]}$
- $\boldsymbol{d}=10: X=Z_{[1: 10]} \& Y=Z_{[5: 15]}$

Figure: Empirical convergence rates

$d=10$

