Information Storage Capacity of Interacting Particle Systems

Ziv Goldfeld

Cornell University

Collaborators: Guy Bresler and Yury Polyanskiy

Beyond IID in Information Theory 8

Nov. 13th, 2020
Storing Information Inside Matter
Storing Information Inside Matter

1. Writing data
Storing Information Inside Matter

1 Writing data $\Rightarrow$ Perturb local state of particles
Storing Information Inside Matter

1. Writing data $\implies$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
Storing Information Inside Matter

1. Writing data $\implies$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
3. Stable for “long”
Storing Information Inside Matter

1. Writing data $\implies$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
3. Stable for “long” $\implies$ Enables later data recovery
Storing Information Inside Matter

1. Writing data $\implies$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
3. Stable for “long” $\implies$ Enables later data recovery

Goal: Study information storage capacity while:
Storing Information Inside Matter

1. Writing data $\Rightarrow$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
3. Stable for “long” $\Rightarrow$ Enables later data recovery

**Goal:** Study information storage capacity while:

- Distilling notion of storage from particular technology
Storing Information Inside Matter

1. Writing data $\implies$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
3. Stable for “long” $\implies$ Enables later data recovery

**Goal:** Study information storage capacity while:

- Distilling notion of storage from particular technology
- Capturing interparticle interaction and system’s dynamics
Storing Information Inside Matter

1. Writing data $\implies$ Perturb local state of particles
2. Atomic/subatomic interactions evolves local states
3. Stable for “long” $\implies$ Enables later data recovery

**Goal:** Study information storage capacity while:

- Distilling notion of storage from particular technology
- Capturing interparticle interaction and system’s dynamics
- How much data can be stored and for how long?
Operational Framework
Operational Framework

Stochastic Ising Model:
Operational Framework

Stochastic Ising Model:

- **Graph** $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
Operational Framework

Stochastic Ising Model:

- **Graph** \((\mathcal{V}, \mathcal{E})\): topology of the storage medium.
- **Gibbs measure**: on \(\Omega \triangleq \{-1, +1\}^\mathcal{V}\) at inverse temp. \(\beta\)

\[
\pi_\beta(\sigma) \propto e^{-\beta H(\sigma)}
\]
Operational Framework

Stochastic Ising Model:

- **Graph** \((\mathcal{V}, \mathcal{E})\): topology of the storage medium.
- **Gibbs measure**: on \(\Omega \triangleq \{-1, +1\}^\mathcal{V}\) at inverse temp. \(\beta\)

\[
\pi_\beta(\sigma) \propto e^{-\beta H(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}
\]
Operational Framework

Stochastic Ising Model:

- **Graph** \((\mathcal{V}, \mathcal{E})\): topology of the storage medium.

- **Gibbs measure**: on \(\Omega \triangleq \{-1, +1\}^\mathcal{V}\) at inverse temp. \(\beta\)
  \[
  \pi_\beta(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)
  \]

- **Glauber dynamics (discrete time)**: At config. \(\sigma \in \Omega\)
Operational Framework

Stochastic Ising Model:

- **Graph** $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- **Gibbs measure**: on $\Omega \triangleq \{-1, +1\}^\mathcal{V}$ at inverse temp. $\beta$
  \[
  \pi_\beta(\sigma) \propto e^{-\beta H(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}
  \]
- **Glauber dynamics (discrete time)**: At config. $\sigma \in \Omega$
  1. Select site for update $v \sim \text{Unif}(\mathcal{V})$
Operational Framework

Stochastic Ising Model:

- **Graph** $(\mathcal{V}, \mathcal{E})$: topology of the storage medium.
- **Gibbs measure**: on $\Omega \triangleq \{-1, +1\}^\mathcal{V}$ at inverse temp. $\beta$
  \[
  \pi_\beta(\sigma) \propto e^{-\beta H(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}
  \]
- **Glauber dynamics (discrete time)**: At config. $\sigma \in \Omega$
  1. Select site for update $v \sim \text{Unif}(\mathcal{V})$
  2. Refresh $\sigma(v) \sim \pi_\beta \left( \cdot \left| \{\sigma(w)\}_{w \neq v} \right. \right)$
Stochastic Ising Model:

- **Graph** \((\mathcal{V}, \mathcal{E})\): topology of the storage medium.
- **Gibbs measure**: on \(\Omega \triangleq \{-1, +1\}^\mathcal{V}\) at inverse temp. \(\beta\)
  \[
  \pi_\beta(\sigma) \propto e^{-\beta \mathcal{H}(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}
  \]
- **Glauber dynamics (discrete time)**: At config. \(\sigma \in \Omega\)
  1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)
  2. Refresh \(\sigma(v) \sim \pi_\beta\left(\cdot \left\| \{\sigma(w)\}_{w \neq v}\right\|ight)\) \(\bigstar\) favors spin of neighbours’ maj.
Operational Framework

\[ m \xrightarrow{X_0} \text{Enc} \xrightarrow{t \text{ time system dynamics}} X_t \xrightarrow{\hat{m}} \text{Dec} \]

Stochastic Ising Model:

- **Graph** \((\mathcal{V}, \mathcal{E})\): topology of the storage medium.
- **Gibbs measure**: on \(\Omega \triangleq \{-1, +1\}^\mathcal{V}\) at inverse temp. \(\beta\)
  \[
  \pi_\beta(\sigma) \propto e^{-\beta H(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}
  \]
- **Glauber dynamics (discrete time)**: At config. \(\sigma \in \Omega\)
  1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)
  2. Refresh \(\sigma(v) \sim \pi_\beta\left( \cdot \mid \{\sigma(w)\}_{w \neq v} \right)\) \(\blacklozenge\) favors spin of neighbours’ maj.

**Warm** \((\beta \text{ small}) \implies \text{Weak interactions}\)
Operational Framework

Stochastic Ising Model:

- **Graph** \((\mathcal{V}, \mathcal{E})\): topology of the storage medium.

- **Gibbs measure**: on \(\Omega \triangleq \{-1, +1\}^\mathcal{V}\) at inverse temp. \(\beta\)

\[
\pi_\beta(\sigma) \propto e^{-\beta H(\sigma)} = e^{\beta \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v)}
\]

- **Glauber dynamics (discrete time)**: At config. \(\sigma \in \Omega\)

  1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)
  2. Refresh \(\sigma(v) \sim \pi_\beta\left(\cdot \bigg| \{\sigma(w)\}_{w \neq v}\right)\) ✡ favors spin of neighbours’ maj.

**Warm** \((\beta \text{ small})\) ➞ Weak interactions

**Cold** \((\beta \text{ large})\) ➞ Strong interactions
Measuring Information Storage

$\begin{align*}
\text{Enc} & \quad \xrightarrow{m} \quad X_0 \\
& \quad \xrightarrow{t \text{ steps of Galuber dynamics}} \\
& \quad \xrightarrow{X_t} \quad \text{Dec} \\
& \quad \xrightarrow{\hat{m}}
\end{align*}$
Measuring Information Storage

Information Capacity:
Measuring Information Storage

Information Capacity:

\[ I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t) \]
Information Capacity:

\[ I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t) \]

- **Joint distribution:** \((X_0, X_t) \sim P_{X_0} P^t, \quad P - \text{transition kernel.}\)
Information Capacity: \[ I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t) \]

- **Joint distribution:** \( (X_0, X_t) \sim P_{X_0} P^t \), \( P \) - transition kernel.
- **Desired operational meaning:** size of maximal codebook.
Measuring Information Storage

Information Capacity: \[ I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t) \]

- **Joint distribution:** \((X_0, X_t) \sim P_{X_0}P^t, \quad P - \text{transition kernel.}\)
- **Desired operational meaning:** size of maximal codebook.
- **Graph:** 2D \(\sqrt{n} \times \sqrt{n}\) grid
Information Capacity:

\[ I_n^{(\beta)}(t) := \max_{P_{X_0}} I(X_0; X_t) \]

- **Joint distribution**: \((X_0, X_t) \sim P_{X_0}P^t, \quad P\) - transition kernel.
- **Desired operational meaning**: size of maximal codebook.
- **Graph**: 2D \(\sqrt{n} \times \sqrt{n}\) grid

**Warm**: \(n\)-fold DM BSC \(\left(\frac{1}{2} + o(1)\right)\) after \(t = O(n)\).
Measuring Information Storage

Information Capacity: \[ I_{n}(\beta)(t) := \max_{P_{X_0}} I(X_0; X_t) \]

- **Joint distribution:** \((X_0, X_t) \sim P_{X_0}P^t, \quad P \) - transition kernel.
- **Desired operational meaning:** size of maximal codebook.
- **Graph:** 2D \( \sqrt{n} \times \sqrt{n} \) grid

**Warm:** \( n \)-fold DM BSC \( \left( \frac{1}{2} + o(1) \right) \) after \( t = O(n) \).

**Cold:** Can interactions (memory) help?
Zero-Temperature Dynamics \( (\beta \to \infty) \)

**Majority Update:**
Zero-Temperature Dynamics \( (\beta \to \infty) \)

Majority Update:

1. Select site for update \( \nu \sim \text{Unif}(\mathcal{V}) \)
Zero-Temperature Dynamics \((\beta \to \infty)\)

**Majority Update:**

1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)

2. Refresh spin \(\sigma(v) = \begin{cases} \text{spin of maj.}, & \text{if } \exists \text{ maj.} \\ \sim \text{Ber} \left( \frac{1}{2} \right), & \text{if no maj.} \end{cases} \)
Zero-Temperature Dynamics \((\beta \to \infty)\)

**Majority Update:**

1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)

2. Refresh spin \(\sigma(v) = \begin{cases} \text{spin of maj.} & \text{if } \exists \text{ maj.} \\ \sim \text{Ber}\left(\frac{1}{2}\right) & \text{if } \not\exists \text{ maj.} \end{cases}\)
Majority Update:

1. Select site for update \( v \sim \text{Unif}(\mathcal{V}) \)

2. Refresh spin \( \sigma(v) = \begin{cases} \text{spin of maj.}, & \text{if } \exists \text{ maj.} \\ \sim \text{Ber} \left( \frac{1}{2} \right), & \text{if no maj.} \end{cases} \)
Zero-Temperature Dynamics \((\beta \to \infty)\)

**Majority Update:**

1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)

2. Refresh spin \(\sigma(v) = \begin{cases} \text{spin of maj.} , & \text{if } \exists \text{ maj.} \\ \sim \text{Ber}\left(\frac{1}{2}\right) , & \text{if no maj.} \end{cases}\)
Zero-Temperature Dynamics \((\beta \to \infty)\)

**Majority Update:**

1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)

2. Refresh spin \(\sigma(v) = \begin{cases} 
\text{spin of maj.}, & \text{if } \exists \text{ maj.} \\
\sim \text{Ber}\left(\frac{1}{2}\right), & \text{if no maj.}
\end{cases}\)
Zero-Temperature Dynamics \( (\beta \to \infty) \)

**Majority Update:**

1. Select site for update \( v \sim \text{Unif}(\mathcal{V}) \)

2. Refresh spin \( \sigma(v) = \begin{cases} \text{spin of maj.}, & \text{if } \exists \text{ maj.} \\ \sim \text{Ber} \left( \frac{1}{2} \right), & \text{if no maj.} \end{cases} \)

3. **Domain coarsening:** Monochrom. clusters shrink/grow/split/coalesce
Zero-Temperature Dynamics \((\beta \to \infty)\)

**Majority Update:**

1. Select site for update \(v \sim \text{Unif}(\mathcal{V})\)

2. Refresh spin \(\sigma(v) = \begin{cases} \text{spin of maj.}, & \text{if } \exists \text{ maj.} \\ \sim \text{Ber}\left(\frac{1}{2}\right), & \text{if no maj.} \end{cases}\)

3. **Domain coarsening:** Monochrom. clusters shrink/grow/split/coalesce
Initial Observations

\[ I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t) \]
Initial Observations

$$I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t)$$

**Time** $t = 0$: $I_n(0) = n$
Initial Observations

\[ I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t) \]

**Time \( t = 0 \):** \( I_n(0) = n \)

\[ \implies \text{Uniform Upper Bound: } I_n(t) \leq n, \forall t \ (\text{DPI}) \]
Initial Observations

\[ I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t) \]

**Time \( t = 0 \):** \( I_n(0) = n \)

\[ \implies \text{Uniform Upper Bound: } I_n(t) \leq n, \forall t \quad (\text{DPI}) \]

**Linear Time:** \( I_n(t) = \Theta(n) \)
Initial Observations

\[ I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t) \]

**Time \( t = 0 \):** \( I_n(0) = n \)

\[ \implies \text{Uniform Upper Bound: } I_n(t) \leq n, \forall t \text{ (DPI)} \]

**Linear Time:** \( I_n(t) = \Theta(n) \)

- **Converse:** See above.
Initial Observations

\[ I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t) \]

**Time \( t = 0 \):** \( I_n(0) = n \)

\[ \implies \text{Uniform Upper Bound: } I_n(t) \leq n, \forall t \text{ (DPI)} \]

**Linear Time:** \( I_n(t) = \Theta(n) \)

- **Converse:** See above.

- **Achievability:** Linear codes (Gilbert-Varshamov)
Initial Observations

\[ I_n(t) := I_n^{(\infty)}(t) = \max_{P_{X_0}} I(X_0; X_t) \]

\[ \text{Time } t = 0: \quad I_n(0) = n \]

\[ \implies \text{Uniform Upper Bound: } I_n(t) \leq n, \forall t \quad \text{(DPI)} \]

\[ \text{Linear Time: } I_n(t) = \Theta(n) \]

- **Converse:** See above.
- **Achievability:** Linear codes (Gilbert-Varshamov)

**Q1:** What (if anything) can be stored for infinite time?
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid \[ I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n}) \]
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid \( I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n}) \)

Achievability

- **Stable Configurations**: $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
Storing for Infinite Time

**Theorem (G.-Bresler-Polyanskiy’19)**

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid \( I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n}) \)

**Achievability**

- **Stable Configurations**: \( \sigma \in \Omega \) is stable if \( P(\sigma, \sigma) = 1 \) (ground states).
- All 2-striped config. are stable.
- \# Stripes = \( 2^{\Theta(\sqrt{n})} \)

---

[Diagram of the grid]
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid, $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.

\[ \# \text{Stripes} = 2^{\Theta(\sqrt{n})} \& \quad X_0 \sim \text{Unif}\{\{\text{Stripes}\}\} \]
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- **Stable Configurations**: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped configs. are stable.
- $\# \text{ Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}\{\text{Stripes}\} \implies I_n(\infty) = \Omega(\sqrt{n})$
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid 

$$I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\# \text{Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}\{\text{Stripes}\} \implies I_n(\infty) = \Omega(\sqrt{n})$

Converse:
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- **Stable Configurations**: $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- # Stripes $= 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}\{\text{Stripes}\} \implies I_n(\infty) = \Omega(\sqrt{n})$

Converse:

- **Lemma**: Zero-temp. SIM is absorb. MC & Stripes are absorb. set
Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid

$$I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\# \text{ Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}\{\{\text{Stripes}\}\}$ $\implies$ $I_n(\infty) = \Omega(\sqrt{n})$

Converse:

- **Lemma:** Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid $I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\# \text{ Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}(\{\text{Stripes}\}) \implies I_n(\infty) = \Omega(\sqrt{n})$

Converse:

- **Lemma:** Zero-temp. SIM is absorb. MC & Stripes are absorb. set

$\implies \lim_{t \to \infty} P\left(X_t \in \{\text{Stripes}\}\right) = 1$
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid

$$I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\# \text{Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}\{(\text{Stripes})\} \implies I_n(\infty) = \Omega(\sqrt{n})$

Converse:

- **Lemma:** Zero-temp. SIM is absorb. MC & Stripes are absorb. set

Absorb. MC

$$\implies \lim_{t \to \infty} \mathbb{P}\left(X_t \in \{\text{Stripes}\}\right) = 1 \implies I_n(\infty) = O(\sqrt{n})$$
Storing for Infinite Time

**Theorem (G.-Bresler-Polyanskiy’19)**

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid  
\[ I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n}) \]

**Achievability**

- **Stable Configurations:** $\sigma \in \Omega$ is *stable* if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\# \text{ Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif}\{\{\text{Stripes}\}\} \implies I_n(\infty) = \Omega(\sqrt{n})$

**Converse:**

- **Lemma:** Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC  
  \[ \lim_{t \to \infty} \mathbb{P}\left( X_t \in \{\text{Stripes}\} \right) = 1 \implies I_n(\infty) = O(\sqrt{n}) \]
Storing for Infinite Time

Theorem (G.-Bresler-Polyanskiy’19)

For the zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid

$$I_n(\infty) := \lim_{t \to \infty} I_n(t) = \Theta(\sqrt{n})$$

Achievability

- **Stable Configurations:** $\sigma \in \Omega$ is stable if $P(\sigma, \sigma) = 1$ (ground states).
- All 2-striped config. are stable.
- $\# \text{Stripes} = 2^{\Theta(\sqrt{n})}$ & $X_0 \sim \text{Unif} (\{\text{Stripes}\}) \implies I_n(\infty) = \Omega(\sqrt{n})$

Converse:

- **Lemma:** Zero-temp. SIM is absorb. MC & Stripes are absorb. set
- Absorb. MC

$$\implies \lim_{t \to \infty} P(\{X_t \in \{\text{Stripes}\}\}) = 1 \implies I_n(\infty) = O(\sqrt{n})$$

Q2: Can we do better than $\sqrt{n}$ for finite superlinear $t$?
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$. 
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

**Codebook Construction:**
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

Theorem (G.-Bresler-Polyanskiy’19)

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

Codebook Construction:

- Tile grid with mono. subsquares of side $\sqrt{a(n)}$
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega \left( \frac{n}{a(n)} \right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- **Codebook Construction:**
  - Tile grid with mono. subsquares of side $\sqrt{a(n)}$
  - Separate by all-minus 2-strips
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

**Codebook Construction:**

- Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- Separate by all-minus 2-strips
- $X_0 \sim \text{Unif}(C)$, $C \triangleq \{\sigma \text{ with this structure}\}$
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

**Codebook Construction:**

- Tile grid with mono. subsquares of side $\sqrt{a(n)}$
- Separate by all-minus 2-strips
- $X_0 \sim \text{Unif}(C), \; C \triangleq \{ \sigma \text{ with this structure} \}$
- $K := \log |C| = \Theta\left(\frac{n}{a(n)}\right)$
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega \left( \frac{n}{a(n)} \right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- **Codebook Construction:**
  - Tile grid with mono. subsquares of side $\sqrt{a(n)}$
  - Separate by all-minus 2-strips
  - $X_0 \sim \text{Unif}(C)$, $C \triangleq \{ \sigma \text{ with this structure} \}$
  - $K := \log |C| = \Theta \left( \frac{n}{a(n)} \right)$

- **Continuous-Time:** Updates according to i.i.d. Poiss$(1/n)$ clocks.
  $$I_n(t) \approx I_n^{(c)} \left( (1 + o(1))t \right), \quad t \sim \text{suplog}(n)$$
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- **Codebook Construction:**
  - Tile grid with mono. subsquares of side $\sqrt{a(n)}$
  - Separate by all-minus 2-strips
  - $X_0 \sim \text{Unif}(C)$, $C \triangleq \{\sigma \text{ with this structure}\}$
  - $K := \log |C| = \Theta\left(\frac{n}{a(n)}\right)$

- **Continuous-Time:** Updates according to i.i.d. Poiss($1/n$) clocks.

\[ I_n(t) \approx I_n^{(c)}((1 + o(1))t), \quad t \sim \text{suplog}(n) \]

$\implies$ Non-interacting portions are independent.
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega \left( \frac{n}{a(n)} \right)$, $\forall t \leq c \cdot a(n) \cdot n$.

- **Codebook Construction:**
  - Tile grid with mono. subsquares of side $\sqrt{a(n)}$
  - Separate by all-minus 2-strips
  - $X_0 \sim \text{Unif}(C)$, $C \triangleq \{ \sigma \text{ with this structure} \}$
  - $K := \log |C| = \Theta \left( \frac{n}{a(n)} \right)$

- **Continuous-Time:** Updates according to i.i.d. Poiss($1/n$) clocks.
  
  $I_n(t) \approx I_n^{(c)} \left( (1 + o(1))t \right)$, $t \sim \sup \log(n)$

  $\implies$ Non-interacting portions are independent.

- **Tensorization:**
  
  $I_n^{(c)}(t) \geq K \cdot \max_{p_1} I \left( \begin{bmatrix} X_0^{(c)} \end{bmatrix}_1 ; \begin{bmatrix} X_t^{(c)} \end{bmatrix}_1 \right)$
Theorem (G.-Bresler-Polyanskiy’19)

Let \( a(n) = o(n) \). Then \( \exists c > 0 \) s.t. \( I_n(t) = \Omega \left( \frac{n}{a(n)} \right) \), \( \forall t \leq c \cdot a(n) \cdot n \).
Theorem (G.-Bresler-Polyanskiy’19)

Let \( a(n) = o(n) \). Then \( \exists c > 0 \text{ s.t. } I_n(t) = \Omega \left( \frac{n}{a(n)} \right) , \forall t \leq c \cdot a(n) \cdot n. \)
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega \left( \frac{n}{a(n)} \right)$, $\forall t \leq c \cdot a(n) \cdot n$. 

**Subsquare:**

![Subsquare Diagram]
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

---

**Subsquare:**

- **Flip Probability:** $q_t = \mathbb{P}(\tau \leq t)$, $\tau = \inf \left\{ t : X_0^{(c)} = \square & X_t^{(c)} = \blacksquare \right\}$. 
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$, $\forall t \leq c \cdot a(n) \cdot n$.

**Subsquare:**

- **Flip Probability:** $q_t = \mathbb{P}(\tau \leq t)$, $\tau = \inf \left\{ t : X^{(c)}_0 = \bigotimes & X^{(c)}_t = \bigotimes \right\}$.
- **Lifshitz Law** [Lacoin et al’14]: $\exists c, \gamma > 0 : \mathbb{P}\left(\tau \leq c \cdot a(n) n\right) \leq e^{-\gamma \sqrt{a(n)}}$.
Storing $\omega(\sqrt{n})$ Bits for Superlinear Time

Theorem (G.-Bresler-Polyanskiy’19)

Let $a(n) = o(n)$. Then $\exists c > 0 \text{ s.t. } I_n(t) = \Omega\left(\frac{n}{a(n)}\right), \forall t \leq c \cdot a(n) \cdot n.$

- **Flip Probability:** $q_t = \mathbb{P}(\tau \leq t), \tau = \inf \{ t : X_0^{(c)} = \bigbox & X_t^{(c)} = \bigbox \}$.
- **Lifshitz Law** [Lacoin et al’14]: $\exists c, \gamma > 0 : \mathbb{P}(\tau \leq c \cdot a(n) n) \leq e^{-\gamma \sqrt{a(n)}}$

$$\implies I_n^{(c)}(t) \geq K \cdot \mathcal{C}_{Z-\text{Channel}}(q_t)$$
**Storing $\omega(\sqrt{n})$ Bits for Superlinear Time**

**Theorem (G.-Bresler-Polyanskiy’19)**

Let $a(n) = o(n)$. Then $\exists c > 0$ s.t. $I_n(t) = \Omega \left( \frac{n}{a(n)} \right)$, $\forall t \leq c \cdot a(n) \cdot n$.

**Subsquare:**

- **Flip Probability:** $q_t = \mathbb{P}(\tau \leq t)$, $\tau = \inf \{ t : X_{0}^{(c)} = \square & X_{t}^{(c)} = \square \}$.

- **Lifshitz Law** [Lacoin et al’14]: $\exists c, \gamma > 0 : \mathbb{P}(\tau \leq c \cdot a(n)n) \leq e^{-\gamma \sqrt{a(n)}}$

  $\implies I_n^{(c)}(t) \geq K \cdot C_{Z-Channell}(q_t)$

  $\implies I_n^{(c)}(c \cdot a(n) \cdot n) \geq C \cdot K = \Omega \left( \frac{n}{a(n)} \right)$
## Storage in Zero-Temp. SIM - Summary

We’ve Seen:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
</tbody>
</table>
## Storage in Zero-Temp. SIM - Summary

**We’ve Seen:**

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
</tbody>
</table>
# Storage in Zero-Temp. SIM - Summary

## We’ve Seen:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$ $t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$a(n) = o(n)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Storage in Zero-Temp. SIM - Summary

### We’ve Seen:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$a(n) = o(n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$t \to \infty$</td>
<td>$I_n(t) = \Theta(\sqrt{n})$</td>
<td>Lower bound $\forall t$</td>
</tr>
</tbody>
</table>
## Storage in Zero-Temp. SIM - Summary

**We’ve Seen:**

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$, $a(n) = o(n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$, $t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$t \to \infty$</td>
<td>$I_n(t) = \Theta(\sqrt{n})$</td>
<td>Lower bound $\forall t$</td>
</tr>
</tbody>
</table>

**Further Questions:**
Storage in Zero-Temp. SIM - Summary

We’ve Seen:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$a(n) = o(n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$t \to \infty$</td>
<td>$I_n(t) = \Theta(\sqrt{n})$</td>
<td>Lower bound $\forall t$</td>
</tr>
</tbody>
</table>

Further Questions:

1. Upper bounds better than $n$ for $t < \infty$?
Storage in Zero-Temp. SIM - Summary

We’ve Seen:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$a(n) = o(n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$t \to \infty$</td>
<td>$I_n(t) = \Theta(\sqrt{n})$</td>
<td>Lower bound $\forall t$</td>
</tr>
</tbody>
</table>

Further Questions:

1. Upper bounds better than $n$ for $t < \infty$?
   - Control absorption prob. $\max_{\sigma} \mathbb{P}_{\sigma}(X_t \text{ is absorbed} | X_0 = \sigma) \geq 1 - \epsilon_{n,t}$
## Storage in Zero-Temp. SIM - Summary

### We’ve Seen:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$a(n) = o(n)$</td>
<td></td>
<td>$t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$t \to \infty$</td>
<td>$I_n(t) = \Theta(\sqrt{n})$</td>
<td>Lower bound $\forall t$</td>
</tr>
</tbody>
</table>

### Further Questions:

1. **Upper bounds better than $n$ for $t < \infty$?**
   - Control absorption prob. $\max_{\sigma} \mathbb{P}_{\sigma}(X_t \text{ is absorbed} | X_0 = \sigma) \geq 1 - \epsilon_{n,t}$

2. **Improved scheme for superlinear time?**
**Storage in Zero-Temp. SIM - Summary**

**We’ve Seen:**

<table>
<thead>
<tr>
<th>Time</th>
<th>Inf. Capacity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$I_n(t) = n$</td>
<td>Upper bound $\forall t$</td>
</tr>
<tr>
<td>$t = O(n)$</td>
<td>$I_n(t) = \Theta(n)$</td>
<td>No loss for $t = \text{lin}(n)$</td>
</tr>
<tr>
<td>$t = O(a(n)n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n \log n \implies I_n(t) = \Omega\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$a(n) = o(n)$</td>
<td>$I_n(t) = \Omega\left(\frac{n}{a(n)}\right)$</td>
<td>$t = n^{1+\alpha} \implies I_n(t) = \Omega(n^{1-\alpha})$</td>
</tr>
<tr>
<td>$t \to \infty$</td>
<td>$I_n(t) = \Theta(\sqrt{n})$</td>
<td>Lower bound $\forall t$</td>
</tr>
</tbody>
</table>

**Further Questions:**

1. Upper bounds better than $n$ for $t < \infty$?
   - Control absorption prob. $\max_{\sigma} \mathbb{P}_{\sigma}(X_t \text{ is absorbed} | X_0 = \sigma) \geq 1 - \epsilon_{n,t}$

2. Improved scheme for superlinear time?
   - Nesting infinitely many sub-squares with vanishing growth rates.
Instability of Zero-Temp. SIM

Grid with External Field:
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** \( \mathcal{H}(\sigma) = -\left( \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + \hbar \sum_{v \in \mathcal{V}} \sigma(v) \right) \)
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** \( \mathcal{H}(\sigma) = - \left( \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v) \right) \)

- **Tie-Breaker:** Any \( h > 0 \implies \) Tied neighborhood goes +1
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian**: \( \mathcal{H}(\sigma) = -\left( \sum_{\{u,v\} \in E} \sigma(u)\sigma(v) + h \sum_{v \in V} \sigma(v) \right) \)

- **Tie-Breaker**: Any \( h > 0 \) \( \implies \) Tied neighborhood goes +1
  \( \implies \) All square-tilings with \( a(n) = \text{const} \) are stable.
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** $\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v)\right)$
- **Tie-Breaker:** Any $h > 0 \implies$ Tied neighborhood goes $+1$
  $\implies$ All square-tilings with $a(n) = \text{const}$ are stable.

Theorem (G.-Bresler-Polyanskiy’19)

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n)$, $\forall t$
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** \( \mathcal{H}(\sigma) = - \left( \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v) \right) \)

- **Tie-Breaker:** Any \( h > 0 \implies \) Tied neighborhood goes \( +1 \)
  
  \( \implies \) All square-tilings with \( a(n) = \text{const} \) are stable.

Theorem (G.-Bresler-Polyanskiy’19)

For zero-temp. SIM on \( \sqrt{n} \times \sqrt{n} \) grid with external field: \( I_n(t) = \Theta(n), \forall t \)

Honeycomb Lattice (no external field):
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** \( \mathcal{H}(\sigma) = -\left( \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v) \right) \)

- **Tie-Breaker:** Any \( h > 0 \implies \) Tied neighborhood goes \(+1\)
  \[ \implies \] All square-tilings with \( a(n) = \text{const} \) are stable.

**Theorem (G.-Bresler-Polyanskiy’19)**

For zero-temp. SIM on \( \sqrt{n} \times \sqrt{n} \) grid with external field: \( I_n(t) = \Theta(n), \ \forall t \)

**Honeycomb Lattice (no external field):**

- \( \text{deg}(v) = 3, \ \forall v \) in interior
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** \( \mathcal{H}(\sigma) = -\left( \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v) \right) \)

- **Tie-Breaker:** Any \( h > 0 \) \( \Rightarrow \) Tied neighborhood goes +1

\( \Rightarrow \) All square-tilings with \( a(n) = \text{const} \) are stable.

**Theorem (G.-Bresler-Polyanskiy’19)**

For zero-temp. SIM on \( \sqrt{n} \times \sqrt{n} \) grid with external field: \( I_n(t) = \Theta(n) \), \( \forall t \)

Honeycomb Lattice (no external field):

- \( \text{deg}(v) = 3 \), \( \forall v \) in interior

\( \Rightarrow \) \( |\text{Stable set}| = 2^{\Theta(n)} \)
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian:** \( \mathcal{H}(\sigma) = -\left( \sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v) \right) \)

- **Tie-Breaker:** Any \( h > 0 \implies \) Tied neighborhood goes +1

\[ \implies \] All square-tilings with \( a(n) = \text{const} \) are stable.

**Theorem (G.-Bresler-Polyanskiy’19)**

For zero-temp. SIM on \( \sqrt{n} \times \sqrt{n} \) grid with external field: \( I_n(t) = \Theta(n), \forall t \)

Honeycomb Lattice (no external field):

- \( \text{deg}(v) = 3, \forall v \) in interior

\[ \implies \] \( |\text{Stable set}| = 2^{\Theta(n)} \)
Instability of Zero-Temp. SIM

Grid with External Field:

- **Hamiltonian**: $\mathcal{H}(\sigma) = -\left(\sum_{\{u,v\} \in \mathcal{E}} \sigma(u)\sigma(v) + h \sum_{v \in \mathcal{V}} \sigma(v)\right)$
- **Tie-Breaker**: Any $h > 0 \implies$ Tied neighborhood goes $+1$
  $\implies$ All square-tilings with $a(n) = \text{const}$ are stable.

**Theorem (G.-Bresler-Polyanskiy’19)**

For zero-temp. SIM on $\sqrt{n} \times \sqrt{n}$ grid with external field: $I_n(t) = \Theta(n)$, $\forall t$

Honeycomb Lattice (no external field):

- $\text{deg}(v) = 3$, $\forall v$ in interior
  $\implies$ $|\text{Stable set}| = 2^{\Theta(n)}$

**Theorem (G.-Bresler-Polyanskiy’19)**

For zero-temp. SIM on Honeycomb lattice with $n$ vertices: $I_n(t) = \Theta(n)$, $\forall t$
Summary

- A new model for information storage inside physical matter:
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
  - **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm:** Information capacity nullifies after linear time
  - **Cold:** Storing for superlinear times (even infinity) in zero-temp. SIM

- Variations of zero-temp. dynamics:
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
  - **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM

- Variations of zero-temp. dynamics:
  - **Grid with External Field**: $I_n(t) = \Theta(n)$, $\forall t$
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
  - **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM

- Variations of zero-temp. dynamics:
  - **Grid with External Field**: $I_n(t) = \Theta(n), \forall t$
  - **Honeycomb Lattice**: $I_n(t) = \Theta(n), \forall t$
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
  - **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM

- Variations of zero-temp. dynamics:
  - Grid with External Field: $I_n(t) = \Theta(n)$, $\forall t$
  - Honeycomb Lattice: $I_n(t) = \Theta(n)$, $\forall t$
    - Favorable over grid without external field ($I_n(\infty) = \Theta(\sqrt{n})$)
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions

- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
  - **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM

- Variations of zero-temp. dynamics:
  - **Grid with External Field**:  $I_n(t) = \Theta(n), \forall t$
  - **Honeycomb Lattice**:  $I_n(t) = \Theta(n), \forall t$
    - Favorable over grid without external field ($I_n(\infty) = \Theta(\sqrt{n})$)

- Low but positive temperature:
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
  - **Warm**: Information capacity nullifies after linear time
  - **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
  - **Grid with External Field**: \( I_n(t) = \Theta(n), \forall t \)
  - **Honeycomb Lattice**: \( I_n(t) = \Theta(n), \forall t \)
    \[\Rightarrow\] Favorable over grid without external field \( (I_n(\infty) = \Theta(\sqrt{n})) \)
- Low but positive temperature:
  - 1-bit upper bound on storage for exponential (in \( n \)) time
Summary

- A new model for information storage inside physical matter:
  - Distilled from particular storage technologies
  - Accounts for interparticle interactions
- Interactions (low temperature) improve storage capability:
  - **Warm:** Information capacity nullifies after linear time
  - **Cold:** Storing for superlinear times (even infinity) in zero-temp. SIM
- Variations of zero-temp. dynamics:
  - **Grid with External Field:** \( I_n(t) = \Theta(n), \forall t \)
  - **Honeycomb Lattice:** \( I_n(t) = \Theta(n), \forall t \)
    \[ \Rightarrow \text{Favorable over grid without external field } (I_n(\infty) = \Theta(\sqrt{n})) \]
- Low but positive temperature:
  - 1-bit upper bound on storage for exponential (in \( n \)) time
  - \( \sqrt{n} \) storage achievability for \( e^{c\beta} \) time (store in stripes)
A new model for information storage inside physical matter:
- Distilled from particular storage technologies
- Accounts for interparticle interactions

Interactions (low temperature) improve storage capability:
- **Warm**: Information capacity nullifies after linear time
- **Cold**: Storing for superlinear times (even infinity) in zero-temp. SIM

Variations of zero-temp. dynamics:
- **Grid with External Field**: \( I_n(t) = \Theta(n), \ \forall t \)
- **Honeycomb Lattice**: \( I_n(t) = \Theta(n), \ \forall t \)
  \[ \Rightarrow \text{Favorable over grid without external field} \ (I_n(\infty) = \Theta(\sqrt{n})) \]

Low but positive temperature:
- 1-bit upper bound on storage for exponential (in \( n \)) time
- \( \sqrt{n} \) storage achievability for \( e^{c\beta} \) time (store in stripes)

Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible
Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Q: How long can we hope for?
Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Q: How long can we hope for?

**Theorem (G.-Bresler-Polyanskiy’19)**

Fix $\epsilon \in \left( 0, \frac{1}{2} \right)$, $\gamma > 0$. For $\beta$ sufficiently large there exist $c > 0$ s.t.

$$I(X_0; X_t) \leq \log 2 + \epsilon_n(\beta),$$

for all $t \geq n \cdot e^{c\beta n^{1/4} + \epsilon}$, where $X_0 \sim \pi$ and $\lim_{n \to \infty} \epsilon_n(\beta) = 0$. 

Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

Q: How long can we hope for?

Theorem (G.-Bresler-Polyanskiy’19)

Fix $\epsilon \in \left(0, \frac{1}{2}\right), \gamma > 0$. For $\beta$ sufficiently large there exist $c > 0$ s.t.

$$I(X_0; X_t) \leq \log 2 + \epsilon n(\beta),$$

for all $t \geq n \cdot e^{c\beta n^{\frac{1}{4} + \epsilon}}$, where $X_0 \sim \pi$ and $\lim_{n \to \infty} \epsilon_n(\beta) = 0$.

$\implies$ Storage beyond exponential time $\leq 1$ bit ($X_0 \sim$Gibbs)
Positive but Low Temperature: Long-Term Storage

- Storage for indefinite time is impossible

**Q:** How long can we hope for?

**Theorem (G.-Bresler-Polyanskiy’19)**

Fix $\epsilon \in \left(0, \frac{1}{2}\right)$, $\gamma > 0$. For $\beta$ sufficiently large there exist $c > 0$ s.t.

$$I(X_0; X_t) \leq \log 2 + \epsilon_n(\beta),$$

for all $t \geq n \cdot e^{c\beta n^{\frac{1}{4}} + \epsilon}$, where $X_0 \sim \pi$ and $\lim_{n \to \infty} \epsilon_n(\beta) = 0$.

$\implies$ Storage beyond exponential time $\leq 1$ bit ($X_0 \sim$Gibbs)

$\implies$ Long lasting $X_0$ is atypical w.r.t. Gibbs
Low Temperature Upper Bound: Proof Outline

- $\{X^\sigma_t\}_t$ is the chain initiated at $\sigma \in \Omega_n$
Low Temperature Upper Bound: Proof Outline

- \( \{X^\sigma_t\}_t \) is the chain initiated at \( \sigma \in \Omega_n \)
- Couple \( \{X^\sigma_t\}_t \), for all \( \sigma \in \Omega_n \), via monotonic coupling
Low Temperature Upper Bound: Proof Outline

- \( \{X^\sigma_t\}_t \) is the chain initiated at \( \sigma \in \Omega_n \)
- Couple \( \{X^\sigma_t\}_t \), for all \( \sigma \in \Omega_n \), via monotonic coupling
- \( m(\sigma) = \frac{1}{n} \sum v \in V_n \sigma(v) \) is magnetization; \( \sigma = \Box \) is all-plus state
Low Temperature Upper Bound: Proof Outline

- \( \{X_t^\sigma\}_t \) is the chain initiated at \( \sigma \in \Omega_n \)
- Couple \( \{X_t^\sigma\}_t \), for all \( \sigma \in \Omega_n \), via monotonic coupling
- \( m(\sigma) = \frac{1}{n} \sum v \in \mathcal{V}_n \sigma(v) \) is magnetization; \( \sigma = \Box \) is all-plus state

Proposition (Martinelli’94)

Let \( \epsilon, \gamma \) be as before. For \( \beta \) sufficiently large there exist \( c > 0 \) s.t.

\[
\sum_{\sigma \in \Omega_n: m(\sigma) > 0} \pi(\sigma) \mathbb{P}(X_t^\sigma \neq X_t^\Box) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c\beta n^{\frac{1}{4}} + \epsilon}
\]
Low Temperature Upper Bound: Proof Outline

- \( \{X_t^\sigma\}_t \) is the chain initiated at \( \sigma \in \Omega_n \)
- Couple \( \{X_t^\sigma\}_t \), for all \( \sigma \in \Omega_n \), via monotonic coupling
- \( m(\sigma) = \frac{1}{n} \sum v \in \mathcal{V} \sigma(v) \) is magnetization; \( \sigma = \boxplus \) is all-plus state

**Proposition (Martinelli’94)**

Let \( \epsilon, \gamma \) be as before. For \( \beta \) sufficiently large there exist \( c > 0 \) s.t.

\[
\sum_{\sigma \in \Omega_n: m(\sigma) > 0} \pi(\sigma) \mathbb{P}(X_t^\sigma \neq X_t^\boxplus) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c\beta n^{1+\epsilon}}
\]

1. \( I(X_0; X_t) \leq H(\text{sign}(m(X_0))) + I(X_0; X_t | \text{sign}(m(X_0))) \)
Low Temperature Upper Bound: Proof Outline

- \( \{X_t^\sigma\}_t \) is the chain initiated at \( \sigma \in \Omega_n \)
- Couple \( \{X_t^\sigma\}_t \), for all \( \sigma \in \Omega_n \), via monotonic coupling
- \( m(\sigma) = \frac{1}{n} \sum_{v \in V} \sigma(v) \) is magnetization; \( \sigma = \Box \) is all-plus state

Proposition (Martinelli’94)

Let \( \epsilon, \gamma \) be as before. For \( \beta \) sufficiently large there exist \( c > 0 \) s.t.

\[
\sum_{\sigma \in \Omega_n: m(\sigma) > 0} \pi(\sigma) \mathbb{P}(X_t^\sigma \neq X_t^\Box) \leq e^{-\gamma \sqrt{n}}, \quad \forall t \geq n \cdot e^{c\beta n^{1/4} + \epsilon}
\]

1. \( I(X_0; X_t) \leq H(\text{sign}(m(X_0))) + I(X_0; X_t | \text{sign}(m(X_0))) \)
2. \( H(\text{sign}(m(X_0))) \leq \log 2 \); \( I(X_0; X_t | \text{sign}(m(X_0))) = o(1) \) via [Martinelli’94]
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!

**Theorem (G.-Bresler-Polyanskiy’19)**

For $\beta$ and $n$ sufficiently large, and $c \in (0, 1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!

**Theorem (G.-Bresler-Polyanskiy’19)**

For $\beta$ and $n$ sufficiently large, and $c \in (0, 1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!

**Theorem (G.-Bresler-Polyanskiy’19)**

For $\beta$ and $n$ sufficiently large, and $c \in (0, 1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$ 

**Storage Scheme:**

- **Codebook:** Set of all 2-stripped configurations
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!

Theorem (G.-Bresler-Polyanskiy’19)

For $\beta$ and $n$ sufficiently large, and $c \in (0, 1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$ 

Storage Scheme:

- **Codebook:** Set of all 2-striped configurations
- **# 2-Stripes:** $2^{\Theta(\sqrt{n})}$
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!

**Theorem (G.-Bresler-Polyanskiy’19)**

For $\beta$ and $n$ sufficiently large, and $c \in (0, 1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$ 

**Storage Scheme:**

- **Codebook:** Set of all 2-striped configurations
- **# 2-Stripes:** $2^{\Theta(\sqrt{n})}$
- **Input:** $X_0 \sim \text{Unif} \left(\{2\text{-Stripes}\}\right)$
Long-Term Storage: Scaling $t$ with $\beta$

- In low-temperature regime we may scale $t$ with $\beta$
- Can store $\sqrt{n}$ bits for $\exp(\beta)$ time!

**Theorem (G.-Bresler-Polyanskiy’19)**

For $\beta$ and $n$ sufficiently large, and $c \in (0, 1)$, we have:

$$I_n^{(\beta)}(t) = \Omega(\sqrt{n}), \quad \forall t \leq e^{c\beta}.$$ 

**Storage Scheme:**

- **Codebook:** Set of all 2-striped configurations
- **# 2-Stripes:** $2^{\Theta(\sqrt{n})}$
- **Input:** $X_0 \sim \text{Unif}\left(\{2\text{-Stripes}\}\right)$
- **Decoding:** Majority decoding per stripe
Reduction to Single Stripe Analysis

- **Denote:** \( t_f \triangleq e^{c\beta} \); \( X_t^{(j)} \triangleq X_t^{(j)} \big|_{\text{Stripe } j} \); \( X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^j \)
Reduction to Single Stripe Analysis

- **Denote:** \( t_f \triangleq e^{c_\beta} \); \( X_t^{(j)} \triangleq X_t^{(j)} \big|_{\text{Stripe } j} \); \( X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^{j} \)

- **Decoder:** \( \psi_j (X_t^{(j)}) \) is majority decoder inside \( X_t^{(j)} \)
Reduction to Single Stripe Analysis

- **Denote:**  
  \[ t_f \triangleq e^{c\beta} \quad ; \quad X_t^{(j)} \triangleq X_t \big| \text{Stripe } j \quad ; \quad X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^\beta \]

- **Decoder:**  
  \( \psi_j(X_t^{(j)}) \) is majority decoder inside \( X_t^{(j)} \)

\[
I_n^{(\beta)}(t) \geq \sum_j I(X_0^{(j)}; X_{t_f} \big| X_0^{[j-1]}) \\
\geq \sum_j I(X_0^{(j)}; \psi_j(X_{t_f}) \big| X_0^{[j-1]}) \\
\geq \Theta(\sqrt{n}) \cdot C_{\text{BSC}}\left( P(\text{More than half stripe flipped}) \right)
\]
Reduction to Single Stripe Analysis

- **Denote:** \( t_f \triangleq e^{c\beta} \); \( X_t^{(j)} \triangleq X_t^{(j)} \mid \text{Stripe } j \); \( X_t^{[j]} \triangleq (X_t^{(k)})_{k=1}^{j} \)

- **Decoder:** \( \psi_{j}(X_t^{(j)}) \) is majority decoder inside \( X_t^{(j)} \)

\[
I_n^{(\beta)}(t) \geq \sum_j I\left(X_0^{(j)}; X_{tf} \mid X_0^{[j-1]}\right) \\
\geq \sum_j I\left(X_0^{(j)}; \psi_j(X_{tf}) \mid X_0^{[j-1]}\right) \\
\geq \Theta(\sqrt{n}) \cdot C_{\text{BSC}}\left(\mathbb{P}(\text{More than half stripe flipped})\right)
\]

\( \Rightarrow \) Suffices to analyze \( \mathbb{P}(\text{More than half stripe flipped}) \)
Single Stripe Case: Main Result

Bottom 1-Stripe:
Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by glueing horizontal spins
Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by glueing horizontal spins

**Strategy:**
**Bottom 1-Stripe:**

- 2-stripe reduction by glueing horizontal spins

**Strategy:**

- Bound $\mathbb{E}[N^{(+)}(t_f)]$, where $N^{(+)}(t_f) \triangleq \#$ pluses in bottom stripe of $X_t$
Single Stripe Case: Main Result

Bottom 1-Stripe:

- 2-stripe reduction by gluing horizontal spins

Strategy:

- Bound $\mathbb{E}[N^{(+)}(t_f)]$, where $N^{(+)}(t_f) \triangleq \#$ pluses in bottom stripe of $X_t$
- High probability claim via Chebyshev
Single Stripe Case: Main Result

**Bottom 1-Stripe:**

- 2-stripe reduction by glueing horizontal spins

**Strategy:**

- Bound $\mathbb{E}[N(+) (t_f)]$, where $N(+) (t_f) \triangleq \# \text{ pluses in bottom stripe of } X_t$
- High probability claim via Chebyshev

**Theorem (Goldfeld-Bresler-Polyanskiy’19)**

*Fix any $c, C \in (0, 1)$. For $\beta$ and $n$ sufficiently large, we have*

$$\mathbb{E}N(+) (t) \geq C \sqrt{n}, \quad \forall t \leq e^{c\beta}.$$
Pluses may spread out above bottom stripe
Single Stripe Case: Challenges & Solutions

⚠️ Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)
Single Stripe Case: Challenges & Solutions

- Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
Single Stripe Case: Challenges & Solutions

- Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
  - **Sprinkle:** Flip w/ all-plus horizontal neighbors
Single Stripe Case: Challenges & Solutions

⚠️ Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

⚠️ **Interleaved Dynamics:** 2 types of flips

▶ **Sprinkle:** Flip w/ all-plus horizontal neighbors
Single Stripe Case: Challenges & Solutions

- Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
  - **Sprinkle:** Flip w/ all-plus horizontal neighbors
Single Stripe Case: Challenges & Solutions

⚠️ Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

⚠️ **Interleaved Dynamics:** 2 types of flips

- **Sprinkle:** Flip w/ all-plus horizontal neighbors
- **Erosion:** Flip w/ at least one minus horizontal neighbor
Single Stripe Case: Challenges & Solutions

⚠️ Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

⚠️ **Interleaved Dynamics:** 2 types of flips

- **Sprinkle:** Flip w/ all-plus horizontal neighbors
- **Erosion:** Flip w/ at least one minus horizontal neighbor
Single Stripe Case: Challenges & Solutions

- Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
  - **Sprinkle:** Flip w/ all-plus horizontal neighbors
  - **Erosion:** Flip w/ at least one minus horizontal neighbor
Single Stripe Case: Challenges & Solutions

⊨ Pluses may spread out above bottom stripe

Fix: Prohibit minus-spins from flipping (speedup)

⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ ⊛ 思考
Single Stripe Case: Challenges & Solutions

⚠️ Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

⚠️ **Interleaved Dynamics:** 2 types of flips

► **Sprinkle:** Flip w/ all-plus horizontal neighbors

► **Erosion:** Flip w/ at least one minus horizontal neighbor

**Expected Behavior:**

1. Initially chain stays close to $X_0$ w/ occasional sprinkles
Single Stripe Case: Challenges & Solutions

✎ Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

✎ **Interleaved Dynamics:** 2 types of flips

- **Sprinkle:** Flip w/ all-plus horizontal neighbors
- **Erosion:** Flip w/ at least one minus horizontal neighbor

**Expected Behavior:**

1. Initially chain stays close to $X_0$ w/ occasional sprinkles
2. After sufficiently many sprinkle, drift driven by erosion
Single Stripe Case: Challenges & Solutions

- Pluses may spread out above bottom stripe

**Fix:** Prohibit minus-spins from flipping (speedup)

- **Interleaved Dynamics:** 2 types of flips
  - **Sprinkle:** Flip w/ all-plus horizontal neighbors
  - **Erosion:** Flip w/ at least one minus horizontal neighbor

**Expected Behavior:**

1. Initially chain stays close to $X_0$ w/ occasional sprinkles
2. After sufficiently many sprinkle, drift driven by erosion

$\implies$ Dominate $\{X_t\}_t$ by a phase-separated dynamics
Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- $0 < t_1 < \ldots < t_k < t_f$ are the $k$ clock rings (at $v_1, \ldots, v_k$) until $t_f$
Single Stripe Case: Phase-Separated Dynamics (1)

- Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)
- $0 < t_1 < \ldots < t_k < t_f$ are the $k$ clock rings (at $v_1, \ldots, v_k$) until $t_f$
- Define new dynamics $\{\tilde{X}_t\}_{t \in [0, 2t_f]}$ with first $2k$ clock rings and flips

\[
\tau_j = \begin{cases} 
    t_j, & j \in [k] \\
    t_{j-k} + t_f, & j \in [k+1 : 2k]
\end{cases}, \quad u_j = \begin{cases} 
    v_j, & j \in [k] \\
    v_{j-k}, & j \in [k+1 : 2k]
\end{cases}
\]
Consider continuous-time dynamics (i.i.d. Poisson clocks at each site)

0 < t_1 < \ldots < t_k < t_f are the k clock rings (at v_1, \ldots, v_k) until t_f

Define new dynamics \{\tilde{X}_t\}_{t \in [0, 2t_f]} with first 2k clock rings and flips

\[ \tau_j = \begin{cases} 
t_j, & j \in [k] 
t_j - k + t_f, & j \in [k + 1 : 2k] 
\end{cases}, \quad \upsilon_j = \begin{cases} 
v_j, & j \in [k] 
v_j - k, & j \in [k + 1 : 2k] 
\end{cases} \]

\[ \{X_t\}_{t \in [0, t_f]} \]
Consider continuous-time dynamics (i.i.d. Poisson clocks at each site) 

- $0 < t_1 < \ldots < t_k < t_f$ are the $k$ clock rings (at $v_1, \ldots, v_k$) until $t_f$

- Define new dynamics $\{\tilde{X}_t\}_{t \in [0,2t_f]}$ with first $2k$ clock rings and flips $\tau_j = \begin{cases} 
  t_j, & j \in [k] \\
  t_{j-k} + t_f, & j \in [k+1:2k] 
\end{cases}$, $u_j = \begin{cases} 
  v_j, & j \in [k] \\
  v_{j-k}, & j \in [k+1:2k] 
\end{cases}$
Single Stripe Case: Phase-Separated Dynamics (2)

\[ \{ \tilde{X}_t \}_{t \in [0,2t_f]} \]
Single Stripe Case: Phase-Separated Dynamics (2)

\( \{ \tilde{X}_t \}_{t \in [0,2t_f]} \)

Blocking Rule:
Single Stripe Case: Phase-Separated Dynamics (2)

\[ \{ \tilde{X}_t \}_{t \in [0,2t_f]} \]

Blocking Rule:

1. For \( t < t_f \) allow only sprinkle flips (wrt original \( \{ X_t \}_{t \in [0,t_f]} \) )
Single Stripe Case: Phase-Separated Dynamics (2)

\[ \{\tilde{X}_t\}_{t \in [0, 2t_f]} \]

Blocking Rule:

1. For \( t < t_f \) allow only sprinkle flips (wrt original \( \{X_t\}_{t \in [0, t_f]} \))
2. For \( t_f \leq t \leq 2t_f \) allow only erosion flips (wrt original \( \{X_t\}_{t \in [0, t_f]} \))
Single Stripe Case: Phase-Separated Dynamics (2)

\[ \{\tilde{X}_t\}_{t \in [0, 2t_f]} \]

Blocking Rule:

1. For \( t < t_f \) allow only sprinkle flips (wrt original \( \{X_t\}_{t \in [0,t_f]} \))
2. For \( t_f \leq t \leq 2t_f \) allow only erosion flips (wrt original \( \{X_t\}_{t \in [0,t_f]} \))

* Adjust Poisson clock rates of \( \{\tilde{X}_t\}_{t \in [0,2t_f]} \) to neighborhoods
Blocking Rule:

1. For $t < t_f$ allow only sprinkle flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)
2. For $t_f \leq t \leq 2t_f$ allow only erosion flips (wrt original $\{X_t\}_{t \in [0,t_f]}$)

Adjust Poisson clock rates of $\{\tilde{X}_t\}_{t \in [0,2t_f]}$ to neighborhoods

Observations:
Single Stripe Case: Phase-Separated Dynamics (2)

\[ \{\tilde{X}_t\}_{t \in [0,2t_f]} \]

Blocking Rule:

1. For \( t < t_f \) allow only sprinkle flips (wrt original \( \{X_t\}_{t \in [0,t_f]} \))
2. For \( t_f \leq t \leq 2t_f \) allow only erosion flips (wrt original \( \{X_t\}_{t \in [0,t_f]} \))

* Adjust Poisson clock rates of \( \{\tilde{X}_t\}_{t \in [0,2t_f]} \) to neighborhoods

Observations:

- Erosion flips in \( \{X_t\}_{t \in [0,t_f]} \) \( \implies \) Erosion flips in \( \{\tilde{X}_t\}_{t \in [t_f,2t_f]} \)
**Blocking Rule:**

1. For \( t < t_f \) allow only sprinkle flips (wrt original \( \{X_t\}_{t \in [0,t_f]} \))
2. For \( t_f \leq t \leq 2t_f \) allow only erosion flips (wrt original \( \{X_t\}_{t \in [0,t_f]} \))

⭐ Adjust Poisson clock rates of \( \{\tilde{X}_t\}_{t \in [0,2t_f]} \) to neighborhoods

**Observations:**

- Erosion flips in \( \{X_t\}_{t \in [0,t_f]} \) ⟷ Erosion flips in \( \{\tilde{X}_t\}_{t \in [t_f,2t_f]} \)
- Erosion flip rates in \( \{\tilde{X}_t\}_{t \in [t_f,2t_f]} \) are faster.
Single Stripe Case: Phase-Separated Dynamics (2)

\[ \{ \tilde{X}_t \}_{t \in [0,2t_f]} \]

Blocking Rule:

1. For \( t < t_f \) allow only sprinkle flips (wrt original \( \{ X_t \}_{t \in [0,t_f]} \))
2. For \( t_f \leq t \leq 2t_f \) allow only erosion flips (wrt original \( \{ X_t \}_{t \in [0,t_f]} \))

⋆ Adjust Poisson clock rates of \( \{ \tilde{X}_t \}_{t \in [0,2t_f]} \) to neighborhoods

Observations:

- Erosion flips in \( \{ X_t \}_{t \in [0,t_f]} \) \( \implies \) Erosion flips in \( \{ \tilde{X}_t \}_{t \in [t_f,2t_f]} \)
- Erosion flip rates in \( \{ \tilde{X}_t \}_{t \in [t_f,2t_f]} \) are faster.

\[ \implies \text{New dynamics is a speedup:} \quad \mathbb{E}N^{(+)}(t_f) \geq \mathbb{E}\tilde{N}^{(+)}(2t_f) \]
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$: Ends w/ runs of ‘+’s separated by ‘-’ sprinkles
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$:

Ends w/ runs of ‘+’s separated by ‘-’ sprinkles.
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$: Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?
**Single Stripe Case: Phase-Separated Dynamics (3)**

**Sprinkle Analysis \([0, t_f]\):** Ends w/ runs of ‘+’s separated by ‘-’ sprinkles  

Q: What is the typical length of a run (contig) & how many of them? 

- Approx. bottom stripe sites by i.i.d. \( \text{Exp}(p_\beta) \), \( p_\beta \triangleq P(\text{Sprinkle}) \)
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$: Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. $\text{Exp}(p_\beta)$, $p_\beta \triangleq \mathbb{P}($Sprinkle$)$
- Approx. $L_i = \text{‘Length of Contig }i\text{’ by Geo}(p_\beta^{-1})$
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$: Ends w/ runs of ‘+’ s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. $\text{Exp}(p_\beta)$, $p_\beta \triangleq \mathbb{P}(\text{Sprinkle})$
- Approx. $L_i = \text{‘Length of Contig } i\text{’ by Geo}(p_\beta^{-1}) \implies \mathbb{E}L_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}$
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$:
Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. $\text{Exp}(p_\beta)$, $p_\beta \triangleq P(\text{Sprinkle})$
- Approx. $L_i = \text{‘Length of Contig } i\text{’ by Geo}(p_\beta^{-1}) \implies \mathbb{E}L_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}$
- Show $\mathbb{E}[\text{Number of contigs of this length}] \gtrsim \frac{\sqrt{n}}{2-p_\beta}$
Sprinkle Analysis $[0, t_f]$:

Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. $\text{Exp}(p_\beta)$, $p_\beta \triangleq \mathbb{P}(\text{Sprinkle})$

- Approx. $L_i = \text{‘Length of Contig } i\text{’ by } \text{Geo}(p_\beta^{-1}) \implies \mathbb{E}L_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}$

- Show $\mathbb{E}[\text{Number of contigs of this length}] \gtrsim \frac{\sqrt{n}}{2-p_\beta}$

Bound expected number of pluses as $\mathbb{E}\tilde{N}(+)(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E}L_i$
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis $[0, t_f]$: Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

Q: What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. $\text{Exp}(p_\beta)$, $p_\beta \triangleq \mathbb{P}(\text{Sprinkle})$
- Approx. $L_i = \text{‘Length of Contig } i\text{’ by } \text{Geo}(p_\beta^{-1}) \implies \mathbb{E}L_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}$
- Show $\mathbb{E}[\text{Number of contigs of this length}] \gtrsim \frac{\sqrt{n}}{2-p_\beta}$

$\implies$ Bound expected number of pluses as $\mathbb{E}\tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E}L_i$

Erosion Analysis $(t_f, 2t_f)$: Contig eaten w/ speed $\phi_\beta \triangleq \frac{e^\beta}{e^{\beta} + e^{-\beta}}$ (2 sides)
Single Stripe Case: Phase-Separated Dynamics (3)

Sprinkle Analysis \([0, t_f]\): Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

\[\begin{array}{cccccccccccccccc}
\vdots & \vdots \\
\hline \\
\end{array}\]

Q: What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. \(\text{Exp}(p_\beta)\), \(p_\beta \triangleq \mathbb{P}(\text{Sprinkle})\)

- Approx. \(L_i = \text{‘Length of Contig } i\text{’ by Geo}(p_\beta^{-1}) \implies \mathbb{E}L_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}\)

- Show \(\mathbb{E}[\text{Number of contigs of this length}] \gtrsim \frac{\sqrt{n}}{2-p_\beta}\)

\[\implies \text{Bound expected number of pluses as } \mathbb{E}\tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta}\mathbb{E}L_i\]

Erosion Analysis \((t_f, 2t_f]\): Contig eaten w/ speed \(\phi_\beta \triangleq \frac{e^\beta}{e^\beta + e^{-\beta}} (2\text{ sides})\)

- \(\left\{\text{Half contig eaten in } t_f \text{ time}\right\} = \left\{\sum_{i=1}^{\ell_\beta/2} \text{Exp}(\phi_\beta) \leq t_f \right\}\)
**Single Stripe Case: Phase-Separated Dynamics (3)**

**Sprinkle Analysis \([0, t_f]::** Ends w/ runs of ‘+’s separated by ‘-’ sprinkles

![Diagram showing sprinkles and runs]

**Q:** What is the typical length of a run (contig) & how many of them?

- Approx. bottom stripe sites by i.i.d. \(\text{Exp}(p_\beta)\), \(p_\beta \triangleq \mathbb{P}(\text{Sprinkle})\)
- Approx. \(L_i = \text{‘Length of Contig } i\text{’ by Geo}(p_\beta^{-1}) \implies \mathbb{E}L_i \gtrsim \ell_\beta \triangleq \frac{1}{p_\beta}\)
- Show \(\mathbb{E}[\text{Number of contigs of this length}] \gtrsim \frac{\sqrt{n}}{2-p_\beta}\)

\[\implies\] Bound expected number of pluses as \(\mathbb{E}\tilde{N}^{(+)}(2t_f) \gtrsim \frac{\sqrt{n}}{2-p_\beta} \mathbb{E}L_i\)

**Erosion Analysis \((t_f, 2t_f)::** Contig eaten w/ speed \(\Phi_\beta \triangleq \frac{e^\beta}{e^\beta + e^{-\beta}}\) (2 sides)

- Half contig eaten in \(t_f\) time \[\{\sum_{i=1}^{\ell_\beta/2} \text{Exp}(\Phi_\beta) \leq t_f\}\]
- Show latter probability is small and conclude proof