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Motivation (delayed state information)

Channel state models fading, noise and interference of
uncontrolled signals.

Goldfeld/Permuter/Zaidel Diagonal Gaussian FSM MAC with Conferencing and Delayed CSI



Motivation (delayed state information)

Channel state models fading, noise and interference of
uncontrolled signals.
Channel state information (CSI) needs to be estimated.

Goldfeld/Permuter/Zaidel Diagonal Gaussian FSM MAC with Conferencing and Delayed CSI



Motivation (delayed state information)

Channel state models fading, noise and interference of
uncontrolled signals.
Channel state information (CSI) needs to be estimated.
In LTE uplink standard, pilot signal are sent by the users in
order to estimate the current channel state.
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FSM-MAC with Conferencing and Delayed CSI
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CSI known to the Decoder and delayed CSI known to the
Encoders.
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FSM-MAC with Conferencing and Delayed CSI

Encoder1

Encoder2

p(y|x1, x2, s) Decoder

M1

M2

Xn
1

Xn
2

Y n (M̂1, M̂2)

Si−d1

Si−d2

Si

Channel

C12 C21

CSI known to the Decoder and delayed CSI known to the
Encoders.

Conferencing between the Encoders is possible through
limited links.
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Channel Model and Notation

Finite number of states |S| < ∞.
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Channel state is a stationary Markov process independent
of the messages.

The random variables Si Si−d denote the channel state at
time i, and i− d, respectively.
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Channel Model and Notation

Finite number of states |S| < ∞.

Channel state is a stationary Markov process independent
of the messages.

The random variables Si Si−d denote the channel state at
time i, and i− d, respectively.

The (Si, Si−d) joint distribution is stationary and is given by

P (Si = sl, Si−d = sj) = π(sj)K
d(sl, sj).
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Channel Model - Partial Cooperation [Willems82]

The conferencing takes place prior to the transmission
throughout the channel.
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Channel Model - Partial Cooperation [Willems82]

The conferencing takes place prior to the transmission
throughout the channel.

The state process is independent of the conference
communications.
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Channel Model - Partial Cooperation [Willems82]

The conferencing takes place prior to the transmission
throughout the channel.

The state process is independent of the conference
communications.

The conference is held using two communication links with
finite capacities C12 and C21.
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Capacity Proof Chronology
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Model
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Common Message Model
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Main Results Common Message with Delayed CSI
(d1 ≥ d2)

Theorem

The capacity region of FSM-MAC with a common message, CSI at the
decoder and delayed CSI at the encoders with delays d1 and d2, is

R1 < I(X1;Y |X2, U, S, S̃1, S̃2),

R2 < I(X2;Y |X1, U, S, S̃1, S̃2),

R1 +R2 < I(X1, X2; Y |U, S, S̃1, S̃2),

R0 +R1 +R2 < I(X1, X2; Y |S, S̃1, S̃2),

for some joint distribution of the form:

P (u|s̃1)P (x1|s̃1, u)P (x2|s̃1, s̃2, u).

The joint distribution (S, S̃1, S̃2) is the same joint distribution as

(Si, Si−d1
, Si−d2

).
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Achievability - Ideas and Discussion

Coding scheme: Encode using MUX, decode
simultaneously using joint-typicality.
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Achievability - Ideas and Discussion

Coding scheme: Encode using MUX, decode
simultaneously using joint-typicality.

Achieves every possible point in the region.
Can be easily extended to multiple users.

Generalizes the result for the FSM-MAC with delayed CSI
and no common message [Basher/Shirazy/P.11].
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MAC with Conferencing and Delayed CSI
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MAC with Conferencing and Delayed CSI
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Share as much as possible of the massages through the
conferencing links.
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Conferencing Setting - Achievability Outline

Split the original messages (M1,M2) into private
messages (M ′

1,M
′
2) and a common message (M̃1, M̃2).

M1 M2

M ′
1 (M̃1 , M̃2) M ′

2

Private Common Private
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Conferencing Setting - Achievability Outline

Split the original messages (M1,M2) into private
messages (M ′

1,M
′
2) and a common message (M̃1, M̃2).

M1 M2

M ′
1 (M̃1 , M̃2) M ′

2

Private Common Private

Use the communication links in order to share (M̃1, M̃2).
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Conferencing Setting - Achievability Outline

Split the original messages (M1,M2) into private
messages (M ′

1,M
′
2) and a common message (M̃1, M̃2).

M1 M2

M ′
1 (M̃1 , M̃2) M ′

2

Private Common Private

Use the communication links in order to share (M̃1, M̃2).

Message Rate
M ′

0 = (M̃1, M̃2) C12 + C21

M ′
1 R1 − C12

M ′
2 R2 − C21
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Conferencing Setting - Achievability Outline

Using common message result:
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Conferencing Setting - Achievability Outline

Using common message result:

(R1 − C12) ≤ I(X1;Y |X2, U, S, S̃1, S̃2),

(R2 − C21) ≤ I(X2;Y |X1, U, S, S̃1, S̃2),

(R1 − C12) + (R2 − C21) ≤ I(X1,X2;Y |U,S, S̃1, S̃2),

(C12 + C21) + (R1 −C12) + (R2 −C21) ≤ I(X1,X2;Y |S, S̃1, S̃2).
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Main Results with Conferencing and Delayed CSI
(d1 ≥ d2)

Theorem

The capacity region of FSM-MAC with partially cooperative encoders, CSI at
the decoder and CSI at the encoders with delays d1 and d2, is

R1 < I(X1;Y |X2, U, S, S̃1, S̃2) + C12,

R2 < I(X2;Y |X1, U, S, S̃1, S̃2) + C21,

R1 +R2 < min

{
I(X1, X2;Y |U, S, S̃1, S̃2) + C12 +C21,

I(X1, X2;Y |S, S̃1, S̃2)

}
,

for some joint distribution of the form:

P (u|s̃1)P (x1|s̃1, u)P (x2|s̃1, s̃2, u).

Goldfeld/Permuter/Zaidel Diagonal Gaussian FSM MAC with Conferencing and Delayed CSI



Vector Diagonal Gaussian FSM-MAC - Channel Model

The vector diagonal additive Gaussian noise (AGN) FSM-MAC
with partially cooperative encoders and delayed CSI,

X1,t

X2,t

G1(st)

G2(st)

Zt

Yt
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Vector Diagonal Gaussian FSM-MAC - Channel Model

The vector diagonal additive Gaussian noise (AGN) FSM-MAC
with partially cooperative encoders and delayed CSI,

X1,t

X2,t

G1(st)

G2(st)

Zt

Yt

The channel model,

Yt = G1(st)X1,t +G2(st)X2,t + Zt,
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Vector Diagonal Gaussian FSM-MAC - Channel Model

{
G1(s)

}
s∈S

and
{
G2(s)

}
s∈S

are real diagonal channel
transition matrices of dimension N ×N .
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Vector Diagonal Gaussian FSM-MAC - Channel Model

{
G1(s)

}
s∈S

and
{
G2(s)

}
s∈S

are real diagonal channel
transition matrices of dimension N ×N .

Z is an AWGN distributed according to Z ∼ N (0, I).
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Vector Diagonal Gaussian FSM-MAC - Channel Model
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and
{
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}
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are real diagonal channel
transition matrices of dimension N ×N .

Z is an AWGN distributed according to Z ∼ N (0, I).

Z is independent of X1 and X2.
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Vector Diagonal Gaussian FSM-MAC - Channel Model

{
G1(s)

}
s∈S

and
{
G2(s)

}
s∈S

are real diagonal channel
transition matrices of dimension N ×N .

Z is an AWGN distributed according to Z ∼ N (0, I).

Z is independent of X1 and X2.

All vectors are real and of dimension N × 1.
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Vector Diagonal Gaussian FSM-MAC - Channel Model

{
G1(s)

}
s∈S

and
{
G2(s)

}
s∈S

are real diagonal channel
transition matrices of dimension N ×N .

Z is an AWGN distributed according to Z ∼ N (0, I).

Z is independent of X1 and X2.

All vectors are real and of dimension N × 1.

The inputs are bounded by the following power constraints,

tr
(
ΣX1X1

)
≤ P1 ; tr

(
ΣX2X2

)
≤ P2.
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Vector Diagonal Gaussian FSM-MAC - Proof Outline

The main difficulty is to that a Gaussian triplet (X1,U,X2)
satisfying

U− S̃1 − (S, S̃2),

X1 − (U, S̃1)− (S, S̃2),

X2 − (U, S̃1, S̃2)− (X1, S),

is optimal.
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Vector Diagonal Gaussian FSM-MAC - Proof Outline

The main difficulty is to that a Gaussian triplet (X1,U,X2)
satisfying

U− S̃1 − (S, S̃2),

X1 − (U, S̃1)− (S, S̃2),

X2 − (U, S̃1, S̃2)− (X1, S),

is optimal.

Use an extension of the idea of [Lapidoth/Bross/Wigger08]
and [Lapidoth/Venkatesan07].
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Vector Diagonal Gaussian FSM-MAC - Main Result

R1 <
1

2

∑

s̃1

π(s̃1)
∑

s̃2

Kd1−d2(s̃2, s̃1)
∑

s

Kd2(s, s̃2)
N
∑

i=1

log
(

1 +
(

gi1(s)
)

2
γi

1(s̃1)
)

+ C12,

R2 <
1

2

∑

s̃1

π(s̃1)
∑

s̃2

Kd1−d2(s̃2, s̃1)
∑

s

Kd2(s, s̃2)
N
∑

i=1

log
(

1 +
(

gi2(s)
)2

γi

2(s̃1, s̃2)
)

+ C21,

R1 + R2 <
1

2

∑

s̃1

π(s̃1)
∑

s̃2

Kd1−d2(s̃2, s̃1)
∑

s

Kd2(s, s̃2)
N
∑

i=1

log
(

1 +
(

gi1(s)
)2

γi

1(s̃1)

+
(

gi2(s)
)

2
γi

2(s̃1, s̃2)
)

+ C12 + C21,

R1 + R2 <
1

2

∑

s̃1

π(s̃1)
∑

s̃2

Kd1−d2(s̃2, s̃1)
∑

s

Kd2(s, s̃2)
N
∑

i=1

log
(

1 +
(

gi1(s)
)

2
P i

1(s̃1)

+
(

gi2(s)
)

2
P i

2(s̃1, s̃2) + 2gi1(s)g
i

2(s)
√

(P i

1

(

s̃1)− γi

1
(s̃1)

)(

P i

2
(s̃1, s̃2)− γi

2
(s̃1, s̃2)

)

)

,

subject to the constraints,
∑

s̃1

π(s̃1)

N
∑

i=1

P i

1(s̃1) ≤ P1, ;
∑

s̃1

π(s̃1)
∑

s̃2

Kd1−d2 (s̃2, s̃1)

N
∑

i=1

P i

2(s̃1, s̃2) ≤ P2,

0 ≤ γi

1(s̃1) ≤ P i

1(s̃1), ∀ i ∈ {1, . . . , N}, s̃1 ∈ S,

0 ≤ γi

2(s̃1, s̃2) ≤ P i

2(s̃1, s̃2), ∀ i ∈ {1, . . . , N}, (s̃1, s̃2) ∈ S2.
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Example: Gilbert-Elliot Gaussian MAC

At any given time t the channel is in one of two possible
states, Good or Bad.

g1(G) > g1(B) and g2(G) > g2(B).

g

b

BadGood 1− g1− b

Figure : Two-state AGN channel.
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Capacity region of Two-State AGN MAC Example

Fixed delays d1 = d2 = 2 and symmetrical con. C12 = C21
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Correlation versus SNR
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Summary

A single-letter characterization of MAC with delayed state
and conferencing.
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Summary

A single-letter characterization of MAC with delayed state
and conferencing.

Conferencing: share parts of the messages.

Delayed state: use MUX at the encoder, joint-typicality at
the decoder.
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Summary

A single-letter characterization of MAC with delayed state
and conferencing.

Conferencing: share parts of the messages.

Delayed state: use MUX at the encoder, joint-typicality at
the decoder.
Diagonal vector Gaussian case:

Joint Gaussian achieve the maximum.
Transformed into a convex optimization problem.
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Summary

A single-letter characterization of MAC with delayed state
and conferencing.

Conferencing: share parts of the messages.

Delayed state: use MUX at the encoder, joint-typicality at
the decoder.
Diagonal vector Gaussian case:

Joint Gaussian achieve the maximum.
Transformed into a convex optimization problem.

Insight: Correlation is crucial in low SNR.
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Summary

A single-letter characterization of MAC with delayed state
and conferencing.

Conferencing: share parts of the messages.

Delayed state: use MUX at the encoder, joint-typicality at
the decoder.
Diagonal vector Gaussian case:

Joint Gaussian achieve the maximum.
Transformed into a convex optimization problem.

Insight: Correlation is crucial in low SNR.

Thank you!
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Conferencing Model - Code Description

For each TX the encoding functions:
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Conferencing Model - Code Description

For each TX the encoding functions:

Conferencing encoder,

V1,i = h1,i(M1, V
i−1
2 ),

V2,i = h2,i(M2, V
i−1
1 ).
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Conferencing Model - Code Description

For each TX the encoding functions:

Conferencing encoder,

V1,i = h1,i(M1, V
i−1
2 ),

V2,i = h2,i(M2, V
i−1
1 ).

Channel encoder,

X1,i =

{
f1,i(M1, V

ℓ
2 ), 1 ≤ i ≤ d1

f1,i(M1, V
ℓ
2 , S

i−d1), d1 + 1 ≤ i ≤ n

}
,

X2,i =

{
f2,i(M2, V

ℓ
1 ), 1 ≤ i ≤ d2

f2,i(M2, V
ℓ
1 , S

i−d2), d2 + 1 ≤ i ≤ n

}
.
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Common Message Model - Anhievabillity

If both, the encoder and decoder, know the state (with or
without delay) one can use MUX-DEMUX scheme.
[Goldsmith/varaiya97] [Viswanathan99]
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Common Message Model - Anhievabillity

If both, the encoder and decoder, know the state (with or
without delay) one can use MUX-DEMUX scheme.
[Goldsmith/varaiya97] [Viswanathan99]

Problem 1: Here there is an asymmetry between the
encoders and the decoder.
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Common Message Model - Anhievabillity

If both, the encoder and decoder, know the state (with or
without delay) one can use MUX-DEMUX scheme.
[Goldsmith/varaiya97] [Viswanathan99]

Problem 1: Here there is an asymmetry between the
encoders and the decoder.

Solution: Can be solved by working on the corner points
and using successive decoding. [Basher/Shirazy/P.11]
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Common Message Model - Anhievabillity

If both, the encoder and decoder, know the state (with or
without delay) one can use MUX-DEMUX scheme.
[Goldsmith/varaiya97] [Viswanathan99]

Problem 1: Here there is an asymmetry between the
encoders and the decoder.

Solution: Can be solved by working on the corner points
and using successive decoding. [Basher/Shirazy/P.11]

Problem 2: Common message generates many
corner-points.
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Problem 2: Common message generates many
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Solution: Encode using MUX, decode simultaneously
using joint-typicality.
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Common Message Model - Anhievabillity

If both, the encoder and decoder, know the state (with or
without delay) one can use MUX-DEMUX scheme.
[Goldsmith/varaiya97] [Viswanathan99]

Problem 1: Here there is an asymmetry between the
encoders and the decoder.

Solution: Can be solved by working on the corner points
and using successive decoding. [Basher/Shirazy/P.11]

Problem 2: Common message generates many
corner-points.

Solution: Encode using MUX, decode simultaneously
using joint-typicality.

Error analysis yield many inequalities.

The inequalities are reduced using induction and the
Fourier-Motzkin elimination.
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Common Message Model - Achievability

The common message M0 is encoded only using only the
“weaker” state, namely S̃1.
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The common message M0 is encoded only using only the
“weaker” state, namely S̃1.

The private message M1 is encoded using S̃1 as well.
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Common Message Model - Achievability

The common message M0 is encoded only using only the
“weaker” state, namely S̃1.

The private message M1 is encoded using S̃1 as well.

We need to split M2 into many sub-messages according to
both (S̃1, S̃2). Error analysis yield many inequalities.
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Common Message Model - Achievability

The common message M0 is encoded only using only the
“weaker” state, namely S̃1.

The private message M1 is encoded using S̃1 as well.

We need to split M2 into many sub-messages according to
both (S̃1, S̃2). Error analysis yield many inequalities.

The reduction of the inequalities is proved using induction
and the Fourier-Motzkin elimination.
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Common Message Model - Converse

MAC with common message need one auxiliary.
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Common Message Model - Converse

MAC with common message need one auxiliary.

MAC with delayed state need one auxiliary.
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Common Message Model - Converse

MAC with common message need one auxiliary.

MAC with delayed state need one auxiliary.

Auxiliaries can be combined.
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Common Message Model - Converse

MAC with common message need one auxiliary.

MAC with delayed state need one auxiliary.

Auxiliaries can be combined.

Identification of the auxiliary random variable U as the
common knowledge of the two encoders,
Ui = (M0, S

i−d1−1).
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Capacity region of Two-State AGN MAC Example

Fixed delays d1 = d2 = 2 and asymmetrical con. C12 ≥ C21 = 0
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Capacity region of Two-State AGN MAC Example

Fixed delays d1 = d2 = 2 and infinite con. C12 ≤ C21 = ∞
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