Semi-Deterministic Broadcast Channels with Cooperation

Ziv Goldfeld, Haim H. Permuter and Gerhard Kramer

Ben Gurion University and Technische Universität München

IEEE 28-th Convention of Electrical and Electronics Engineers in Israel

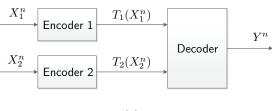
December, 2014

Outline

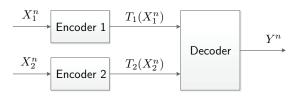
- Motivation and past work
- AK problem with one-sided encoder cooperation
- SD-BC with one-sided decoder cooperation
- Duality
- Summary

• The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

• The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].



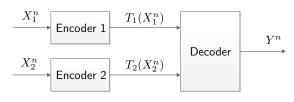
• The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].



$$(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X_1, X_2} P_{Y|X_1, X_2}^{\star})$$

Ahlswede-Körner (AK) problem (1975).

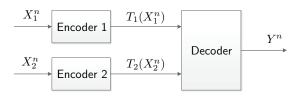
• The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].



$$(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X_1, X_2} P_{Y|X_1, X_2}^{\star})$$

- Ahlswede-Körner (AK) problem (1975).
- Add cooperation ability:

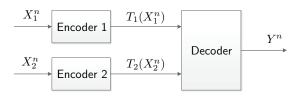
• The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].



$$(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X_1, X_2} P_{Y|X_1, X_2}^*)$$

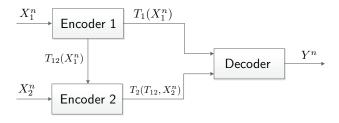
- Ahlswede-Körner (AK) problem (1975).
- Add cooperation ability:
 - Can boost performance.

 The two-encoder multiterminal source coding problem [Berger, 1978], [Tung, 1978].

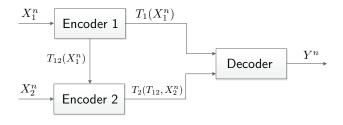


$$(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X_1, X_2} P_{Y|X_1, X_2}^*)$$

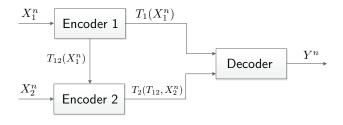
- Ahlswede-Körner (AK) problem (1975).
- Add cooperation ability:
 - Can boost performance.
 - Milestone towards multiuser channel-source duality.



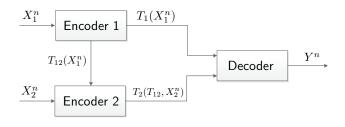
Without cooperation [Ahlswede-Körner, 1975]



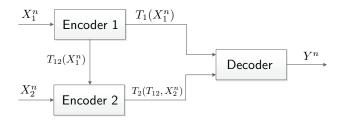
• Sources: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.



- Sources: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.
- Encoder Cooperation: $T_{12} \in [1:2^{nR_{12}}].$



- Sources: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.
- Encoder Cooperation: $T_{12} \in [1:2^{nR_{12}}].$
- Encoder-Decoder Communication: $T_j \in [1:2^{nR_j}]$, j=1,2.



- Sources: (X_1^n, X_2^n) are pairwise i.i.d. $\sim P_{X_1, X_2}$.
- Encoder Cooperation: $T_{12} \in [1:2^{nR_{12}}].$
- Encoder-Decoder Communication: $T_j \in [1:2^{nR_j}]$, j=1,2.
- Decoder Output: $(X_1^n, X_2^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)} (P_{X_2} P_{Y|X_2} \mathbb{1}_{\{X_1 = f(Y)\}}).$

Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1 | V, U) \\ R_2 \geq I(U; X_2 | V) - I(U; X_1 | V) \\ R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1|V, U) \\ R_2 \geq I(U; X_2|V) - I(U; X_1|V) \\ R_1 + R_2 \geq H(X_1|V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$C_{AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1|V, U) \\ R_2 \geq I(U; X_2|V) - I(U; X_1|V) \\ R_1 + R_2 \geq H(X_1|V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination distribution $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$C_{AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1 | V, U) \\ R_2 \geq \underline{I(U; X_2 | V)} - \underline{I(U; X_1 | V)} \\ R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

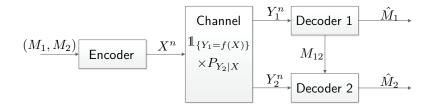
where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

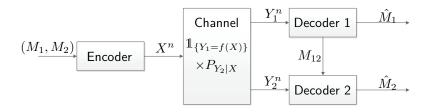
For a desired coordination distribution $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$C_{AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq \frac{\mathbf{H}(X_1|V, \mathbf{U})}{R_2 \geq I(U; X_2|V) - I(U; X_1|V)} \\ R_1 + R_2 \geq H(X_1|V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

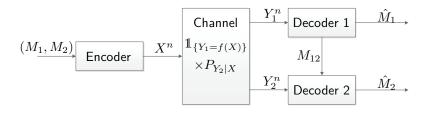
where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.



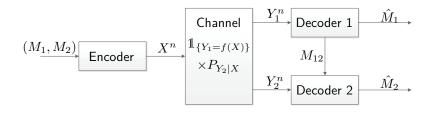
Without cooperation [Gelfand and Pinsker, 1980]



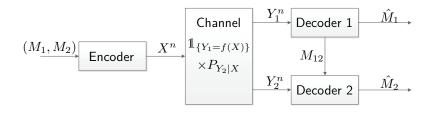
• Messages: $(M_1, M_2) \sim \text{Unif}[1:2^{nR_1}] \times [1:2^{nR_2}].$



- Messages: $(M_1, M_2) \sim \mathsf{Unif}[1:2^{nR_1}] \times [1:2^{nR_2}].$
- Channel Decoder Input: $Y_{1,i} = f(X_i)$ and $Y_{2,i} \sim P_{Y_2|X}$.



- Messages: $(M_1, M_2) \sim \mathsf{Unif}[1:2^{nR_1}] \times [1:2^{nR_2}].$
- Channel Decoder Input: $Y_{1,i} = f(X_i)$ and $Y_{2,i} \sim P_{Y_2|X}$.
- Decoder Cooperation: $M_{12}(Y_1^n) \in [1:2^{nR_{12}}].$



- Messages: $(M_1, M_2) \sim \text{Unif}[1:2^{nR_1}] \times [1:2^{nR_2}].$
- Channel Decoder Input: $Y_{1,i} = f(X_i)$ and $Y_{2,i} \sim P_{Y_2|X}$.
- Decoder Cooperation: $M_{12}(Y_1^n) \in [1:2^{nR_{12}}].$
- Decoders' Output: $\hat{M}_1(Y_1^n)$ and $\hat{M}_2(M_{12},Y_2^n)$.

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$\mathcal{C}_{BC} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V;Y_1) - I(V;Y_2) \\ R_1 \leq H(Y_1) \\ R_2 \leq I(V,U;Y_2) + R_{12} \\ R_1 + R_2 \leq H(Y_1|V,U) + I(U;Y_2|V) + I(V;Y_1) \end{array} \right\}$$

where the union is over all $P_{V,U,Y_1,X}P_{Y_2|X}\mathbb{1}_{\{Y_1=f(X)\}}$.

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$\mathcal{C}_{BC} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; Y_1) - I(V; Y_2) \\ R_1 \leq H(Y_1) \\ R_2 \leq I(V, U; Y_2) + R_{12} \\ R_1 + R_2 \leq H(Y_1|V, U) + I(U; Y_2|V) + I(V; Y_1) \end{array} \right\}$$

where the union is over all $P_{V,U,Y_1,X}P_{Y_2|X}\mathbb{1}_{\{Y_1=f(X)\}}$.

Achievability via rate splitting, Marton coding and Wyner-Ziv-like coding for cooperation protocol.

Difficulty: Unique structure

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

1. Outer bound the achievable region using 3 auxiliaries (A, B, C).

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

- 1. Outer bound the achievable region using 3 auxiliaries (A, B, C).
- 2. Choose auxiliaries probabilistically as a function of the codebook:

$$V = \begin{cases} (A,C) \ , & \text{w.p. } \lambda \\ \emptyset \ , & \text{w.p. } 1-\lambda \end{cases} \hspace{1cm} ; \hspace{1cm} U = (A,B,C)$$

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

- 1. Outer bound the achievable region using 3 auxiliaries (A, B, C).
- 2. Choose auxiliaries probabilistically as a function of the codebook:

$$V = \begin{cases} (A,C) \ , & \text{w.p. } \lambda \\ \emptyset \ , & \text{w.p. } 1-\lambda \end{cases} \hspace{1cm} ; \hspace{1cm} U = (A,B,C)$$

3. Optimize over λ to tighten the outer bound.

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

- 1. Outer bound the achievable region using 3 auxiliaries (A, B, C).
- 2. Choose auxiliaries probabilistically as a function of the codebook:

$$V = \begin{cases} (A,C) \ , & \text{w.p. } \lambda \\ \emptyset \ , & \text{w.p. } 1-\lambda \end{cases} \hspace{1cm} ; \hspace{1cm} U = (A,B,C)$$

- 3. Optimize over λ to tighten the outer bound.
 - Optimal λ depends on the joint PMF induced from the codebook.

Difficulty: Unique structure $\implies R_{12} \ge I(V; Y_1) - I(V; Y_2)$.

Converse Via Novel Approach: Probabilistic construction of auxiliaries:

- 1. Outer bound the achievable region using 3 auxiliaries (A, B, C).
- 2. Choose auxiliaries probabilistically as a function of the codebook:

$$V = \begin{cases} (A,C) \ , & \text{w.p. } \lambda \\ \emptyset \ , & \text{w.p. } 1-\lambda \end{cases} \hspace{1cm} ; \hspace{1cm} U = (A,B,C)$$

- 3. Optimize over λ to tighten the outer bound.
 - Optimal λ depends on the joint PMF induced from the codebook.

Generalization of [Lapidoth and Wang, 2013].

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan *et al.*, 2003], [Gupta and Verdú, 2011].

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan *et al.*, 2003], [Gupta and Verdú, 2011].

• The solutions of the problems are dual.

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

- The solutions of the problems are dual.
 - Information measures admit dual forms.

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

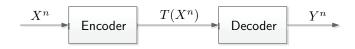
- The solutions of the problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.

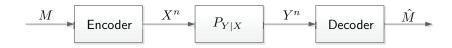
"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

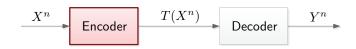
- The solutions of the problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.
- A formal proof of duality is still absent.

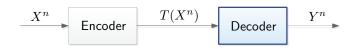
"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

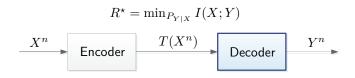
- The solutions of the problems are dual.
 - Information measures admit dual forms.
 - Optimization domain may vary.
- A formal proof of duality is still absent.
- ullet Solving one problem \implies Valuable insight into solving dual.

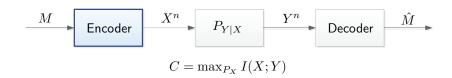




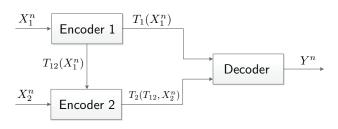


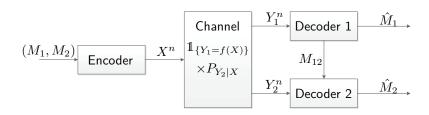




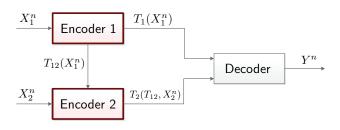


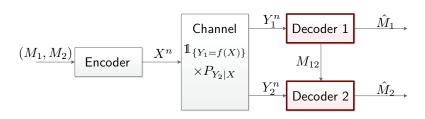
AK Problem vs. Semi-Deterministic BC:



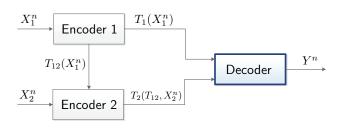


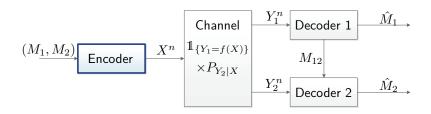
AK Problem vs. Semi-Deterministic BC:





AK Problem vs. Semi-Deterministic BC:





AK Problem vs. Semi-Deterministic BC:

Probabilistic relations are preserved:

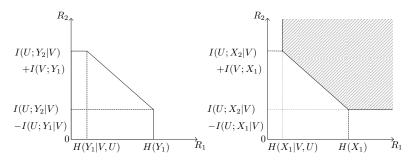
AK Problem vs. Semi-Deterministic BC:

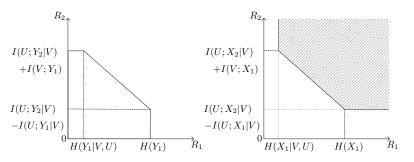
Probabilistic relations are preserved:

Semi-Deterministic BC

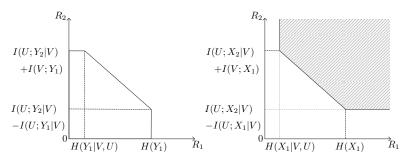
AK Problem

$$(X^n,Y_1^n,Y_2^n) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_X^{\star} \mathbb{1}_{\{Y_1=f(X)\}} P_{Y_2|X}\Big) \\ \longleftarrow \qquad (Y^n,X_1^n,X_2^n) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_Y \mathbb{1}_{\{X_1=f(Y)\}} P_{X_2|Y}^{\star}\Big)$$

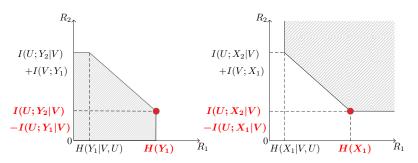




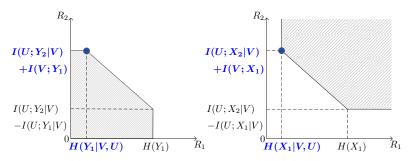
Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$



Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V;Y_1) - I(V;Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$



Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$\Big(H(Y_1)\;,\;I(U;Y_2 V)-I(U;Y_1 V)\Big)$	$\big(H(X_1)\;,\;I(U;X_2 V)-I(U;X_1 V)\big)$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(Y_1 V,U), I(U;Y_2 V) + I(V;Y_1))$	$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$



Semi-Deterministic BC with Cooperation	Ahlswede-Körner Problem with Cooperation
$R_{12} = I(V; Y_1) - I(V; Y_2)$	$R_{12} = I(V; X_1) - I(V; X_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$	$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$\Big(H(Y_1 V,U)\;,\;I(U;Y_2 V)+I(V;Y_1)\Big)$	$\Big(H(X_1 V,U)\;,\;I(U;X_2 V)+I(V;X_1)\Big)$

• AK problem with cooperation.

- AK problem with cooperation.
- SD-BC with cooperation.

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.

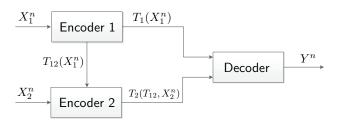
- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.

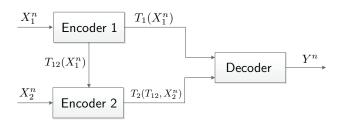
- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
- Probabilistic converse.

- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
- Probabilistic converse.
- Full version undergoing review for IEEE Trans. Inf. Theory; available on ArXiV at http://arxiv.org/abs/1405.7812.

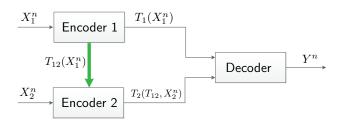
- AK problem with cooperation.
- SD-BC with cooperation.
- Duality:
 - Transformation principles.
 - Corner point correspondence.
- Probabilistic converse.
- Full version undergoing review for IEEE Trans. Inf. Theory; available on ArXiV at http://arxiv.org/abs/1405.7812.

Thank you!



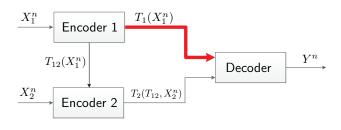


Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V;X_1) - I(V;X_2)$	$I(V;X_1) - I(V;X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U; X_2 V) - I(U; X_1 V)$	$I(U; X_2 V) + I(V; X_1)$



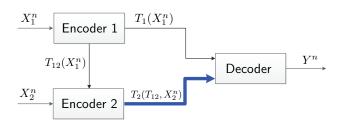
Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V;X_1) - I(V;X_2)$	$I(V;X_1) - I(V;X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U; X_2 V) - I(U; X_1 V)$	$I(U; X_2 V) + I(V; X_1)$

• Cooperation: Wyner-Ziv scheme to convey V^n via cooperation link.



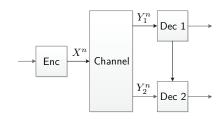
Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V; X_1) - I(V; X_2)$	$I(V; X_1) - I(V; X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U;X_2 V) - I(U;X_1 V)$	$I(U; X_2 V) + I(V; X_1)$

- ullet Cooperation: Wyner-Ziv scheme to convey V^n via cooperation link.
- Corner Point 1: V^n is transmitted to dec. by Enc. 1 within X_1^n .

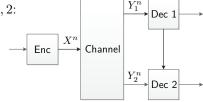


Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V; X_1) - I(V; X_2)$	$I(V; X_1) - I(V; X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U; X_2 V) - I(U; X_1 V)$	$I(U; X_2 V) + I(V; X_1)$

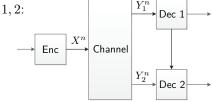
- Cooperation: Wyner-Ziv scheme to convey V^n via cooperation link.
- Corner Point 1: V^n is transmitted to dec. by Enc. 1 within X_1^n .
- ullet Corner Point 2: V^n is explicitly transmitted to dec. by Enc. 2.



- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;



- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

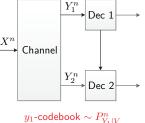


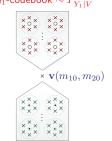
• Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:
• (M_{10}, M_{20}) - Public message;
• (M_{11}, M_{22}) - Private messages.

• Codebook Structure: Marton (with common message).

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).





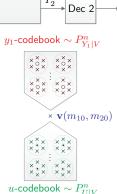
u-codebook $\sim P_{U|V}^n$

Enc

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

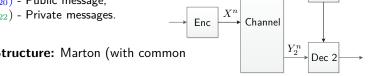
• Codebook Structure: Marton (with common message). Channel Y_2^n Dec 2

Cooperation:

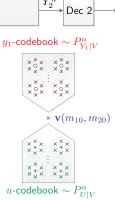


Dec 1

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

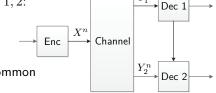


- Codebook Structure: Marton (with common message).
- Cooperation:
 - 1. Partition common message c.b into $2^{nR_{12}}$ bins.



Dec 1

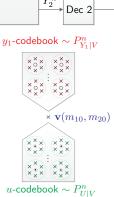
- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



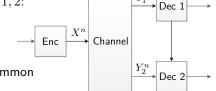
 Codebook Structure: Marton (with common message).

Cooperation:

- 1. Partition common message c.b into $2^{nR_{12}}$ bins.
- 2. Convey bin number via link.



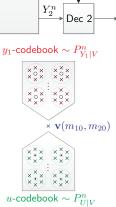
- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



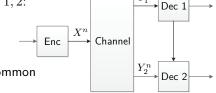
 Codebook Structure: Marton (with common message).

Cooperation:

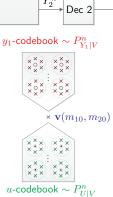
- 1. Partition common message c.b into $2^{nR_{12}}$ bins.
- 2. Convey bin number via link.
- Gain at Dec. 2:



- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



- Codebook Structure: Marton (with common message).
- Cooperation:
 - 1. Partition common message c.b into $2^{nR_{12}}$ bins.
 - 2. Convey bin number via link.
- Gain at Dec. 2: Reduced search space of common message c.w by R_{12} .



Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n \le I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12})$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n \le I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12})$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_{2}) - n\epsilon_{n} \leq I(M_{2}; Y_{2}^{n} | M_{12}) + I(M_{2}; M_{12})$$

$$= \sum_{i=1}^{n} \left[I(M_{2}; Y_{2,i}^{n} | M_{12}, Y_{1}^{i-1}) - I(M_{2}; Y_{2,i+1}^{n} | M_{12}, Y_{1}^{i}) \right] + I(M_{2}; M_{12})$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$\begin{split} &H(M_2) - n\epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i}^n | M_{12}, Y_1^{i-1}) - I(M_2; Y_{2,i+1}^n | M_{12}, Y_1^i) \Big] + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) - I(M_2; Y_{1,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) \Big] \\ &\quad + I(M_2; M_{12}) \end{split}$$

Via telescoping identities:

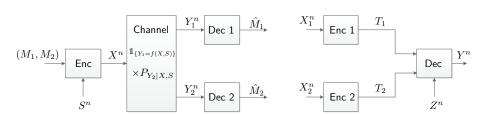
- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$\begin{split} &H(M_2) - n\epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i}^n | M_{12}, Y_1^{i-1}) - I(M_2; Y_{2,i+1}^n | M_{12}, Y_1^i) \Big] + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) - I(M_2; Y_{1,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) \Big] \\ &\quad + I(M_2; M_{12}) \end{split}$$

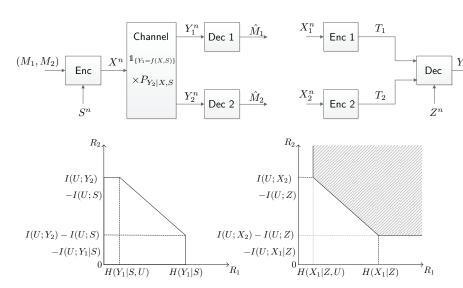
Replaces 4 uses of Csiszár Sum Identity!

State-Dependant Semi-Deterministic BC vs. Dual:

State-Dependant Semi-Deterministic BC vs. Dual:

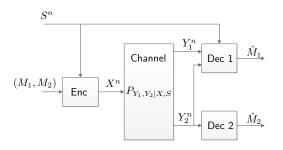


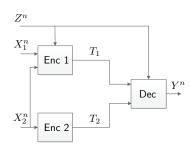
State-Dependant Semi-Deterministic BC vs. Dual:



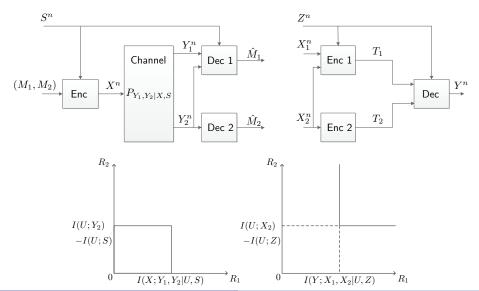
State-Dependant Output-Degraded BC vs. Dual:

State-Dependant Output-Degraded BC vs. Dual:



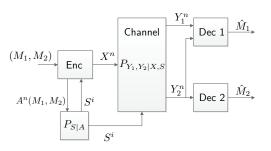


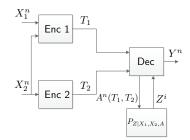
State-Dependant Output-Degraded BC vs. Dual:



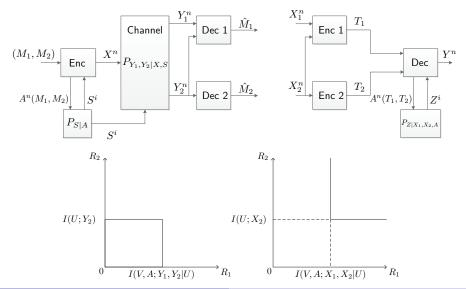
Action-Dependant Output-Degraded BC vs. Dual:

Action-Dependant Output-Degraded BC vs. Dual:





Action-Dependant Output-Degraded BC vs. Dual:



Achieving Corner Point 1:

$$(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V)).$$

Achieving Corner Point 1:

$$(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V)).$$

 \bullet Cooperation: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.

Achieving Corner Point 1:

$$(I(V; X_1|X_2), H(X_1), I(U; X_2|X_1, V)).$$

- Cooperation: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.
- Encoder 1 to Decoder: Conveys X_1^n to the decoder in a lossless manner.

Achieving Corner Point 1:

$$(I(V;X_1|X_2), H(X_1), I(U;X_2|X_1,V)).$$

- Cooperation: Wyner-Ziv coding to convey V^n from Encoder 1 to Encoder 2.
- Encoder 1 to Decoder: Conveys X_1^n to the decoder in a lossless manner.
- Encoder 2 to Decoder: The decoder knows X_1^n and therefore V^n . Wyner-Ziv coding to convey U^n .

Achieving Corner Point 2:

$$(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).$$

Achieving Corner Point 2:

$$(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).$$

Cooperation: Same.

Achieving Corner Point 2:

$$(I(V; X_1|X_2), H(X_1|V,U), I(U; X_2|V) + I(V; X_1)).$$

- Cooperation: Same.
- Encoder 2 to Decoder: Knows V^n . Conveys the index of V^n and uses superposition coding to convey U^n .

Achieving Corner Point 2:

$$(I(V; X_1|X_2), \frac{H(X_1|V,U)}{I(U;X_2|V)}, I(U;X_2|V) + I(V;X_1)).$$

- Cooperation: Same.
- Encoder 2 to Decoder: Knows V^n . Conveys the index of V^n and uses superposition coding to convey U^n .
- Encoder 1 to Decoder: The decoder knows (V^n, U^n) . Binning scheme to convey X_1^n in a lossless manner.

AK Problem with Cooperation - Proof Outline

Converse:

AK Problem with Cooperation - Proof Outline

Converse:

Standard techniques while defining

$$V_i = (T_{12}, X_1^{n \setminus i}, X_{2,i+1}^n),$$

 $U_i = T_2,$

for every $1 \le i \le n$.

AK Problem with Cooperation - Proof Outline

Converse:

Standard techniques while defining

$$V_i = (T_{12}, X_1^{n \setminus i}, X_{2,i+1}^n),$$

 $U_i = T_2,$

for every $1 \le i \le n$.

Time mixing properties.

• Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2:$ $\longrightarrow \boxed{\text{Enc}} \xrightarrow{X^n} \text{Channel} \xrightarrow{Y_1^n} \boxed{\text{Dec 1}}$

• Rate Splitting: $M_j = (M_{j0}, M_{jj})$, j = 1, 2:
• (M_{10}, M_{20}) - Public message;

Enc X^n Channel Y_2^n Dec 1

• Rate Splitting: $M_j = (M_{j0}, M_{jj})$, j = 1, 2:

• (M_{10}, M_{20}) - Public message;

• (M_{11}, M_{22}) - Private messages.

• Enc X^n Channel Y_2^n Dec 2

- $\xrightarrow{Y_1^n}$ Dec 1 • Rate Splitting: $M_i = (M_{i0}, M_{ii}), j = 1, 2$: • (M_{10}, M_{20}) - Public message; • (M_{11}, M_{22}) - Private messages. → Enc • Codebook Structure: Marton:

• Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:

• (M_{10}, M_{20}) - Public message;

• (M_{11}, M_{22}) - Private messages.

• Channel

• Codebook Structure: Marton:

Goldfeld/Permuter/Kramer

▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$: $\xrightarrow{Y_1^n}$ Dec 1 \blacktriangleright (M_{10}, M_{20}) - Public message; • (M_{11}, M_{22}) - Private messages. → Enc • Codebook Structure: Marton:
 - - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - ▶ Private Messages Superposed on V^n :

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:

 (M_{10}, M_{20}) Public message;

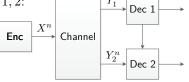
 (M_{11}, M_{22}) Private messages.

 Channel

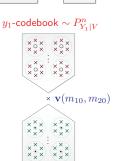
 Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - ▶ Private Messages Superposed on V^n :
 - 1. $M_{11} \longrightarrow Y_1^n$;

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$: Y_1^n Dec 1 \blacktriangleright (M_{10}, M_{20}) - Public message; • (M_{11}, M_{22}) - Private messages. → Enc • Codebook Structure: Marton:
 - - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - \triangleright Private Messages Superposed on V^n :
 - 1. $M_{11} \longrightarrow Y_1^n$;
 - 2. $M_{22} \longrightarrow U^n$.

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



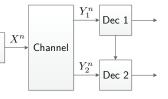
- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - ▶ Private Messages Superposed on V^n :
 - 1. $M_{11} \longrightarrow Y_1^n$;
 - $2. M_{22} \longrightarrow U^n.$



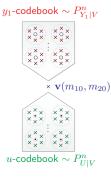
u-codebook $\sim P_{U|V}^n$

→ Enc

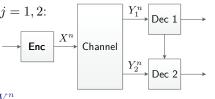
- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - Private Messages Superposed on Vⁿ:
 - 1. $M_{11} \longrightarrow Y_1^n$;
 - 2. $M_{22} \longrightarrow U^n$.
- Decoding: Joint typicality decoding.

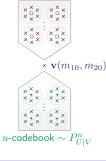


- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



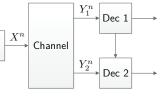
 y_1 -codebook $\sim P_{Y_1|V}^n$

- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - ▶ Private Messages Superposed on V^n :
 - 1. $M_{11} \longrightarrow Y_1^n$;
 - 2. $M_{22} \longrightarrow U^n$.
- Decoding: Joint typicality decoding.
- Cooperation: Bin number of V^n $2^{nR_{12}}$ bins.



→ Enc

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.



- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow V^n$.
 - ▶ Private Messages Superposed on V^n :
 - 1. $M_{11} \longrightarrow Y_1^n$;
 - 2. $M_{22} \longrightarrow U^n$.
- Decoding: Joint typicality decoding.
- Cooperation: Bin number of V^n $2^{nR_{12}}$ bins.
- Gain: Dec. 2 reduces search space of V^n by R_{12} .

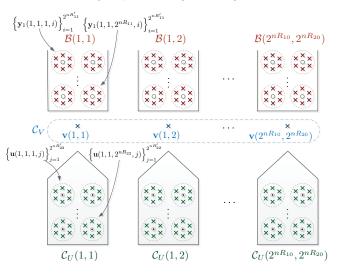


Semi-Deterministic BC with Cooperation - Proof Outline

Achievability: Split $M_i = (M_{i0}, M_{ii})$, i = 1, 2. Code construction:

Semi-Deterministic BC with Cooperation - Proof Outline

Achievability: Split $M_i = (M_{i0}, M_{ii}), i = 1, 2$. Code construction:



Legend:

- Private message m_{11}
- Private message m_{22}
- \times v-codeword ($\sim P_V$) \times - y_1 -codeword ($\sim P_{Y_1}$)
- \times u-codeword ($\sim P_{U|V}$)