Broadcast Channels with Cooperation: Capacity and Duality for the Semi-Deterministic Case

Ziv Goldfeld, Haim H. Permuter and Gerhard Kramer

Ben Gurion University and Technische Universität München
IEEE Information Theory Wrokshop
April-May, 2015

Outline

- Channel-source duality for BCs
- Semi-deterministic BC with decoder cooperation
- Source coding dual
- Capacity results
- Summary

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions are dual - Information measures coincide.

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions are dual - Information measures coincide.
- A formal proof of duality is still absent.

Duality - Preface

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan et al., 2003], [Gupta and Verdú, 2011].

- The solutions are dual - Information measures coincide.
- A formal proof of duality is still absent.
- Solving one problem \Longrightarrow Valuable insight into solving dual.

Duality - Preface

Point-to-Point Case:

Duality - Preface

Point-to-Point Case:

Duality - Preface

Point-to-Point Case:

Duality - Preface

Point-to-Point Case:

Fixed-Type Code: $(\mathbf{X}, \mathbf{Y}) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y \mid X}\right)$

Duality - Preface

Point-to-Point Case:

Duality - Preface

Point-to-Point Case:

Duality - Preface

Point-to-Point Case:

$$
R^{\star}=I(X ; Y)
$$

Duality - Preface

Point-to-Point Case:

$$
R^{\star}=I(X ; Y)
$$

Multi-User Duality - Broadcast Channels

Multi-User Duality - Broadcast Channels

Multi-User Duality - Broadcast Channels

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Broadcast Channel

Dual Source Coding Setting

$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y_{1}, Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{Y}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X_{1}, X_{2}} P_{Y \mid X_{1}, X_{2}}^{\star}\right)$

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Broadcast Channel

$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y_{1}, Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{Y}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X_{1}, X_{2}} P_{Y \mid X_{1}, X_{2}}^{\star}\right)$
e.g., Markov relations, deterministic functions, etc.

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Broadcast Channel

$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y_{1}, Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{Y}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X_{1}, X_{2}} P_{Y \mid X_{1}, X_{2}}^{\star}\right)$
e.g., Markov relations, deterministic functions, etc.

Additional Principles:

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Broadcast Channel
$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y_{1}, Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{Y}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X_{1}, X_{2}} P_{Y \mid X_{1}, X_{2}}^{\star}\right)$
e.g., Markov relations, deterministic functions, etc.

Additional Principles:

- Causal/non-causal encoder CSI \longleftrightarrow Causal/non-causal decoder SI

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Broadcast Channel
$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y_{1}, Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{Y}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X_{1}, X_{2}} P_{Y \mid X_{1}, X_{2}}^{\star}\right)$
e.g., Markov relations, deterministic functions, etc.

Additional Principles:

- Causal/non-causal encoder CSI \longleftrightarrow Causal/non-causal decoder SI
- Decoder cooperation \longleftrightarrow Encoder cooperation

Multi-User Duality - Broadcast Channels

Probabilistic relations are preserved:

Broadcast Channel

$$
\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} P_{Y_{1}, Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{Y}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X_{1}, X_{2}} P_{Y \mid X_{1}, X_{2}}^{\star}\right)
$$

e.g., Markov relations, deterministic functions, etc.

Additional Principles:

- Causal/non-causal encoder CSI \longleftrightarrow Causal/non-causal decoder SI
- Decoder cooperation \longleftrightarrow Encoder cooperation
\star Result Duality: Information measures at the corner points coincide!

Cooperative SD-BC vs. Cooperative WAK Problem

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]\&[Ahlswede-Körner, 1975]

Cooperative SD-BC vs. Cooperative WAK Problem

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]\&[Ahlswede-Körner, 1975]

BCs with Cooperation:

- Physicaly degraded (PD) [Dabora and Servetto, 2006].
- Relay-BC [Liang and Kramer, 2007].
- State-dependent PD [Dikstein, Permuter and Steinberg, 2014].
- Degraded message sets / PD with parallel conf. [Steinberg, 2015].

Cooperative SD-BC vs. Cooperative WAK Problem

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]\&[Ahlswede-Körner, 1975]

Cooperative SD-BC vs. Cooperative WAK Problem

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]\&[Ahlswede-Körner, 1975]

Semi-Deterministic BC

WAK Problem
$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} \mathbb{1}_{\left\{Y_{1}=f(X)\right\}} P_{Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{Y}, \mathbf{X}_{1}, \mathbf{X}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{Y} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}} P_{X_{2} \mid Y}^{\star}\right)$

Cooperative SD-BC vs. Cooperative WAK Problem

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]\&[Ahlswede-Körner, 1975]

Semi-Deterministic BC
WAK Problem

$$
\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} \mathbb{1}_{\left\{Y_{1}=f(X)\right\}} P_{Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{Y}, \mathbf{X}_{1}, \mathbf{X}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{Y} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}} P_{X_{2} \mid Y}^{\star}\right)
$$

Cooperative SD-BC vs. Cooperative WAK Problem

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]\&[Ahlswede-Körner, 1975]

Semi-Deterministic BC

WAK Problem
$\left(\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{X}^{\star} \mathbb{1}_{\left\{Y_{1}=f(X)\right\}} P_{Y_{2} \mid X}\right) \longleftrightarrow\left(\mathbf{Y}, \mathbf{X}_{1}, \mathbf{X}_{2}\right) \in \mathcal{T}_{\epsilon}^{(n)}\left(P_{Y} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}} P_{X_{2} \mid Y}^{\star}\right)$

Cooperative WAK Problem - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$:

$$
\mathcal{C}_{\text {WAK }}=\bigcup\left\{\begin{aligned}
R_{12} & \geq I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right) \\
R_{1} & \geq H\left(X_{1} \mid V, U\right) \\
R_{2} & \geq I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right) \\
R_{1}+R_{2} & \geq H\left(X_{1} \mid V, U\right)+I\left(V, U ; X_{1}, X_{2}\right)
\end{aligned}\right\}
$$

where the union is over all $P_{X_{1}, X_{2}} P_{V \mid X_{1}} P_{U \mid X_{2}, V} P_{Y \mid X_{1}, U, V}$ with $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$ as marginal.

Cooperative WAK Problem - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$:

$$
\mathcal{C}_{\text {WAK }}=\bigcup\left\{\begin{array}{c}
R_{12} \geq I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right) \\
R_{1} \geq H\left(X_{1} \mid V, U\right) \\
R_{2} \geq I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right) \\
R_{1}+R_{2} \geq H\left(X_{1} \mid V, U\right)+I\left(V, U ; X_{1}, X_{2}\right)
\end{array}\right\}
$$

where the union is over all $P_{X_{1}, X_{2}} P_{V \mid X_{1}} P_{U \mid X_{2}, V} P_{Y \mid X_{1}, U, V}$ with $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$ as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.

Cooperative WAK Problem - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$:

$$
\mathcal{C}_{\text {WAK }}=\bigcup\left\{\begin{array}{c}
R_{12} \geq I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right) \\
R_{1} \geq H\left(X_{1} \mid V, U\right) \\
R_{2} \geq I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right) \\
R_{1}+R_{2} \geq H\left(X_{1} \mid V, U\right)+I\left(V, U ; X_{1}, X_{2}\right)
\end{array}\right\}
$$

where the union is over all $P_{X_{1}, X_{2}} P_{V \mid X_{1}} P_{U \mid X_{2}, V} P_{Y \mid X_{1}, U, V}$ with $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$ as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.

Cooperative WAK Problem - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$:

$$
\mathcal{C}_{\text {WAK }}=\bigcup\left\{\begin{array}{c}
R_{12} \geq I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right) \\
R_{1} \geq H\left(X_{1} \mid V, U\right) \\
R_{2} \geq \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{2} \mid \boldsymbol{V}\right)-\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{1}} \mid \boldsymbol{V}\right) \\
R_{1}+R_{2} \geq H\left(X_{1} \mid V, U\right)+I\left(V, U ; X_{1}, X_{2}\right)
\end{array}\right\}
$$

where the union is over all $P_{X_{1}, X_{2}} P_{V \mid X_{1}} P_{U \mid X_{2}, V} P_{Y \mid X_{1}, U, V}$ with $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$ as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.

Cooperative WAK Problem - Solution

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$:

$$
\mathcal{C}_{\text {WAK }}=\bigcup\left\{\begin{array}{c}
R_{12} \geq I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right) \\
R_{1} \geq H\left(X_{1} \mid V, U\right) \\
R_{2} \geq I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right) \\
R_{1}+R_{2} \geq H\left(X_{1} \mid V, U\right)+I\left(V, U ; X_{1}, X_{2}\right)
\end{array}\right\}
$$

where the union is over all $P_{X_{1}, X_{2}} P_{V \mid X_{1}} P_{U \mid X_{2}, V} P_{Y \mid X_{1}, U, V}$ with $P_{X_{2}} P_{Y \mid X_{2}} \mathbb{1}_{\left\{X_{1}=f(Y)\right\}}$ as marginal.

Achievability via Wyner-Ziv coding, superposition coding and Slepian-Wolf binning.

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(H\left(X_{1}\right), I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)\right)$	
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(H\left(X_{1} \mid V, U\right), I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(\boldsymbol{V} ; \boldsymbol{X}_{1}\right)-I\left(\boldsymbol{V} ; \boldsymbol{X}_{2}\right)$	$R_{12}=I\left(\boldsymbol{V} ; \boldsymbol{Y}_{1}\right)-I\left(\boldsymbol{V} ; \boldsymbol{Y}_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(H\left(X_{1}\right), I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)\right)$	
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(H\left(X_{1} \mid V, U\right), I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$R_{12}=I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(\boldsymbol{H}\left(\boldsymbol{X}_{1}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)-\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{1} \mid \boldsymbol{V}\right)\right)$	
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(H\left(X_{1} \mid V, U\right), I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$R_{12}=I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(\boldsymbol{H}\left(\boldsymbol{X}_{1}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)-\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{1} \mid \boldsymbol{V}\right)\right)$	
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(H\left(X_{1} \mid V, U\right), I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$R_{12}=I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(\boldsymbol{H}\left(\boldsymbol{X}_{1}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)-\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{1} \mid \boldsymbol{V}\right)\right)$	$\left(\boldsymbol{H}\left(\boldsymbol{Y}_{1}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{Y}_{2} \mid \boldsymbol{V}\right)-\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{Y}_{1} \mid \boldsymbol{V}\right)\right)$
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(H\left(X_{1} \mid V, U\right), I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$R_{12}=I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(H\left(X_{1}\right), I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)\right)$	$\left(H\left(Y_{1}\right), I\left(U ; Y_{2} \mid V\right)-I\left(U ; Y_{1} \mid V\right)\right)$
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(\boldsymbol{H}\left(\boldsymbol{X}_{\mathbf{1}} \mid \boldsymbol{V}, \boldsymbol{U}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)+\boldsymbol{I}\left(\boldsymbol{V} ; \boldsymbol{X}_{\mathbf{1}}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$R_{12}=I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(H\left(X_{1}\right), I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)\right)$	$\left(H\left(Y_{1}\right), I\left(U ; Y_{2} \mid V\right)-I\left(U ; Y_{1} \mid V\right)\right)$
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(\boldsymbol{H}\left(\boldsymbol{X}_{\mathbf{1}} \mid \boldsymbol{V}, \boldsymbol{U}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)+\boldsymbol{I}\left(\boldsymbol{V} ; \boldsymbol{X}_{\mathbf{1}}\right)\right)$	

Corner Point Correspondence

For fixed joint PMFs and R_{12} :

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12}=I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$R_{12}=I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right)$
$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:	$\left(R_{1}, R_{2}\right)$ at Lower Corner Point:
$\left(H\left(X_{1}\right), I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)\right)$	$\left(H\left(Y_{1}\right), I\left(U ; Y_{2} \mid V\right)-I\left(U ; Y_{1} \mid V\right)\right)$
$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:	$\left(R_{1}, R_{2}\right)$ at Upper Corner Point:
$\left(\boldsymbol{H}\left(\boldsymbol{X}_{\mathbf{1}} \mid \boldsymbol{V}, \boldsymbol{U}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)+\boldsymbol{I}\left(\boldsymbol{V} ; \boldsymbol{X}_{\mathbf{1}}\right)\right)$	$\left(\boldsymbol{H}\left(\boldsymbol{Y}_{\mathbf{1}} \mid \boldsymbol{V}, \boldsymbol{U}\right), \boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{Y}_{\mathbf{2}} \mid \boldsymbol{V}\right)+\boldsymbol{I}\left(\boldsymbol{V} ; \boldsymbol{Y}_{\mathbf{1}}\right)\right)$

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$
\mathcal{C}_{B C}=\bigcup\left\{\begin{aligned}
R_{12} & \geq I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right) \\
R_{1} & \leq H\left(Y_{1}\right) \\
R_{2} & \leq I\left(V, U ; Y_{2}\right)+R_{12} \\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid V, U\right)+I\left(U ; Y_{2} \mid V\right)+I\left(V ; Y_{1}\right)
\end{aligned}\right\}
$$

where the union is over all $P_{V, U, Y_{1}, X} P_{Y_{2} \mid X} \mathbb{1}_{\left\{Y_{1}=f(X)\right\}}$.

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$
\mathcal{C}_{B C}=\bigcup\left\{\begin{aligned}
R_{12} & \geq I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right) \\
R_{1} & \leq H\left(Y_{1}\right) \\
R_{2} & \leq I\left(V, U ; Y_{2}\right)+R_{12} \\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid V, U\right)+I\left(U ; Y_{2} \mid V\right)+I\left(V ; Y_{1}\right)
\end{aligned}\right\}
$$

where the union is over all $P_{V, U, Y_{1}, X} P_{Y_{2} \mid X} \mathbb{1}_{\left\{Y_{1}=f(X)\right\}}$.

- Later: Achievability and converse proofs for an alternative region.

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$
\mathcal{C}_{B C}=\bigcup\left\{\begin{aligned}
R_{12} & \geq I\left(V ; Y_{1}\right)-I\left(V ; Y_{2}\right) \\
R_{1} & \leq H\left(Y_{1}\right) \\
R_{2} & \leq I\left(V, U ; Y_{2}\right)+R_{12} \\
R_{1}+R_{2} & \leq H\left(Y_{1} \mid V, U\right)+I\left(U ; Y_{2} \mid V\right)+I\left(V ; Y_{1}\right)
\end{aligned}\right\}
$$

where the union is over all $P_{V, U, Y_{1}, X} P_{Y_{2} \mid X} \mathbb{1}_{\left\{Y_{1}=f(X)\right\}}$.

- Later: Achievability and converse proofs for an alternative region.
- $\mathcal{C}_{\mathrm{BC}}$ emphasizes duality.

Cooperative Semi-Deterministic BC - Achievability Outline

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Codebook Structure: Marton (with common message).

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Cooperation:

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Codebook Structure: Marton (with common message).

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Codebook Structure: Marton (with common message).

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Cooperation:

1. Partition common message c.b. into $2^{n R_{12}}$ bins.

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Cooperation:

1. Partition common message c.b. into $2^{n R_{12}}$ bins.
2. Convey bin number via link.

- Codebook Structure: Marton (with common message).

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Cooperation:

1. Partition common message c.b. into $2^{n R_{12}}$ bins.
2. Convey bin number via link.

- User 2 Gain:

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Codebook Structure: Marton (with common message).
- User 2 Gain:

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Cooperation:

1. Partition common message c.b. into $2^{n R_{12}}$ bins.
2. Convey bin number via link.

- User 2 Gain: Reduced search space of common
message c.w. by R_{12}.

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Codebook Structure: Marton (with common message).

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- (M_{11}, M_{22}) - Private messages.

- Cooperation:

1. Partition common message c.b. into $2^{n R_{12}}$ bins.
2. Convey bin number via link.

- User 2 Gain: Reduced search space of common message c.w. by R_{12}.
\Longrightarrow More channel resources for private message.

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Codebook Structure: Marton (with common message).

Cooperative Semi-Deterministic BC - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Common message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Cooperation:

1. Partition common message c.b. into $2^{n R_{12}}$ bins.
2. Convey bin number via link.

- User 2 Gain: Reduced search space of common message c.w. by R_{12}.
\Longrightarrow More channel resources for private message.

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Codebook Structure: Marton (with common message).

Summary

- Channel-source duality for BCs.

Summary

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:

Summary

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
- Source coding dual - Cooperative WAK problem.

Summary

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
- Source coding dual - Cooperative WAK problem.
- Corner point correspondence.

Summary

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
- Source coding dual - Cooperative WAK problem.
- Corner point correspondence.
- Achievability via Marton coding with a common message.

Summary

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
- Source coding dual - Cooperative WAK problem.
- Corner point correspondence.
- Achievability via Marton coding with a common message.
- Full version undergoing review for IEEE Trans. Inf. Theory; available on ArXiV at http://arxiv.org/abs/1405.7812.

Summary

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
- Source coding dual - Cooperative WAK problem.
- Corner point correspondence.
- Achievability via Marton coding with a common message.
- Full version undergoing review for IEEE Trans. Inf. Theory; available on ArXiV at http://arxiv.org/abs/1405.7812.

Thank you!

Multi-User Duality - Additional Examples

State-Dependant Semi-Deterministic BC vs. Dual:

Multi-User Duality - Additional Examples

State-Dependant Semi-Deterministic BC vs. Dual:

Multi-User Duality - Additional Examples

State-Dependant Semi-Deterministic BC vs. Dual:

Multi-User Duality - Additional Examples

State-Dependant Output-Degraded BC vs. Dual:

Multi-User Duality - Additional Examples

State-Dependant Output-Degraded BC vs. Dual:

Multi-User Duality - Additional Examples

State-Dependant Output-Degraded BC vs. Dual:

Multi-User Duality - Additional Examples

Action-Dependant Output-Degraded BC vs. Dual:

Multi-User Duality - Additional Examples

Action-Dependant Output-Degraded BC vs. Dual:

Multi-User Duality - Additional Examples

Action-Dependant Output-Degraded BC vs. Dual:

AK Problem with Cooperation - Achievability Outline

AK Problem with Cooperation - Achievability Outline

Rate	Corner Point 1	Corner Point 2
R_{12}	$I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$
R_{1}	$H\left(X_{1}\right)$	$H\left(X_{1} \mid V, U\right)$
R_{2}	$I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)$	$I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)$

AK Problem with Cooperation - Achievability Outline

Rate	Corner Point 1	Corner Point 2
R_{12}	$I\left(V ; \boldsymbol{X}_{\mathbf{1}}\right)-I\left(V ; \boldsymbol{X}_{\mathbf{2}}\right)$	$I\left(V ; \boldsymbol{X}_{\mathbf{1}}\right)-I\left(\boldsymbol{V} ; \boldsymbol{X}_{\mathbf{2}}\right)$
R_{1}	$H\left(X_{1}\right)$	$H\left(X_{1} \mid V, U\right)$
R_{2}	$I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)$	$I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)$

- Cooperation: Wyner-Ziv scheme to convey V via cooperation link.

AK Problem with Cooperation - Achievability Outline

Rate	Corner Point 1	Corner Point 2
R_{12}	$I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$
R_{1}	$\boldsymbol{H}\left(\boldsymbol{X}_{\mathbf{1}}\right)$	$H\left(X_{1} \mid V, U\right)$
R_{2}	$\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)-\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{1}} \mid \boldsymbol{V}\right)$	$I\left(U ; X_{2} \mid V\right)+I\left(V ; X_{1}\right)$

- Cooperation: Wyner-Ziv scheme to convey \mathbf{V} via cooperation link.
- Corner Point 1: V is transmitted to dec. by Enc. 1 within \mathbf{X}_{1}.

AK Problem with Cooperation - Achievability Outline

Rate	Corner Point 1	Corner Point 2
R_{12}	$I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$	$I\left(V ; X_{1}\right)-I\left(V ; X_{2}\right)$
R_{1}	$H\left(X_{1}\right)$	$\boldsymbol{H}\left(\boldsymbol{X}_{\mathbf{1}} \mid \boldsymbol{V}, \boldsymbol{U}\right)$
R_{2}	$I\left(U ; X_{2} \mid V\right)-I\left(U ; X_{1} \mid V\right)$	$\boldsymbol{I}\left(\boldsymbol{U} ; \boldsymbol{X}_{\mathbf{2}} \mid \boldsymbol{V}\right)+\boldsymbol{I}\left(\boldsymbol{V} ; \boldsymbol{X}_{\mathbf{1}}\right)$

- Cooperation: Wyner-Ziv scheme to convey \mathbf{V} via cooperation link.
- Corner Point 1: \mathbf{V} is transmitted to dec. by Enc. 1 within \mathbf{X}_{1}.
- Corner Point 2: V is explicitly transmitted to dec. by Enc. 2.

AK Problem with Cooperation - Proof Outline

Converse:

AK Problem with Cooperation - Proof Outline

Converse:

- Standard techniques while defining

$$
\begin{aligned}
V_{i} & =\left(T_{12}, X_{1}^{n \backslash i}, X_{2, i+1}^{n}\right), \\
U_{i} & =T_{2},
\end{aligned}
$$

for every $1 \leq i \leq n$.

AK Problem with Cooperation - Proof Outline

Converse:

- Standard techniques while defining

$$
\begin{aligned}
V_{i} & =\left(T_{12}, X_{1}^{n \backslash i}, X_{2, i+1}^{n}\right), \\
U_{i} & =T_{2},
\end{aligned}
$$

for every $1 \leq i \leq n$.

- Time mixing properties.

Semi-Deterministic BC with Cooperation - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:

Semi-Deterministic BC with Cooperation - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- $\left(M_{10}, M_{20}\right)$ - Public message;

Semi-Deterministic BC with Cooperation - Achievability Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- (M_{11}, M_{22}) - Private messages.
- Codebook Structure: Marton:

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on V:

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on V:

$$
\text { 1. } M_{11} \longrightarrow \mathbf{Y}_{1} \text {; }
$$

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on V:

$$
\begin{aligned}
& \text { 1. } M_{11} \longrightarrow \mathbf{Y}_{1} \text {; } \\
& \text { 2. } M_{22} \longrightarrow \mathbf{U} .
\end{aligned}
$$

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.

- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on V:

$$
\begin{aligned}
& \text { 1. } M_{11} \longrightarrow \mathbf{Y}_{1} \text {; } \\
& \text { 2. } M_{22} \longrightarrow \mathbf{U} \text {. }
\end{aligned}
$$

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on \mathbf{V} :

$$
\begin{aligned}
& \text { 1. } M_{11} \longrightarrow \mathbf{Y _ { 1 }} ; \\
& \text { 2. } M_{22} \longrightarrow \mathbf{U} .
\end{aligned}
$$

- Decoding: Joint typicality decoding.

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on V:

$$
\begin{aligned}
& \text { 1. } M_{11} \longrightarrow \mathbf{Y}_{1} \text {; } \\
& \text { 2. } M_{22} \longrightarrow \mathbf{U} \text {. }
\end{aligned}
$$

- Decoding: Joint typicality decoding.

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

Semi-Deterministic BC with Cooperation - Achievability
 Outline

- Rate Splitting: $M_{j}=\left(M_{j 0}, M_{j j}\right), j=1,2$:
- (M_{10}, M_{20}) - Public message;
- $\left(M_{11}, M_{22}\right)$ - Private messages.
- Codebook Structure: Marton:

- Public Message: $\left(M_{10}, M_{20}\right) \longrightarrow \mathbf{V}$.
- Private Messages - Superposed on V:

$$
\begin{aligned}
& \text { 1. } M_{11} \longrightarrow \mathbf{Y}_{1} \text {; } \\
& \text { 2. } M_{22} \longrightarrow \mathbf{U} .
\end{aligned}
$$

- Decoding: Joint typicality decoding.

$$
y_{1} \text {-codebook } \sim P_{Y_{1} \mid V}^{n}
$$

- Cooperation: Bin number of $V^{n}-2^{n R_{12}}$ bins.
- Gain: Dec. 2 reduces search space of V by R_{12}.

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

$$
H\left(M_{2}\right)-n \epsilon_{n}
$$

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

$$
H\left(M_{2}\right)-n \epsilon_{n} \leq I\left(M_{2} ; Y_{2}^{n} \mid M_{12}\right)+I\left(M_{2} ; M_{12}\right)
$$

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

$$
H\left(M_{2}\right)-n \epsilon_{n} \leq I\left(M_{2} ; Y_{2}^{n} \mid M_{12}\right)+I\left(M_{2} ; M_{12}\right)
$$

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

$$
\begin{aligned}
& H\left(M_{2}\right)-n \epsilon_{n} \leq I\left(M_{2} ; Y_{2}^{n} \mid M_{12}\right)+I\left(M_{2} ; M_{12}\right) \\
& =\sum_{i=1}^{n}\left[I\left(M_{2} ; Y_{2, i}^{n} \mid M_{12}, Y_{1}^{i-1}\right)-I\left(M_{2} ; Y_{2, i+1}^{n} \mid M_{12}, Y_{1}^{i}\right)\right]+I\left(M_{2} ; M_{12}\right)
\end{aligned}
$$

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

$$
\begin{aligned}
& H\left(M_{2}\right)-n \epsilon_{n} \leq I\left(M_{2} ; Y_{2}^{n} \mid M_{12}\right)+I\left(M_{2} ; M_{12}\right) \\
& =\sum_{i=1}^{n}\left[I\left(M_{2} ; Y_{2, i}^{n} \mid M_{12}, Y_{1}^{i-1}\right)-I\left(M_{2} ; Y_{2, i+1}^{n} \mid M_{12}, Y_{1}^{i}\right)\right]+I\left(M_{2} ; M_{12}\right) \\
& =\sum_{i=1}^{n}\left[I\left(M_{2} ; Y_{2, i} \mid M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)-I\left(M_{2} ; Y_{1, i} \mid M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)\right] \\
& +I\left(M_{2} ; M_{12}\right)
\end{aligned}
$$

Semi-Deterministic BC with Cooperation - Converse Outline

Via telescoping identities:

1. Auxiliaries: $V_{i}=\left(M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)$ and $U_{i}=M_{2}$.
2. Telescoping identities [Kramer, 2011], e.g.,

$$
\begin{aligned}
& H\left(M_{2}\right)-n \epsilon_{n} \leq I\left(M_{2} ; Y_{2}^{n} \mid M_{12}\right)+I\left(M_{2} ; M_{12}\right) \\
& =\sum_{i=1}^{n}\left[I\left(M_{2} ; Y_{2, i}^{n} \mid M_{12}, Y_{1}^{i-1}\right)-I\left(M_{2} ; Y_{2, i+1}^{n} \mid M_{12}, Y_{1}^{i}\right)\right]+I\left(M_{2} ; M_{12}\right) \\
& =\sum_{i=1}^{n}\left[I\left(M_{2} ; Y_{2, i} \mid M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)-I\left(M_{2} ; Y_{1, i} \mid M_{12}, Y_{1}^{i-1}, Y_{2, i+1}^{n}\right)\right] \\
& +I\left(M_{2} ; M_{12}\right)
\end{aligned}
$$

* Replaces 2 uses of Csiszár Sum Identity.

