MIMO Gaussian Broadcast Channels with Common, Private and Confidential Messages

Ziv Goldfeld

Ben Gurion University
IEEE Information Theory Workshop
September, 2016

Motivation

- Gaussian MIMO channels - model wireless communication.

Motivation

- Gaussian MIMO channels - model wireless communication.
- Susceptibility of wireless communication to eavesdropping.

Motivation

- Gaussian MIMO channels - model wireless communication.
- Susceptibility of wireless communication to eavesdropping.
- Eavesdroppers are not always a malicious entity:

Motivation

- Gaussian MIMO channels - model wireless communication.
- Susceptibility of wireless communication to eavesdropping.
- Eavesdroppers are not always a malicious entity:
- Legitimate recipient of some messages.

Motivation

- Gaussian MIMO channels - model wireless communication.
- Susceptibility of wireless communication to eavesdropping.
- Eavesdroppers are not always a malicious entity:
- Legitimate recipient of some messages.
- Eavesdropper of other.

Motivation

- Gaussian MIMO channels - model wireless communication.
- Susceptibility of wireless communication to eavesdropping.
- Eavesdroppers are not always a malicious entity:
- Legitimate recipient of some messages.
- Eavesdropper of other.
- Modern BC scenario - Common, Private and Confidential messages.

Motivation

- Gaussian MIMO channels - model wireless communication.
- Susceptibility of wireless communication to eavesdropping.
- Eavesdroppers are not always a malicious entity:
- Legitimate recipient of some messages.
- Eavesdropper of other.
- Modern BC scenario - Common, Private and Confidential messages.

Motivation - Banking Site

Log in Onine Banking
BHI Online
FIG Online
New York
Israe!
Register to Israel Online
Security and Privacy

- BHI Frivate Banking
- Corporate Banking
- Financial institutions Group (FIG)
- Investor Relations
- Sustainability and Social Responsibility
- Reports and Forecasts
- Awards and Recogrition

Bank Hapoalim
Your Gateway to Israel

Bank Hapoalim Announces Second Quarter 2016

Net Profit totaled NIS 1,117 million, Return on Equity of 13.9% Cash Dividend Payout of NIS 223 million

Bank Hapoalim Named The Banker Magazine's Bank of the

 Year in Israel for 2015Bank Hapoalim has been chosen as Bank of the Year in Israel for 2015, by the
prestigious banking magazine The Banker, a publication of the Financial Times Group. The award was announced at a ceremony held by The Banker in London.

Services and products are subjed to local lavis and regulations and may not be offored in each
Services and products are sibiod to local lave and regulations and may not be offered in each
jurisdiction For example, invesiment services are not being offered in the United States or to US Fersons except via our US licensed business oruw hapoalimulsa.com) and are being offered only to Canadian

Indices		
- Dow	18419.3	0.10\%
- Nasdaq	5227.21	0.27\%
- SP500	2170.88	0.00\%
Nilkkel	16925.7	-0.01\%
Tel Aviv 100	1267.03	-0.35\%
FTSE	6804.28	0.86\%
Dax	10554.9	0.20\%
Prime Rate		1.6\%
* Quotes delayed by at least 15 minutes		
Currency Exchange Rates -		

Investor Relations

Motivation - Banking Site

Log.n Onine Banking
BHI Online
FIG Online
New York
Israel
Register to Israel Online
Security and Privacy

- BHI Private Banking
- Corporate Banking
- Financial Institutions Group (FIG)
- Investor Relations
- Sustainability and Social Responsibility
- Reports and Forecasts
- Awards and Recognition

Bank Hapoalim Announces Second Quarter 2016
Net Profit totaled NIS 1,117 million, Return on Equity of 13.9%. Cash Dividend Payout of NIS 223 million

Bank Hapoalim Named The Banker Magazine's Bank of the Year in Israel for 2015

Bank Hapoalim has been chosen as Bark of the Year in Israel for 2015, by the prestigious banking magazine The Banker, a publication of the Financial Times Group. The award was announced at a ceremony held by The Banker in London.

Servicos and product are subjed to local lais and regulations and may mot be offored in each
Servicos and produck are subjed to locallawn and regulations and may not bo offored in each
juritcdiction. For except yia our US licensed business (wuww hapoalimusa com) and are being offered only to Canadian
customers who qualify as permitted clents' (as that term is defined under Canadien lavi)

Indices		
- Dow	18419.3	0.10\%
- Nasdag	5227.21	0.27\%
- SP500	2170.86	0.00\%
Nikkei	16925.7	-0.01\%
Tel Aviv 100	1267.03	-0.35\%
FTSE	6804.28	0.86\%
Dax	10554.9	0.20\%
Prime Rate		1.6\%
* Quotes delayed by at least 15 minutes		
Currency Ex	gre Rates	

Common

Copynght 9 2010, Bank Hapoaim. All nights reserved Ferms and Conditions

- Common - Advertisement.

Motivation - Banking Site

- Common - Advertisement.
- Private - On-demand Public info (programs, reports, forecasts).

Motivation - Banking Site

- Common - Advertisement.
- Private - On-demand Public info (programs, reports, forecasts).
- Confidential - Online banking (access account, transactions).

MIMO Gaussian BC - Problem Setup

MIMO Gaussian BC - Problem Setup

User $\boldsymbol{j}=\mathbf{1 , 2}$ Observes: $\quad \mathbf{Y}_{j}=\mathrm{G}_{j} \mathbf{X}+\mathbf{Z}_{j}$.

MIMO Gaussian BC - Problem Setup

User $\boldsymbol{j}=\mathbf{1 , 2}$ Observes: $\quad \mathbf{Y}_{j}=\mathrm{G}_{j} \mathbf{X}+\mathbf{Z}_{j}$.

- Dimensions:
$\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Z}_{1}, \mathbf{Z}_{2} \in \mathbb{R}^{t} \quad ; \mathrm{G}_{1}, \mathrm{G}_{2} \in \mathbb{R}^{t \times t}$.

MIMO Gaussian BC - Problem Setup

User $\boldsymbol{j}=\mathbf{1 , 2}$ Observes: $\quad \mathbf{Y}_{j}=\mathrm{G}_{j} \mathbf{X}+\mathbf{Z}_{j}$.

- Dimensions:
$\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Z}_{1}, \mathbf{Z}_{2} \in \mathbb{R}^{t} \quad ; \mathrm{G}_{1}, \mathrm{G}_{2} \in \mathbb{R}^{t \times t}$.
- Noise Processes: i.i.d. samples of $\mathbf{Z}_{j} \sim \mathcal{N}\left(\mathbf{0}, \mathrm{I}_{t}\right), j=1,2$.

MIMO Gaussian BC - Problem Setup

User $\boldsymbol{j}=\mathbf{1 , 2}$ Observes: $\quad \mathbf{Y}_{j}=\mathrm{G}_{j} \mathbf{X}+\mathbf{Z}_{j}$.

- Dimensions:
$\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Z}_{1}, \mathbf{Z}_{2} \in \mathbb{R}^{t} \quad ; \mathrm{G}_{1}, \mathrm{G}_{2} \in \mathbb{R}^{t \times t}$.
- Noise Processes: i.i.d. samples of $\mathbf{Z}_{j} \sim \mathcal{N}\left(\mathbf{0}, \mathrm{I}_{t}\right), j=1,2$.
- Input Covariance Constraint: $\quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{X}(i) \mathbf{X}^{\top}(i)\right] \preceq \mathrm{K}$.

MIMO Gaussian BC - Problem Setup

User $\boldsymbol{j}=\mathbf{1 , 2}$ Observes: $\quad \mathbf{Y}_{j}=\mathrm{G}_{j} \mathbf{X}+\mathbf{Z}_{j}$.

- Dimensions:
$\mathbf{X}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Z}_{1}, \mathbf{Z}_{2} \in \mathbb{R}^{t} \quad ; \mathrm{G}_{1}, \mathrm{G}_{2} \in \mathbb{R}^{t \times t}$.
- Noise Processes: i.i.d. samples of $\mathbf{Z}_{j} \sim \mathcal{N}\left(\mathbf{0}, \mathrm{I}_{t}\right), j=1,2$.
- Input Covariance Constraint: $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{X}(i) \mathbf{X}^{\top}(i)\right] \preceq \mathrm{K}$.
- Security Criterion:

$$
\frac{1}{n} I\left(M_{1} ; \mathbf{Y}_{2}^{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0
$$

MIMO Gaussian BC - Goals

- Known inner and outer bounds on secrecy-capacity region.

MIMO Gaussian BC - Goals

- Known inner and outer bounds on secrecy-capacity region.

Q: Do they match for the MIMO Gaussian case?

MIMO Gaussian BC - Goals

- Known inner and outer bounds on secrecy-capacity region.

Q: Do they match for the MIMO Gaussian case?
Q: Do Gaussian inputs achieve boundary points?

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010
-	Secret	Secret	Liu-Liu-Poor-Shamai 2010

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010
-	Secret	Secret	Liu-Liu-Poor-Shamai 2010
Public	Secret	Secret	Ekrem-Ulukus 2012

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010
-	Secret	Secret	Liu-Liu-Poor-Shamai 2010
Public	Secret	Secret	Ekrem-Ulukus 2012
-	Secret	Private	

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010
-	Secret	Secret	Liu-Liu-Poor-Shamai 2010
Public	Secret	Secret	Ekrem-Ulukus 2012
-	Secret	Private	
Public	Secret	Private	

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010
-	Secret	Secret	Liu-Liu-Poor-Shamai 2010
Public	Secret	Secret	Ekrem-Ulukus 2012
-	Secret	Private	This work
Public	Secret	Private	This work

MIMO Gaussian BC - Some Literature

MIMO Gaussian BCs with Eavesdropping Receivers:

$\boldsymbol{M}_{\mathbf{0}}$	$\boldsymbol{M}_{\mathbf{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	Solution
-	Private	Private	Weingarten-Steinberg-Shamai 2006
Public	Private	Private	Geng-Nair 2014
Public	Secret	-	Ly-Liu-Liang 2010
-	Secret	Secret	Liu-Liu-Poor-Shamai 2010
Public	Secret	Secret	Ekrem-Ulukus 2012
-	Secret	Private	This work
Public	Secret	Private	This work

* Solution for two last unsolved cases via Upper Concave Envelopes \star

MIMO Gaussian BC - Secrecy-Capacity Results

Without a Common Message: M_{1} - Confidential ; M_{2} - Private

Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\hat{\mathcal{C}}_{\mathrm{K}}=\bigcup_{0 \preceq \mathrm{~K}^{\star} \preceq \mathrm{K}}\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2} \left\lvert\, \begin{array}{l}
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{1} \mathrm{~K}^{\star} \mathrm{G}_{1}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}^{\star} \mathrm{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{2} \mathrm{KG}_{2}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}^{\star} \mathrm{G}_{2}^{\top}}\right|
\end{array}\right.\right\} .
$$

MIMO Gaussian BC - Secrecy-Capacity Results

Without a Common Message: M_{1} - Confidential ; M_{2} - Private

Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\hat{\mathcal{C}}_{\mathrm{K}}=\bigcup_{0 \preceq \mathrm{~K}^{\star} \preceq \mathrm{K}}\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2} \left\lvert\, \begin{array}{l}
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathbf{I}+\mathbf{G}_{1} \mathbf{K}^{\star} \mathbf{G}_{1}^{\top}}{\mathrm{I}+\mathbf{G}_{\mathbf{2}} \mathbf{K}^{\star} \mathbf{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{2} \mathrm{KG}_{2}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}^{\star} \mathrm{G}_{2}^{\top}}\right|
\end{array}\right.\right\} .
$$

- R_{1} Bound - MIMO Gaussian WTC Secrecy-capacity: User 1 - Legitimate with input covariance K^{\star}; User 2- Eavesdropper.

MIMO Gaussian BC - Secrecy-Capacity Results

Without a Common Message: M_{1} - Confidential ; M_{2} - Private

Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\hat{\mathcal{C}}_{\mathrm{K}}=\bigcup_{0 \preceq \mathrm{~K}^{\star} \preceq \mathrm{K}}\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2} \left\lvert\, \begin{array}{l}
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{1} \mathrm{~K}^{\star} \mathrm{G}_{1}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}^{\star} \mathrm{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathbf{I}+\mathbf{G}_{2} \mathbf{K G}_{2}^{\top}}{\mathbf{I}+\mathbf{G}_{\mathbf{2}} \mathbf{K}^{\star} \mathbf{G}_{2}^{\top}}\right|
\end{array}\right.\right\} .
$$

- R_{1} Bound - MIMO Gaussian WTC Secrecy-capacity: User 1 - Legitimate with input covariance K ${ }^{\star}$; User 2- Eavesdropper.
- $\boldsymbol{R}_{\mathbf{2}}$ Bound - Capacity of MIMO Gaussian PTP to User 2: Input covariance $\mathrm{K}-\mathrm{K}^{\star}$; Noise covariance $\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}^{\star} \mathrm{G}_{2}^{\top}$.

MIMO Gaussian BC - Secrecy-Capacity Results

M_{0}-Common ; M_{1}-Confidential ; M_{2} - Private

Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\mathcal{C}_{\mathrm{K}}=\bigcup_{\substack{0 \leq \mathrm{K}_{1}, \mathrm{~K}_{2}: \\
\mathrm{K}_{1}+\mathrm{K}_{2} \preceq \mathrm{~K}}}\left\{\begin{array}{l}
R_{0} \leq \min _{j=1,2}\left\{\frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{j} \mathrm{KG}_{j}^{\top}}{\mathrm{I}+\mathrm{G}_{j}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) \mathrm{G}_{j}^{\top}}\right|\right\} \\
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{1} \mathrm{~K}_{1} \mathrm{G}_{1}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) \mathrm{G}_{2}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right|
\end{array}\right\} .
$$

MIMO Gaussian BC - Secrecy-Capacity Results

 M_{0}-Common ; M_{1}-Confidential ; M_{2} - Private
Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\mathcal{C}_{\mathrm{K}}=\bigcup_{\substack{0 \preceq \mathrm{~K}_{1}, \mathrm{~K}_{2}: \\
\mathrm{K}_{1}+\mathrm{K}_{2} \preceq \mathrm{~K}}}\left\{\begin{array}{l}
R_{0} \leq \min _{j=1,2}\left\{\frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{j} \mathrm{KG}_{j}^{\top}}{\mathrm{I}+\mathrm{G}_{j}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) \mathrm{G}_{j}^{\top}}\right|\right\} \\
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathbf{G}_{1} \mathrm{~K}_{1} \mathrm{G}_{1}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) \mathrm{G}_{2}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right|
\end{array}\right\} .
$$

- R_{1} Bound: MIMO Gaussian WTC with input K_{1}

MIMO Gaussian BC - Secrecy-Capacity Results

 M_{0}-Common ; M_{1}-Confidential ; M_{2} - Private
Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\mathcal{C}_{\mathrm{K}}=\bigcup_{\substack{0 \preceq \mathrm{~K}_{1}, \mathrm{~K}_{2}: \\
\mathrm{K}_{1}+\mathrm{K}_{2} \preceq \mathrm{~K}}}\left\{\begin{array}{l}
R_{0} \leq \min _{j=1,2}\left\{\frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{j} \mathrm{KG}_{j}^{\top}}{\mathrm{I}+\mathrm{G}_{j}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) \mathrm{G}_{j}^{\top}}\right|\right\} \\
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{1} \mathrm{~K}_{1} \mathrm{G}_{1}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathbf{I}+\mathbf{G}_{2}\left(\mathbf{K}_{1}+\mathbf{K}_{2}\right) \mathbf{G}_{2}^{\top}}{\mathbf{I}+\mathbf{G}_{2} \mathbf{K}_{1} \mathbf{G}_{2}^{\top}}\right|
\end{array}\right\} .
$$

- R_{1} Bound: MIMO Gaussian WTC with input K_{1}
- R_{2} Bound: MIMO Gaussian PTP with input K_{2} (K_{1} is noise).

MIMO Gaussian BC - Secrecy-Capacity Results

 M_{0}-Common ; M_{1}-Confidential ; M_{2} - Private
Theorem (ZG 2016)

The secrecy-capacity region for a covariance constraint $\mathrm{K} \succeq 0$ is

$$
\mathcal{C}_{\mathrm{K}}=\bigcup_{\substack{0 \preceq \mathrm{~K}_{1}, \mathrm{~K}_{2}: \\
\mathrm{K}_{1}+\mathrm{K}_{2} \preceq \mathrm{~K}}}\left\{\begin{array}{l}
R_{0} \leq \min _{j=1,2}\left\{\frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{j} \mathrm{KG}_{j}^{\top}}{\mathrm{I}+\mathrm{G}_{j}\left(\mathbf{K}_{1}+\mathbf{K}_{2}\right) \mathrm{G}_{j}^{\top}}\right|\right\} \\
R_{1} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{1} \mathrm{~K}_{1} \mathrm{G}_{1}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right| \\
R_{2} \leq \frac{1}{2} \log \left|\frac{\mathrm{I}+\mathrm{G}_{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right) \mathrm{G}_{2}^{\top}}{\mathrm{I}+\mathrm{G}_{2} \mathrm{~K}_{1} \mathrm{G}_{2}^{\top}}\right|
\end{array}\right\} .
$$

- R_{1} Bound: MIMO Gaussian WTC with input K_{1}
- R_{2} Bound: MIMO Gaussian PTP with input K_{2} (K_{1} is noise).
- R_{0} Bound: MIMO Gaussian PTP with remaining covariance $K-\left(K_{1}+K_{2}\right)\left(K_{1}, K_{2}\right.$ are noises $)$.

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound:

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016]

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\quad \Longrightarrow \quad \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\quad \Longrightarrow \quad \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$
(2) \mathcal{O}_{K} bounded \& convex

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\Longrightarrow \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$
(2) \mathcal{O}_{K} bounded \& convex \Longrightarrow Supporting hyperplanes

$$
\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2}
$$

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\quad \Longrightarrow \quad \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$
(2) \mathcal{O}_{K} bounded \& convex \Longrightarrow Supporting hyperplanes

$$
\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2}
$$

(3) $\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2}$

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\quad \Longrightarrow \quad \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$
(2) \mathcal{O}_{K} bounded \& convex \Longrightarrow Supporting hyperplanes $\max _{R_{2} \in \mathcal{O}_{K}} \lambda_{1} R_{1}+\lambda_{2} R_{2}$ $\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}$
(3) $\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2} \leq$ Upper Concave Envelope

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\quad \Longrightarrow \quad \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$
(2) \mathcal{O}_{K} bounded \& convex \Longrightarrow Supporting hyperplanes

$$
\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2}
$$

(3) $\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2} \leq$ Upper Concave Envelope
(9) UCE maximized by Gaussian inputs

Secrecy-Capacity without M_{0} - Proof Outline

Outer Bound: Fix a covariance constraint $K \succeq 0$.
(1) [ZG-Kramer-Permuter 2016] $\quad \Longrightarrow \quad \mathcal{I}_{\mathrm{K}} \subseteq \hat{\mathcal{C}}_{\mathrm{K}} \subseteq \mathcal{O}_{\mathrm{K}}$
(2) \mathcal{O}_{K} bounded \& convex \Longrightarrow Supporting hyperplanes $\max _{\left(R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2}$
(3) $\max _{\left(R_{1}, R_{2}\right) \in \mathcal{O}_{\mathrm{K}}} \lambda_{1} R_{1}+\lambda_{2} R_{2} \leq$ Upper Concave Envelope
(9) UCE maximized by Gaussian inputs

$$
\Longrightarrow \quad \mathcal{O}_{\mathrm{K}} \subseteq \text { Region from Theorem }
$$

Secrecy-Capacity without M_{0} - Proof Outline

Achievability:

Secrecy-Capacity without M_{0} - Proof Outline

Achievability: Substituting Gaussian inputs into \mathcal{I}_{K}.

Secrecy-Capacity without M_{0} - Proof Outline

Achievability: Substituting Gaussian inputs into \mathcal{I}_{K}.

- Dirty Paper Coding to cancel M_{2} signal at Receiver 1.

Secrecy-Capacity without M_{0} - Proof Outline

Achievability: Substituting Gaussian inputs into \mathcal{I}_{K}.

- Dirty Paper Coding to cancel M_{2} signal at Receiver 1.
* Other variant of DPC (cancel M_{1} at Rec. 2) not necessary.

Secrecy-Capacity without M_{0} - Proof Outline

Achievability: Substituting Gaussian inputs into \mathcal{I}_{K}.

- Dirty Paper Coding to cancel M_{2} signal at Receiver 1.
* Other variant of DPC (cancel M_{1} at Rec. 2) not necessary.

\Downarrow

Region from Theorem $\subseteq \mathcal{I}_{\mathrm{K}}$

Secrecy-Capacity without M_{0} - Proof Outline

Achievability: Substituting Gaussian inputs into \mathcal{I}_{K}.

- Dirty Paper Coding to cancel M_{2} signal at Receiver 1.
* Other variant of DPC (cancel M_{1} at Rec. 2) not necessary.

```
\Downarrow
```

$\mathcal{O}_{\mathrm{K}} \subseteq$ Region from Theorem $\subseteq \boldsymbol{I}_{\mathrm{K}}$

Secrecy-Capacity without M_{0} - Proof Outline

Achievability: Substituting Gaussian inputs into \mathcal{I}_{K}.

- Dirty Paper Coding to cancel M_{2} signal at Receiver 1.
* Other variant of DPC (cancel M_{1} at Rec. 2) not necessary.

Secrecy-Capacity without M_{0} - Visualization

Secrecy-Capacity Region under Average Power Constraint:

Secrecy-Capacity without M_{0} - Visualization

Secrecy-Capacity Region under Average Power Constraint:

- Corollary:

Secrecy-Capacity without M_{0} - Visualization

Secrecy-Capacity Region under Average Power Constraint:

- Corollary:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\|\mathbf{X}(i)\|^{2}\right] \leq P
$$

Secrecy-Capacity without M_{0} - Visualization

Secrecy-Capacity Region under Average Power Constraint:

- Corollary:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\|\mathbf{X}(i)\|^{2}\right] \leq P \quad \Longrightarrow \quad \hat{\mathcal{C}}_{P}=\bigcup_{\substack{0 \preceq \mathrm{~K}: \\ \operatorname{Tr}(\mathrm{K}) \leq P}} \hat{\mathcal{C}}_{\mathrm{K}}
$$

Secrecy-Capacity without M_{0} - Visualization

Secrecy-Capacity Region under Average Power Constraint:

- Corollary:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\|\mathbf{X}(i)\|^{2}\right] \leq P \quad \Longrightarrow \quad \hat{\mathcal{C}}_{P}=\bigcup_{\substack{0 \preceq \mathrm{~K}: \\ \operatorname{Tr}(\mathrm{K}) \leq P}} \hat{\mathcal{C}}_{\mathrm{K}}
$$

Summary

- MIMO Gaussian BC - Common, Private and Conf. Messages:

Summary

- MIMO Gaussian BC - Common, Private and Conf. Messages:
- Practical: Natural broadcasting scenario.
- MIMO Gaussian BC - Common, Private and Conf. Messages:
- Practical: Natural broadcasting scenario.
- Theoretical: Last two unsolved cases.

Summary

- MIMO Gaussian BC - Common, Private and Conf. Messages:
- Practical: Natural broadcasting scenario.
- Theoretical: Last two unsolved cases.
- Secrecy-Sapacity Results:

Summary

- MIMO Gaussian BC - Common, Private and Conf. Messages:
- Practical: Natural broadcasting scenario.
- Theoretical: Last two unsolved cases.
- Secrecy-Sapacity Results:
- Characterization \& Optimality of Gaussian inputs.

Summary

- MIMO Gaussian BC - Common, Private and Conf. Messages:
- Practical: Natural broadcasting scenario.
- Theoretical: Last two unsolved cases.
- Secrecy-Sapacity Results:
- Characterization \& Optimality of Gaussian inputs.
- Proof via Upper Concave Envelopes \& Dirty-Paper Coding.

Summary

- MIMO Gaussian BC - Common, Private and Conf. Messages:
- Practical: Natural broadcasting scenario.
- Theoretical: Last two unsolved cases.
- Secrecy-Sapacity Results:
- Characterization \& Optimality of Gaussian inputs.
- Proof via Upper Concave Envelopes \& Dirty-Paper Coding.

Thank You!

