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Abstract

The Poisson-sampling technique eliminates dependencies among symbol appearances in a
random sequence. It has been used to simplify the analysis and strengthen the performance
guarantees of randomized algorithms. Applying this method to universal compression, we relate
the redundancies of fixed-length and Poisson-sampled sequences, use the relation to derive a
simple single-letter formula that approximates the redundancy of any envelope class to within
an additive logarithmic term. As a first application, we consider i.i.d. distributions over a small
alphabet as a step-envelope class, and provide a short proof that determines the redundancy
of discrete distributions over a small alphabet up to the first order terms. We then show the
strength of our method by applying the formula to tighten the existing bounds on the redundancy
of exponential and power-law classes, in particular answering a question posed by Boucheron,
Garivier and Gassiat [6].

1 Introduction

Compression concerns efficient representation of random phenomena. Let a random variable X be
generated according to a distribution P over a discrete set X . The best compression ofX is achieved
when P is known in advance. Roughly speaking, every x ∈ X is then represented by log(1/P (x))
bits, where throughout the paper log represents logarithm to the base 2 and ln represents the
natural logarithm. Hence the expected number of bits used is the distribution’s entropy

H(P ) def= ∑
x∈X

P (x) log
1

P (x)
= E

P
log

1

P (X)
.

Universal compression addresses compression in the common setting where the underlying dis-
tribution P is not known, but can be assumed to belong to a known class P of distributions over
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X , for example the class of i.i.d. or Markov distributions. Any compression of X can be viewed as
representing x ∈ X using log(1/Q(x)) bits for some distribution Q over X [9], and in the rest of the
paper we will use the two interchangeably. The expected number of bits that Q uses to represent
X ∼ P is the cross entropy

∑
x∈X

P (x) log
1

Q(x)
= E

P
log

1

Q(X)
.

The expected additional number of bits, beyond the entropy, that Q uses to represent X is

E
P

log
1

Q(X)
− E

P
log

1

P (X)
= E

P
log

P (X)
Q(X)

.

Though we will not use this fact, this difference is the KL divergence D(P ∣∣Q) between P and Q.
The expected redundancy of a distribution collection P is the lowest increase in the expected

number of bits achieved by any compression scheme Q,

R(P) def= inf
Q

sup
P ∈P

E
P

log
P (X)
Q(X)

.

A more stringent redundancy measure, which is also the focus of this paper, is the worst-
case redundancy (a.k.a. minimax regret) that represents the largest possible increase between the
number of bits that Q and the best compression scheme use to represent any x ∈ X ,

R̂(P) def= inf
Q

sup
P ∈P

sup
x∈X

log
P (x)
Q(x)

Worst-case redundancy clearly exceeds expected redundancy for any distribution collection P,

R̂(P) ≥ R(P).

However, for many popular classes of distributions, they are almost the same.

For example, consider the collection of discrete distributions over [k] def= {1, . . . ,k},
Dk

def= {(p1, . . . ,pk) ∶ pi ≥ 0,∑ pi = 1}.
It is easy to see that the uniform Q = (1/k, . . . ,1/k) achieves redundancy log k, and that any other
distribution will have a higher redundancy, hence

R̂(Dk) = R(Dk) = log k.
The most well studied distributions are independent identical distributions, or iid, where a

distribution P over X is sampled n times independently, and the probability of observing xn ∈ X n

is

Pn(xn) def= n

∏
i=1

P (xi).
Similarly, for a class P define the i.i.d. class

Pn def= {Pn ∶ P ∈ P}
to consist of the n independent repetitions of any single distribution P ∈ P.
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The most well investigated class of distributions is Dn
k , the collection of all length-n i.i.d.

distributions over [k].
It is now well established [14, 10, 11, 23, 8, 18, 21, 24, 16, 22] that for k = o(n)

R(Dn
k ) + f1(k) = R̂(Dn

k ) + f2(k) = k − 1
2

log
n

k
,

and for n = o(k)
R(Dn

k ) + g1(n) = R̂(Dn
k ) + g2(n) = n log k

n
,

where f1, f2 are independent of n and g1, g2 are independent of k.
The problem was traditionally studied in the setting of finite underlying alphabet size k, and

large block lengths n, however in numerous applications the underlying natural alphabet best
describing the data might be large. For example, a text document only contains a small fraction
of all the words in the dictionary, and a natural image contains only a small portion of all possible
pixel values. An extreme case of this is when k =∞ and n = 1 in the equation above, showing that
R(D∞) = ∞ [14, 10]. The class of all i.i.d. distributions over Z

+ is therefore too large to provide
meaningful compression schemes for all distributions. These impossibility results led researchers to
consider natural sub-classes of all i.i.d. distributions and then compress sequences generated from
distributions in these or to consider all i.i.d. distributions but decompose sequences into natural
components and compress each part separately.

In recent years, three approaches have been proposed to address compression over large alpha-
bets. [17] considered separate compression of the dictionary that describes the symbols appearing,
and the pattern that specifies their order. For example, the word “paper” has pattern 12134 and
dictionary 1→p, 2→a, 3→e, 4→r. They showed that while the pattern contains almost all of the
sequence entropy, it can be compressed with sublinear worst-case redundancy, regardless of the
alphabet size, hence is universally compressible.

[12] considered the subclass of monotone distributions over Z
+. They showed that even this

class is not universally compressible, but designed universal codes for all monotone distributions
with finite entropy. [19] studied the classMn

k of length−n sequences from monotone distributions
over [k], and tightly characterized the redundancy for any k = O(n). Recently, [3] studiedMn

k for
much larger range of k and in particular showed that the class is universally compressible for all
k = exp(o(n/ log n)) and is not universally compressible for any k = exp(Ω(n)).

A third approach was proposed in [6]. They studied compression of envelope classes, where
the probabilities are bounded by an envelope. They provide general bounds on the redundancy of
envelope classes. They were motivated by the previous negative results on compressing i.i.d. distri-
butions over infinite alphabets, and therefore wanted to consider classes for which it is possible to
design universal codes. The upper bounds on the worst-case redundancy are obtained by bounding
the Shtarkov sum. They provide bounds on the more stringent (for lower bounds) average case
redundancy by employing the redundancy-capacity theorem.

In the next section we introduce and motivate envelope classes and describe some of the known
results and our new results.
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2 Envelope Class: Known Results

A function f ∶ Z+ → R
≥0 is called an envelope. We abbreviate fi

def= f(i). Any envelope f determines
an envelope class Ef def= {(p1, p2, . . .) ∈ D∞ ∶ pi ≤ fi}.
When f is defined explicitly, we will sometimes denote Ef by Efi . For example, one of our main
applications is for the power envelope defined by fi = c ⋅ i−α and the corresponding power class is
denoted by Ec⋅i−α .

Envelope classes naturally generalize Dk for large and potentially infinite k. They can incorpo-
rate prior distribution knowledge that can be expressed as an upper bound on the probabilities.

[6] introduced envelope classes and proved several results about their redundancy for general,
power-law, and exponential envelopes. They called an envelope function f is summable if ∑∞i=1 fi <
∞, and used the Shtarkov sum to show that R̂(Ef) <∞ if and only if f is summable. Letting

F u
def=

∞∑
i=u+1

fi

be the tail sum, they showed that

R̂(Enf ) ≤ inf
u≤n
[nF u +

u − 1

2
logn] + 2.

They also used the redundancy-capacity theorem [9, Chap 13] to lower bound the expected and
therefore worst-case redundancy, but their expressions are more involved and we refer the reader
to their paper.

They applied these bounds to two important and natural envelope classes. For the power-law
envelope class defined by the envelope c ⋅ i−α for c > 0 and α > 1, they showed1

Cc,α ⋅ n
1

α ≤ R(Enc⋅i−α) ≤ R̂(Enc⋅i−α) ≤ ( 2cn

α − 1
) 1

α (logn)1− 1

α +O(1), (1)

where the constant Cc,α depends on c and α. They also noted that the lower-bound and the upper-

bound is order (logn)1− 1

α apart and asked whether one of them is tight. One of our results shows
that the lower bound is tight up to a constant factor.

For the exponential-law envelope class, defined by the envelope fi = c ⋅ e−αi where c,α > 0 they
proved that2

log2 n

8α log e
(1 + o(1)) ≤ R̂(Enc⋅eαi) ≤ log2 n

2α log e
+O(1).

[4] improved these bounds and determined the redundancy up to the first order term and showed

R̂(Enc⋅eαi) = log2 n

4α log e
+O(logn log logn). (2)

More recently, [5] extended the arguments of [4] to find tight universal codes for the larger class
of sub-exponential envelope class whose decay is strictly faster than power-law, but slower than

1
g(n) = O(f(n)) if ∃C,N ∶ ∀n ≥Ng(n) ≤ Cf(n).

2g(n) = o(f(n)) if limn→∞
g(n)
f(n)

= 0.
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exponential classes. However, as mentioned in these papers, a tight bound on the redundancy of
heavy-tail envelopes such as power-laws remained elusive. Note that one of the important goals
of [5] was to obtain sequential algorithms achieving the redundancy of these classes, not simply
obtaining the bounds as we consider. [7] design efficient codes that are adaptive for classes of
envelopes, namely they provide efficient compression schemes for families of envelopes, without the
knowledge of the precise envelope being followed.

3 New Results and Techniques

Poisson sampling provides simplified analysis in various machine learning and statistical prob-
lems [15]. To the best of our knowledge, it was first used for universal compression in [2], and [1] to
prove optimal bounds on pattern redundancy. Recently, [25] also apply Poisson sampling to provide
simpler coding schemes for i.i.d. distributions over large alphabets. They observed that Poisson
sampling renders the multiplicities of each symbol independent and hence can be independently
coded. Using the tilting method they constructed compression schemes that are optimal upto an
additional factor of 1

2
log n

k
for Dn

k . In a subsequent paper, they showed that it can be extended to
sources with memory. The key difference between [25] and this paper is that the former focuses on
finding efficient coding schemes for Dn

k and sources with memory, while we use the Poisson model as
a proof technique to simplify the computation of the redundancy of i.i.d. distributions and various
envelope classes.

In section 5 we describe the Poisson sampling model. We then relate the redundancy of this
model to the fixed length model. In Section 6 we consider the class of simple Poisson distributions
with bounded means. In Theorem 18, we give single-letter bounds on the worst-case redundancy
of general envelope classes in terms of redundancy of single Poisson classes. The bounds are simply
summations of such Poisson redundancies. The upper and lower bounds in this theorem differ by
an additive factor of O(logn).

We first apply the results to the class Dn
k and present a short argument that bounds its re-

dundancy tightly up to the first order term. We then apply these bounds to find the worst case
redundancy of power-law class. Even though we give a single letter bound that is tight barring
additive logarithmic factors, we now focus on providing closed form bounds that are tight to a
multiplicative factor of 4. In particular, this strengthens Equation (1) answering a question posed
in [6]. This also shows that in fact the lower bound of [6] on the average redundancy is within a con-
stant factor from the worst case. We then bound the redundancy of exponential classes improving
the second order term in Equation (2).

4 Preliminary Results

We first mention several simple redundancy results that will be useful later in the paper.

4.1 The Shtarkov Sum

Worst-case redundancy can be easily expressed as a sum of probabilities. Let P be a collection of
distributions over X . The maximum likelihood probability of x ∈ X is

P̂ (x) def= sup
P ∈P

P (x),
5



the highest probability assigned to it by any distribution in P. The maximum-likelihood-, or
Shtarkov sum [20] is

S(P) def= ∑
x∈X

P̂ (x).
It is easy to see that

R̂(P) = log (S(P)) .
This simple formulation allows for simple proofs of several results for worst-case redundancy.

4.2 Basic Redundancy Properties

All the results mentioned in this section apply to both worst-case and expected redundancy, but
for simplicity we present the proof for the worst-case.Unless otherwise mentioned, the following
assumes that the distributions are over a set X .

Lemma 1 (Subset redundancy). If P ′ ⊆ P, then

R̂(P ′) ≤ R̂(P).
Proof. By Shtarkov’s Sum,

S(P ′) = ∑
x∈X

max
P ∈P ′

P (x) ≤ ∑
x∈X

max
P ∈P

P (x) = S(P).
Lemma 2 (Union redundancy). For all distribution collections P1, . . . ,Pc,

max
1≤i≤c

R̂(Pi) ≤ R̂( c
∪

i=1
Pi) ≤max

1≤i≤c
R̂(Pi) + log c.

Proof. The lower bound follows from subset redundancy. For the upper bound, let Xi ⊆ X be the
set of x’s that are assigned the highest probability by a distribution in Pi and, in case of ties, not
in any Pj for j < i. Then,

S( c
∪

i=1
Pi) = c∑

i=1

∑
x∈Xi

max
P ∈Pi

P (x) ≤ c∑
i=1

∑
x∈X

max
P ∈Pi

P (x) = c∑
i=1

S(Pi) ≤ c ⋅max
1≤i≤c

S(Pi).
If P is a distribution over X and f ∶ X → Y, then f(P ) is the distribution over Y defined

by [f(P )](y) = P (f−1(y)). Similarly, if P is a collection of distributions over X , then f(P) def={f(P ) ∶ P ∈ P}.
Lemma 3 (Function redundancy). R̂(f(P)) ≤ R̂(P) with equality iff for every y ∈ Y, all x ∈ f−1(y)
are assigned their highest probability by the same distribution in P.

Proof. Follows from the maximum-likelihood sum, with equality under the above condition,

S(f(P)) = ∑
y∈Y

max
P ∈P

∑
x∈f−1(y)

P (x) ≤ ∑
y∈Y

∑
x∈f−1(y)

max
P ∈P

P (x) = ∑
x∈X

max
P ∈P

P (x) = S(P).
Corollary 4 (Bijection redundancy). If f is 1-1, then

R̂(f(P)) = R̂(P).
6



If PX and PY are distributions over X and Y respectively, then PX × PY is the distribution
over X × Y defined by [PX × PY](x, y) = PX (x) ⋅ PY(y). Similarly, if PX and PY are collections of

distributions over X and Y respectively, then PX ×PY
def= {PX × PY ∶ PX ∈ PX , PY ∈ PY}.

Lemma 5 (Product redundancy). For all PX and PY ,

R̂(PX ×PY) = R̂(PX ) + R̂(PY).
Proof. By the Shtarkov sum,

S(PX ×PY) = ∑
(x,y)∈X×Y

P̂ (x, y) = ∑
(x,y)∈X×Y

P̂ (x)⋅P̂ (y) = (∑
x∈X

P̂ (x))⋅⎛⎝∑y∈Y P̂ (y)
⎞⎠ = S(PX )⋅S(PY).

For class P over X ×Y consisting of product distributions with PX and PY being the collection
of all marginal distributions over X and let Y, respectively. Then, P ⊆ PX ×PY , and by combining
product and subset redundancy,

Corollary 6 (Marginal redundancy). For every product distribution class P over X × Y,

R̂(P) ≤ R̂(PX ) + R̂(PY).
Remark 7. The result can be generalized to product distributions over a countable number of
coordinates X1 ×X2 × . . ..

We now prove some results for the redundancy of i.i.d. distributions.

4.3 Implications to i.i.d. Distributions

Recall that if P is a distribution over X , then Pn is the induced distribution over X n, the sequences
of length n.

Lemma 8. 1. Monotonicity: For all n, R̂(Pn+1) ≥ R̂(Pn).
2. Subadditivity: For any n1, n2 R̂(Pn1+n2) ≤ R̂(Pn1) + R̂(Pn2).

Proof. Monotonicity follows by marginalizing the (n+ 1)th coordinate and taking logarithm in the
following.

S(Pn+1) = ∑
xn+1
1
∈Xn+1

sup
P ∈P

Pn(xn+11 )
≥ ∑

xn∈Xn

sup
P ∈P

⎡⎢⎢⎢⎢⎣P
n(xn)⎛⎝ ∑xn+1∈X

P (xn+1)⎞⎠
⎤⎥⎥⎥⎥⎦

= ∑
xn∈Xn

sup
P ∈P

Pn(xn)
= S(Pn).

7



For subadditivity, we give the proof of [6].

S(Pn1+n2) = ∑
x
n1+n2

1
∈Xn1+n2

sup
P ∈P

P (xn1+n2

1 )
= ∑

x
n1+n2

1
∈Xn1+n2

sup
P ∈P

[P (xn1

1 )P (xn2

n1+1)]
≤ ∑

x
n1+n2

1
∈Xn1+n2

sup
P ∈P

P (xn1

1 ) sup
P ∈P

P (xn2

n1+1)
= [ ∑

x
n1

1
∈Xn1

sup
P ∈P

P (xn1

1 )] ⋅ [ ∑
x
n2

1
∈Xn2

sup
P ∈P

P (xn2

1 )]
= S(Pn1) ⋅ S(Pn2).

Taking logarithm proves the second part.

4.4 Type Redundancy

The multiplicity mxn(x) is the number of times a symbol x appears in a sequence xn. The type of
a sequence xn over [k] is the k-tuple

τ(xn) def= (mxn(1),mxn(2), . . . ,mxn(k))
of multiplicities of the k symbols in the sequence xn, see e.g., [9]. For example, for k = 4, τ(11313) =(3,0,2,0). Note that a type is a k-tuple of non-negative integers summing to n and that for k =∞,
the type has infinite length.

Let τ(Pn) be the distribution induced by Pn over types. It is easy to see that τ(Pn) is the
multinomial (specifically, k-nomial) distribution with parameters n and (p1, . . . ,pk), namely

P (τ(Xn) = (m1, . . . ,mk)) = ( n

m1, . . . ,mk

) ⋅ k

∏
i=1

p
mi

i .

Note that this definition applies also for infinite k as at most n multiplicities are non-zero. We let

τ(Pn) = {τ(Pn) ∶ P ∈ P}
be the set all distributions induced by Pn over types, namely the set of all k-nomial distributions
whose first parameter is n.

It is well known that for i.i.d. distributions, the redundancy of sequences is equal to the
redundancy of types, which follows since any i.i.d. distribution assigns the same probability to all
sequences of the same type.

Lemma 9. For R ∈ {R, R̂},
R(τ(Pn)) = R(Pn).

Proof. We prove the result for worst case since it has simpler expressions. The average case follows
similarly from the definition of average redundancy and convexity of KL divergence. Any i.i.d.
distribution assigns the same probability to all sequences with the same type. Therefore, such
sequences have the same maximum likelihood probability. We show that the Shtarkov sums of the
two classes are the same and hence they have same redundancy.

S(Pn) = ∑
xn∈Xn

P̂n(xn) = ∑
τ

∑
xn∶τ(xn)=τ

P̂n(xn) = ∑
τ

P̂n(τ) = S(τ(Pn)).
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5 The Poisson Model

Recall that if P is a distribution over X , then Pn is the distribution over X n derived by sampling
according to P independently n times. A significant difficulty in analyzing such distributions is that
although the samples are chosen independently, the number of appearances of different symbols are
dependent. For example, they always add to n.

To overcome this difficulty, the Poisson model also considers independent samples according
to P, but eliminates the dependence between symbols by generating not a fixed, but a variable
number of samples that follow a Poisson distribution.

We first recall the Poisson distribution and one of its concentration result, then define Poisson
sampling and mention some of its properties, and finally relate its redundancy to fixed-length
redundancy.

5.1 The Poisson Distribution

The Poisson distribution poi(λ) with parameter λ assigns to i ∈ N probability

poi(λ, i) def= e−λ
λi

i!
.

The Poisson distribution concentrates exponentially around its mean, helping relate the redundancy
of Poisson- and fixed-length sampling.

Lemma 10. ([15]) Let X ∼ poi(λ), then for x ≥ λ,

poi(λ)(X ≥ x) ≤ exp(−(x − λ)2
2x

) ,
and for x ≤ λ,

poi(λ)(X ≤ x) ≤ exp(−(x − λ)2
2λ

) .
5.2 Poisson Sampling and its Properties

Poisson-length sampling replaces a fixed number n of samples by a random number N ∼ poi(n) of
samples, and then sampling P independently N times. Consequently, the distribution is over the

set X ∗ def= ∪∞i=0X
i of finite strings over X , where X 0 contains just the empty string. Therefore the

probability of a sequence xn
′
∈ X ∗ is

P poi(n)(xn′) = poi(n,n′) ⋅ Pn′(xn′) = poi(n,n′) ⋅ n′∏
i=1

P (xi).
The following lemma, which along with its elementary proof can be found in [15], states that
conditioned on N = n′, the distribution that P poi(n) induces on sequences is identical to that of

Pn′ , and that under Poisson sampling, the multiplicity M
poi(n)
i of symbol i is distributed Poisson,

and that multiplicities of different symbols are independent.

Lemma 11. For all k, P ∈ Dk, and n, for 1 ≤ i ≤ k, M
poi(n)
i ∼ poi(npi) independently of each

other.

9



Therefore, for a distribution P = (p1, p1, . . .) over X = {1,2, . . .}
τ(Ppoi(n)) = (poi(np1),poi(np2), . . .), (3)

where each coordinate is an independent Poisson distribution.

Lemma 12. For all k, P ∈ Dk, and n, for all n′, P poi(n)(xn′ ∣N = n′) = Pn′(xn′).
Similar to Pn, let

Ppoi(n) def= {P poi(n)
∶ P ∈ P}

be the class of distributions over X ∗, where each distribution consists of a distribution P ∈ P
sampled independently a random poi(n) times.

The next lemma relates Shtarkov sums for Poisson and fixed-length sampling.

Lemma 13. For every distribution class P,

S(Ppoi(n)) = ∞
∑
n′=0

poi(n,n′) ⋅ S (Pn′) .
Proof. By Lemma 12, the Shtarkov sum conditioned on the length does not change, namely for
a sequence xn

′
the same distribution attains maximum likelihood for both poi(n) sampling and

sampling i.i.d. n′ times. Therefore,

S (Ppoi(n)) = ∑
n′≥0

poi(n,n′)∑
xn′

sup
P ∈P

Pn′(xn′) = ∑
n′≥0

poi(n,n′)S (Pn′) ,
where in the first step we sum maximum likelihoods of sequences by their lengths.

We would like to use the independence of multiplicities to obtain simpler bounds on the re-
dundancy of i.i.d. distributions. Toward this, we first show in the next result that under mild
assumptions, the redundancy of a class under Poisson sampling is close to the redundancy under
fixed length sampling. The bound we are more interested in, namely proving upper bounds on
R̂(Pn) holds even without these assumptions, namely for arbitrary classes.

Theorem 14. For any class P
R̂(Pn) ≤ R̂(Ppoi(n)) + 1.

Furthermore, for n ≥ 4 if R̂(Pn) < n/16 and n1
def= ⌊n − 3√nR̂(Pn)⌋, then

R̂(Ppoi(n1)) ≤ R̂(Pn).
Remark 15. The first part of the theorem in some cases can be used to verify if the conditions for
the second part hold. This is a potential method of obtaining lower bounds given good upper bounds.

Proof of Theorem 14. By Lemma 13,

S(Ppoi(n)) (a)= ∑
n′≥0

poi(n,n′)S(Pn′)
(a)
≥ S(Pn) ∑

n′≥n

poi(n,n′)
(b)
≥

1

2
S(Pn).
10



where (a) from monotonicity and (b) from the fact that if the mean is an integer, then the median
of a Poisson distribution is larger than its mean. Taking logarithms proves the first part.

Let n1
def= ⌊n − 3√nR̂(Pn)⌋, then by monotonicity and the fact that median is larger than the

mean,

S(Ppoi(n1)) = ∑
n′

poi(n1, n
′) ⋅ S(Pn′) ≤ 1

2
S(Pn) + ∑

n′≥n

poi(n1, n
′)S(Pn′).

By the subadditivity and monotonicity,

R̂(Pn′) ≤ R̂(P⌈n′n ⌉n) ≤ ⌈n′
n
⌉ R̂(Pn) ≤ (n′

n
+ 1) R̂(Pn),

and hence S(Pn′) ≤ S(Pn)(S(Pn))n′n . Therefore,
∑
n′≥n

poi(n1, n
′)S(Pn′) ≤ S(Pn) ∑

n′≥n

poi(n1, n
′)(S(Pn))n′n

= S(Pn) ∑
n′≥n

1

n′!
e−n1nn′

1 (S(Pn))n′n
= S(Pn) exp(n1(S(Pn) 1

n − 1)) ∑
n′≥n

poi(n1S(Pn) 1

n , n′)
(a)
≤ S(Pn) exp ⎡⎢⎢⎢⎢⎣n1(S(Pn) 1

n − 1) − (n1S(Pn) 1

n − n)2
2n

⎤⎥⎥⎥⎥⎦
(b)
≤

1

2
S(Pn).

(a) uses Poisson tail bounds and n1(S(Pn) 1

n ) ≤ n. (b) follows from the bounds on R̂(Pn) and
n1.

We finally show that sequence redundancy is equal to type redundancy under Poisson sampling.

Lemma 16. For R ∈ {R, R̂},
R(τ(Ppoi(n))) = R(Ppoi(n)).

Proof. We again show only the worst case.

S(Ppoi(n)) (a)= ∞
∑
n′=0

poi(n,n′) ⋅ S (Pn′) (b)= ∞
∑
n′=0

poi(n,n′) ⋅ S (τ (Pn′)) = R(τ(Ppoi(n))),
where (a) uses Lemma 13 and (b) follows from Lemma 16.

This lemma in conjunction with Theorem 14 and 18 reduces the problem of bounding the
redundancy of types under Poisson sampling. Under Poisson sampling types of sequences are
tuples of independent Poisson random variables, with distribution given by Equation (3).

In the next section we study the simple class of Poisson distributions with bounded means. We
use this class as a primitive to bound the redundancy of envelope classes in Section 7.
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6 The Redundancy of Bounded Poisson Distributions

Let
POIΛ

def= {poi(λ) ∶ λ ≤ Λ}
be the class of all Poisson distributions with mean ≤ Λ. We approximate the class’s redundancy,
and will later apply it to approximate the redundancy of all envelope classes.

Lemma 17. For Λ ≤ 1,
R̂(POIΛ) = log (2 − e−Λ) ≤ Λlog e,

and for Λ > 1,

log

√
2Λ + 2

π
≤ R̂(POIΛ) ≤ log⎛⎝

√
2Λ

π
+ 2
⎞⎠.

Proof. Of all Poisson distributions, the probability of i ∈ N is maximized by poi(i). Hence of all
distributions in POIΛ, the probability of i ∈ N is maximized by the Poisson distribution with mean

argmax
λ≤Λ

poi(λ, i) = ⎧⎪⎪⎨⎪⎪⎩
i for i ≤ Λ,

Λ for i ≥ Λ.

The Shtarkov sum is therefore

S(POIΛ) = ⌊Λ⌋∑
i=0

e−i ⋅
ii

i!
+

∞
∑

i=⌊Λ⌋+1
e−Λ ⋅

Λi

i!
.

For Λ ≤ 1,

S(POIΛ) = 1 + ∞∑
i=1

e−Λ ⋅
Λi

i!
= 1 + (1 − e−Λ) = 2 − e−Λ ≤ eΛ,

where the middle equality follows from ∑∞i=0 e−Λ ⋅ Λi

i!
= 1, and the inequality from the arithmetic-

geometric inequality.
For Λ > 1, first observe that Stirling’s approximation, stating that for any n, there is some

θn ∈ ( 1
12n+1 ,

1
12n
) such that

n! =
√
2πn (n

e
)n eθn , (4)

implies that for i ≥ 1

e−i ⋅
ii

i!
≤ e−i

ii√
2πi( i

e
)i ≤ 1√

2πi
,

and using e−x ≥ 1 − x,

e−i ⋅
ii

i!
≥ e−i

ii√
2πie

1

12i ( i
e
)i =

e−
1

12i√
2πi
≥

1√
2πi
−

1

12
√
2π

1

i3/2
,

Hence,

S(POIΛ) < 2 + ⌊Λ⌋∑
i=1

e−i
ii

i!
≤ 2 +

⌊Λ⌋∑
i=1

1√
2πi
≤ 2 +

√
2Λ

π
,

12



where the last inequality follows from a simple integration.
For the lower bound,

S(POIΛ) ≥ 1 + ⌊Λ⌋∑
i=1

e−i
ii

i!
≥ 1 +

⌊Λ⌋∑
i=1

1√
2πi
−

1

12
√
2π

1

i3/2
.

The lower bound follows by integrating this expression.

7 The Redundancy of Envelope Classes

We use the redundancy of bounded-Poisson classes to characterize that of envelope classes. Given
the similarity in redundancy of fixed-length and Poisson-sampled distributions, determined in The-
orem 14, we consider envelope classes under the easier to analyze Poisson sampling.

Let f be a summable envelope. When a distribution P = (p1, p2, . . .) ∈ Ef is sampled poi(n)
times, symbol i ∈ Z+ appears poi(npi) times, where npi ≤ nfi. Let

lf
def= min{l ∶ ∞∑

i=l

fi < 1}
be the smallest integer whose tail sum is < 1, or equivalently ∑∞i=lf nfi < n. Since f is summable, lf
is finite.

Our main result for envelope classes provides simple lower and upper bounds for their redun-
dancy in terms of the redundancy of bounded Poisson classes. Note that the upper and lower bounds
differ by lf −1 terms. By Lemma 17, they are tight up to an additive lf ⋅ log(2+√2n/π) = Of(logn)
term, where Of implies a constant determined by f .

Theorem 18. For any envelope f and any n,
∞∑
i=lf

R̂(POInfi) ≤ R̂ (Epoi(n)f
) ≤ ∞∑

i=1

R̂(POInfi).
Proof. By Lemma 16, it suffices to consider the redundancy of types of sequences. By Equation (3),
the class of type distributions induced by Ef under Poisson sampling is

τ(Epoi(n)
f

) = ∞∏
i=1

POInpi ⊆
∞
∏
i=1

POInfi .

By Corollary 6 generalized to a countable number of dimensions

R̂(Epoi(n)
f

) = R̂(τ(Epoi(n)
f

)) ≤ ∞∑
i=1

R̂(POInfi).
For the lower bound, note that

∑
i≥lf

nfi < n,

and therefore all product distributions in

POInflf ×POInflf+1 × . . .

are valid projections of a distribution in Epoi(n)
f

along the coordinates i ≥ lf . Applying Lemma 5
proves the lower bound.

We now apply this theorem to power law and exponential envelope classes.
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8 i.i.d. Sequences over Small Alphabet

As the first application of Poisson sampling, we study the redundancy of Dn
k in the range of small

k and n increasing asymptotically. [22] show that for k = o(n),
R̂(Dn

k ) = k − 1

2
logn −

k

2
log k +

k

2
log e + o(k).

This is a more refined expression than the one presented in the introduction.
Using the tools developed for Poisson sampling, we derive an extremely short argument that

bounds the redundancy of this class up to first order terms.
For a length−n sequence with type τ ′ = (m1, . . . ,mk), let the abbreviated type be

τ ′ def= (m1, . . . ,mk−1),
the (k−1)−tuple by dropping the last multiplicity. Then, for length−n sequences, there is a bijection
between τ and τ ′. By Corollary 4,

R̂(Dn
k ) = R̂(τ(Dn

k ))
= R̂(τ ′(Dn

k ))
(a)
≤ R̂(τ ′(Dpoi(n)

k
)) + 1

(b)
≤ (k − 1)R̂(POIn) + 1
(c)
≤ (k − 1) log 3

√
n

π
+ 1

(d)
≤

k − 1

2
logn + k log

3

π
+ o(k),

where (a) follows similar to Theorem 14, (b) uses Lemma 5, (c) follows from Lemma 17 by using
2 +
√
2n/π < 3√n, and (d) by a simple expansion.

We now prove a lower bound along similar lines. Let n′ = n − n3/4k1/4 logn.

R̂(Dn
k ) (a)≥ R̂(Dpoi(n′)

k
)

(b)
≥ (k − 1)R̂(POI n

k−1
)

(c)
≥
(k − 1)

2
log

2n′

π(k − 1)
≥
(k − 1)

2
logn −

k

2
log k −

k

2
log

π

2
+ o(k),

where (a) uses Theorem 14, (b) follows from the equality condition of Lemma 5, (c) uses Lemma 17.
We note that the lower bound is off by O(k) and the upper bound by O(k log k).

9 Power Law Envelopes

We apply Theorem 18 to the power law class and provide bounds on redundancy that are at most
a factor 4 apart. The upper bound improves results of [6], and proves that their lower bound on
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the average redundancy is within a constant factor of the worst case redundancy. This resolves an
open problem posed in [6] and is stated in the following theorem.

Theorem 19. For large n

(cn)1/α[α log e

2
+

log e

2(α − 1) −
log π

2

2
](1 − on(1)) ≤ R̂(Enc⋅i−α) ≤ (cn)1/α[α log e

2
+

log e

α − 1
+ log 3] + 1.

Proof. We bound the redundancy of Epoi(n)
c⋅i−α and then apply Theorem 14 to obtain the result for

Enc⋅i−α .

9.0.1 Upper Bound

For the power-law class Ec⋅i−α , npi ≤ nfi = cn
iα
. Let b

def= (cn)1/α, then
nfi ≥ 1 for i ≤ b and nfi < 1 for i > b.

R̂(Epoi(n)c⋅i−α ) (a)≤ ∑
i≤b

R̂(POInfi) +∑
i>b

R̂(POInfi)
(b)
≤ ∑

i≤b

log
⎛
⎝2 +

√
2nfi
π

⎞
⎠ + (

∞
∑
i>b

nfi) log e,
where (a) follows from Theorem 18 and (b) from Lemma 17.

For the first term, note that for Λ ≥ 1, 2 +
√
2Λ/π < 3√Λ. Therefore,

b

∑
i=1

log
b

i
= log

bb

b!
≤ log eb = b log e,

where the inequality follows from Stirling’s approximation (Equation (4)). Using b = (cn) 1

α ,

b

∑
i=1

log
⎛
⎝2 +

√
2Λi

π

⎞
⎠ <

b

∑
i=1

log (3√cn

iα
)

= b log(3) + α

2

b

∑
i=1

log (b
i
)

< (cn)1/α( log(3) + α log e

2
).

For the second term,

∞
∑

i=b+1
nfi = cn

∞
∑

i=b+1

1

iα
< cn∫ ∞

b

dx

xα
=

c1/α

α − 1
n1/α.

Using R̂(Enc⋅i−α) ≤ R̂(Epoi(n)c⋅i−α )+1 from Theorem 14 and adding the terms proves the upper bound.
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9.0.2 Lower Bound

The sum ∞∑
j=ℓ+1

fi =
∞∑

j=ℓ+1

c

iα
≤ ∫ ∞

ℓ

c

xα
dx =

cℓ−α+1

α − 1

is less than 1 for any ℓ > ℓ0
def= ( c

α−1) 1

α−1 .
Hence by Theorem 18,

R̂(Epoi(n)c⋅i−α ) ≥ ∑
i>ℓ0

R̂(POInfi) = ∑
ℓ<i≤b

R̂(POInfi) +∑
i>b

R̂(POInfi),
where recall that b = (cn)1/α.

For the first term, using Lemma 17,

∑
ℓ0<i≤b

R̂(POInfi) ≥ ∑
ℓ0<i≤b

log

√
2nfi + 2

π
≥
1

2
∑

ℓ0<i≤b

log
2nc

πiα
> ∑

1≤i≤b

log
nc

iα
− ℓ0 log(nc) − b

2
log

π

2
.

Again by Stirling approximation, and using B! < 2πB(B/e)B ,
∑

1≤i≤b

log
nc

iα
= log

(cn)b(b!)α ≥ α

2
(cn)1/α log e −α log(2πb)

For the second term, using 2 − e−λ > 1 + λ/2 for λ < 1,

∑
i>b

R̂(POInfi) =∑
i>b

log(2 − e−nfi) >∑
i>b

nfi

2
log e >

cn

2
∑
i>b

1

iα
> (cn)1/α 1

2(α − 1) −O(1).
Summing these two lower bounds R̂(Epoi(n)c⋅i−α ). Invoking the lower bound of Theorem 14 with

the upper bound from the previous part proves the lower bound. We hide the lower order and
logarithmic terms in the o(1) factor.
Remark 20. From a simple calculation, it follows that the two bounds are at most a factor of 4
apart. By obtaining tighter bounds on R̂(POIΛ), it should be possible to obtain upper and lower
bounds within a multiplicative (1 + δ) factor for arbitrarily small δ.

10 Exponential Envelopes

We provide a simple proof of Equation (2) with stronger second order terms. More precisely, we
prove that

Theorem 21.

R̂(Enc⋅eαi) = log2 n

4α
+O(log c log n).

Proof. For the exponential class, fi = ce−αi. Therefore,

i ≤
ln(cn)

α
⇔ nfi ≥ 1.
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Similar to the argument for power-law, let b
def= ln(cn)

α
, and by Theorem 18 and Lemma 17,

R̂(Epoi(n)
c⋅eαi ) ≤∑

i≤b

R̂(POInfi) +∑
i>b

R̂(POInfi) ≤ ∑
1≤i≤b

log (2 +
√

2nfi
π
) + (∑

i>b

nfi) log e
Using ebα = cn, the second term can be bounded using

∑
i>b

nfi =∑
i>b

cne−αi < cne−αb
1

1 − e−α
=

1

1 − e−α
.

Following the same steps as power-law and using ebα = n,

b∑
i=1

log
⎛
⎝2 +

√
2nfi
π

⎞
⎠ ≤

b∑
i=1

log (3√nfi)
≤ b log 3 +

1

2

b∑
i=1

log[n ⋅ ce−αi]
≤ b log 3 +

1

2
log[(cn)b ⋅ (cn)−(b+1)/2]

= b log 3 +
(b − 1)

4
log(cn)

<
b

4
log(81c) + b

4
logn.

Substituting b = ln(cn)/α,
R̂(Enc⋅eαi) ≤ log2 n

4α log e
+

log cn log(81c)
4α log e

+

logn log c

4α log e
+

log e

1 − e−α
+ 1.

We now prove the lower bound by a similar argument. Clearly, for ℓ ≥ ℓ0
def= 1

α
log( c

1−e−α ),
∞∑
i=ℓ

fi ≤ 1.

Recall that b = ln(cn)/α, then by Lemma 17,

R̂(Epoi(n)
c⋅eαi ) ≥ b∑

i=l0

log
⎛⎝
√

2nfi + 2

π

⎞⎠
≥
1

2
[ b∑
i=1

log
2nfi
π
−

ℓ0∑
i=1

log
2nfi
π
]

≥
1

2
[b log 2

π
+ log[(cn)b ⋅ (cn)−(b+1)/2] − ℓ0∑

i=1

log
2nfi
π
]

≥
1

2
[b log 2

π
+

b − 1

2
log(cn) − ℓ0∑

i=1

log
2nfi
π
]

≥
b − 1

4
log

4cn

π2
−

ℓ0

4
log

4cn

π2

≥
log2 n

4α log e
−O(log c logn).
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To obtain a bound on fixed length sampling, we apply Theorem 14 with the upper bound proved
earlier.

11 A note on expected redundancy

Since the worst case redundancy is always larger than the average redundancy, a class with infinite
average redundancy has infinite worst case redundancy. However, there exist classes of distributions
with a finite average redundancy and infinite worst case redundancy (See Example 1 in [1]).

However, in Lemma 22 we show that an envelope class with infinite worst case redundancy also
has infinite average case redundancy. On a related note, [6] showed that for any distribution class
with finite worst case redundancy, the worst case redundancy grows sub-linearly with n, namely if
R̂(P) <∞, then R̂(P) = o(n). Recently, [13] showed that there exists a class P such that R(P) <∞,
and yet, R(Pn) = Ω(n), i.e., the redundancy grows linearly with the block length.

Lemma 22. For any envelope function f ,

R̂(Ef) <∞⇔ R(Ef) <∞.

Our proof of this lemma uses the following result.

Lemma 23. If P contains M distributions over mutually disjoint supports, then R(P) ≥ lnM .

Proof. Let P1, . . . , PM be M distributions over disjoint sets A1, . . . ,AM . For any distribution Q,
there is a j, such that Q(Aj) ≤ 1/M . For that distribution,

D(Pj ∣∣Q) = ∑
x∈Aj

Pj(x) ln P (x)
Q(x) ≥ − ln⎛⎝ ∑x∈Aj

Q(x)⎞⎠ ≥ lnM,

where the inequality is from the convexity of logarithms. Since this holds for any distribution Q,
it holds for the infimum and plugging in the definition of R proves the result.

Proof of Lemma 22. The forward direction is trivial since R ≤ R̂. For the other direction, we show
that if R̂(P) = ∞, there exist an infinite number of distributions P1, P2, . . . that all have disjoint
supports, and applying the previous lemma to this proves the result. Now, R̂(P) = ∞ means∑fi =∞. Using this we construct an infinite sequence of distributions as follows. After constructing
distribution Pi consider the first integer not in its support, and construct a distribution over the
smallest possible integers starting from that location. This process can be repeated infinitely many
times giving an infinite number of distributions with disjoint supports.
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[5] Dominique Bontemps, Stéphane Boucheron, and Elisabeth Gassiat. About adaptive coding on countable alpha-
bets. IEEE Transactions on Information Theory, 60(2):808–821, 2014.
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