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I. INTRODUCTION 

 
Earth formations can be modeled as a layered medium with each layer having its own 
electrical, mechanical, and geometrical properties. In a typical exploration environment, a 
well-bore (about 15 to 30 cm in diameter) is drilled to a depth that may extend to a few 
kilometers. Formation properties are measured using multiple sensors moving along the 
well-bore trajectory (see figure 1a). To measure conductivity and permittivity, for 
instance, a sensor consisting of an array of transmitters and receivers is used (see Figure 
1b). Transmitters are sequentially energized and phase and attenuation between receivers 
are measured. Measured phase and attenuations are then inverted for formation 
properties, namely layer-thickness, conductivity, dielectric constant, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) Layers (beds) of earth formation and sensor trajectory. (ε: permittivity, σ: 
conductivity), (b) a typical electromagnetic sensor in a borehole; T1 and T2 represent 

transmitting antennas and R1 and R2 are the receivers. 
 
Data measured by the sensors are referred to as “log”. In this paper, a hierarchical data 
segmentation method is presented to extract common boundaries from these logs. There 
are several methods for data segmentation. Recently a parametric classification technique 
[1] has been proposed to decompose data into multimodal components that provides the 
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flexibility of choosing the underlying distribution. Algorithm [2] is based on optimization 
of variances. Here the goal is to minimize the within-class variance and to maximize 
between-class variance. This technique is computationally very inefficient. This 
deficiency has been tackled in [3-4].  

 
Methods mentioned above deal with single log data. Often, we have multiple logs from 
same geological region measured by various sensors; each sensor having its own volume 
of investigation depending upon its resolution. In this work we describe a numerically 
efficient hierarchical segmentation method combining information from multiple sensors. 
The first step is preprocessing and normalization of logs and the second step is the 
classification that ensures minimum ratio of weighted within-class variance to weighted 
between-class variance at each level. To further improve the computational efficiency, we 
exploit the correlation among measured data. Such correlation helps reduce the 
dimensionality of segmentation problem by using principal component analysis (PCA). 
Hierarchical segmentation algorithm is then applied to principal component or a 
combination of a few major components. 
 
The paper is organized as follows. In the next section we present the proposed algorithm. 
In Section III, we give numerical results. Finally, we conclude our work in Section IV. 
 

II. THEORY 
 
As mentioned in Section I, the data from multiple sensors are segmented hierarchically 
by minimizing the following objective functional representing the ratio of weighted 
within-class variance to weighted between-class variance: 
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where L is the number of logs corresponding to L sensors and wj(i) and bj(i) denote the 
sampled within-class and sampled between-class variance [3] of the jth normalized log, 
and αj are appropriate weights for each log. We assume that each sensor has the same 
sampling rate and acquires data in same geological region. Let N be the number of data 
points in a log. Amplitude of kth segment after ith recursion is represented by ak(i), and 
nk(i) is the number of points in that segment. The number of segments, C(i), after the ith 
recursion is one less than the previous recursion.  
 
It can be shown that the within-class variance w(i) and between-class variance b(i) at the 
ith stage can be recursively computed as 
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where N is the total number of points in the log, xk,m(i) is the mth sample point in the kth 
segment after the ith recursion, and a is the mean of the entire log. In the above 
expressions for variances we have dropped the subscript ‘j’ denoting each sensor. The 
same expression holds for each sensor. 
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we observe that minimizing ξp
2(i) minimizes w(i) and maximizes b(i) and hence 

optimizes the objective function. We find the minimum ξp
2(i) value and then replace the 

amplitude of the corresponding two classes by their weighted mean. The number of 
points is sum of number of points of the merged classes. The new values of ξp

2(i) for this 
new class with the adjoining classes can be easily calculated from the new amplitude. We 
see that we need to keep a track of only the parameter ξp

2(i) and updating it using (4). 
The algorithm is repeated till we reach a desired number of classes. To further improve 
the computational efficiency, we apply principal component analysis to data and apply 
the above method to the principal component or a combination of major components.  
  

III. RESULTS AND DISCUSSION 
 
We first show the results for single log and then for multiple logs. Figure 2, illustrates log 
segments obtained from synthetic data. Originally, data had 16 segments. Next, we 
consider measured data using Schlumberger sensors at a depth of about 2.5 kilometers 
underground. We take three sensors data over a section of 120 meters. These sensors 
measure conductivity, density, and gamma ray radiation. It is clear from logs in Figure 
3(a), that these sensors have different resolutions. Gamma ray sensor, for instance, has 
highest depth resolution. Using only one of these data to estimate bed boundaries may be 
erroneous. Common segments obtained by combining information from all three are 
shown in Figure 3(a). 
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Figure 2: Segmentation of synthetic data. 

 
Computation complexity increases linearly with the number of logs. We can reduce the 
effective number of logs (dimension) by exploiting the correlation among various 
measurements. As an example, we consider three logs of Figure 3(a), and perform PCA 
on these data; we obtain three components as shown in Figure 3(b). We have verified that 
by using only the first two of these components, we can get exactly same boundaries as 
Figure 3(a). In most cases, we have more than three measurements. By using only a few 
components of PCA we can reduce the time consumed and improve computational 
efficiency. 
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Figure 3: (a) Segmentation of multisensor data: conductivity (S/m), density (gm/cm3), 
gamma ray is in gAPI unit; a measure of radioactivity, (b) Various components obtained 
by applying PCA to data in (a) 
 

IV. CONCLUSIONS 
 
In this work we have described a technique for segmentation of multiple logs to obtain 
common boundary. We have applied principal component analysis to further improve 
computation efficiency by exploiting inherent correlation among various measurements. 
As a future work, we plan to develop statistical approach for automatic termination of the 
algorithm; that is, to have a priori estimation of number of final segments.   
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