
On the Computation and Verification Query Complexity of

Symmetric Functions

Jayadev Acharya
EECS, MIT

jayadev@csail.mit.edu

Hirakendu Das
Yahoo

hdas@yahoo-inc.com

Ashkan Jafarpour
ECE, UCSD

ashkan@ucsd.edu

Alon Orlitksy
ECE & CSE, UCSD
alon@ucsd.edu

Ananda Theertha Suresh
ECE, UCSD

asuresh@ucsd.edu

Abstract

In the query model of multivariate function computation, the values of the inputs are queried se-
quentially in an order that may depend on previously revealed values until the function’s value can be
determined. The function’s computation query complexity is the lowest expected number of queries
required by any query order. Instead of computation, it is often easier to consider verification, where
the value of the function is given and the queries aim to verify it. The lowest expected number of
queries necessary is the function’s verification query complexity. We show that for all symmetric func-
tions of independent binary random variables, the computation and verification complexities coincide.
This provides a simple method for finding the query complexity and optimal query order for computing
many functions. We also show that after relaxing any of the symmetry, independence, or binary inputs
restrictions, there are functions whose verification complexity is strictly lower than their computation
complexity.

1 Introduction

Evaluating a multivariate function is a crucial and ubiquitous task whose importance has inspired count-
less different computational models. These models are made by restricting the function’s class, changing
the computational elements, moderating the computation error probability, adding assumptions on input
probabilities, assuming noisy queries, etc.

In most function-computation problems, the major cost of calculating the function is the price of sampling.
The sample meaning may change from one model to another but the aspiration to minimize the number of
samples is unavoidable in all the models. We mention few specific examples to show how broad this problem
is and then we continue our discussion with the general form of the function computation problem.

As the first example, suppose we want to estimate the average height of a population. In this example,
the function is the average function and the inputs are people’s heights. Since measuring height of the
whole population is costly, for estimating the average, we may only measure the height of a sub-population.
As a result, we compute a noisy average of the inputs instead of the exact average. As another example,
suppose we want to sort the inputs that are real numbers with only pairwise comparisons. In this example,
the function outputs a sorted form of the inputs and one can view the pairwise comparisons as samples or
queries with the goal of minimizing the total number of queries. Hence this example fits to our function
computation model. Next, in this broad area of function computation, we present and motivate our model
of function computation by relating it to the extensive works that have been done in this area.

∗Parts of this paper appeared in [AJO11, DJO+12].

1



A basic model of multivariate function computation is the decision-tree complexity or worst-case query
complexity [AB09, BN95, Weg87a, San95]. In this model, we find the function value by adaptively choosing
the inputs queried while optimizing the maximum number of queries needed to determine the function value.
For example, the worst-case query complexity of a Boolean function xy∨xz is 2, as the value of x determines
which of y or z needs to be queried to determine the function value. For a survey of decision-tree complexity,
please see [BW02].

A multivariate function is symmetric if its output remains unchanged under all input permutations.
Many functions encountered in engineering and science are symmetric, including parity, threshold, and delta,
as well as most statistical measures such as median, mode, max, etc. [Weg87b, NW99, Amb05] considered
the complexity of symmetric functions.

It has been shown, e.g. [DFO10], that the worst-case query complexity of all non-constant symmetric
functions is n. On the other hand, average-case query complexity received less attention. Perhaps because
it is difficult to find a fixed and robust probabilistic model for the data, or because minimizing the expected
depth of a decision tree is more difficult to analyze than minimizing the maximum depth.

Despite getting less attention, expected or average-case query complexity for computing a function is
more important than the worst-case in most of the problems. For example, when an airline decides to set
a price for a ticket, often the expected earning is more of attention than the worst-case or when a gambler
wants to decide a strategy, often the focus is on increasing expected gain than worst-case.

[BDCG89, Wan97, BT06] considered the expected query complexity. [AW01] showed that for the expected
query complexity under the uniform distribution, quantum algorithms can be exponentially faster than
classical algorithms. [KK10] considered the expected query complexity of computing symmetric functions.
For the expected query complexity, the optimal query order depends not only on the function, but also on
the underlying distribution of variables. [KK10] found an optimal query order for threshold functions of
independent but not necessarily identical Bernoulli random variables. In particular, they showed that for
threshold functions of independent Bernoulli random variables, the optimal query order does not depend on
the precise probabilities of inputs, but only on which is the largest, the second largest, etc.

To simplify and extend arguments for finding the optimal query order, [AJO11] defined the expected
verification query complexity of a function to be the lowest expected number of inputs that need to be
revealed to convince an observer of the value of the function. For example, consider the logical OR function
X1 ∨ . . . ∨ Xn, where each Xi ∼ bernoulli(pi) and independently. To verify that the OR function is 1, it
suffices to show that one of the inputs is 1; hence for moderate values of pi’s, the expected number of inputs
that need to be revealed is small, whereas verifying that the OR function is 0, requires checking that all
inputs are 0, hence all the n inputs must be queried. Note that verification complexity differs from certificate
complexity [Aar03, BW02, AB09], where all input values are known in advance and can be used to determine
the optimal query order.

We show that for all symmetric functions of independent binary inputs, the optimal expected verification
and computation complexities are equal. We use this result to simplify the proof of the optimal query com-
plexity of threshold functions presented in [KK10]. We observe that the value of all binary-input symmetric
functions depends only on the number of ones, or weight, of the input, and use this property to find an opti-
mal query order for all delta functions and for all symmetric functions that are not constant over any three
consecutive input weights. We also show that after relaxing any of the symmetry, independence, or binary
inputs restrictions, there are functions whose verification complexity is strictly lower than their computation
complexity.

The rest of the paper is organized as follows. In Section 2, we formally define the problems of computation
and verification. In Section 3, we make a few observations to simplify our analysis. In Section 4, we show
that verification method can be used to find the query order for computing threshold and delta functions.
In Section 5, we show the equality of verification and computation for general symmetric functions of inde-
pendent binary inputs. In Section 6, we demonstrate that symmetry, independency, and binary restrictions
are all necessary to have equal verification and computation complexities.

2



2 Notation and formulation

Throughout the paper, except Section 6, we assume that f is a symmetric function of n binary inputs

X
def
= X1, X2, . . . , Xn, where Xi ∼ bernoulli(pi) independently, and the pi’s are known in advance. Without

loss of generality, assume that 1 > p1 ≥ p2 ≥ . . . ≥ pn > 0. [i, j] denotes the set of integers between and

including i and j. For any set S, |S| denotes the number of element in S. Let p̄i
def
= 1− pi.

To compute f(X), we query the inputs sequentially. A policy P is a rule that at any given time, based on
prior query outcomes, determines whether querying should stop or continue, and if the latter, which input
should be queried next. P computes f , if for all values of X, when P stops querying, f can be determined.

Let QP(x) be the number of inputs a policy P queries for input x. The expected query complexity of P
is

C(P)
def
= E[QP(X)] =

∑
x

p(x)QP(x),

and the computation complexity of f is

C(f)
def
= min

P
C(P) = min

P

∑
x

p(x)QP(x), (1)

where the minimum is taken over all the policies P computing f . Any policy that computes f with complexity
C(f) is an optimal computation policy. In general, there might be several optimal computation policies.

Example 1. Consider the threshold function,

Πθ(w)
def
=

{
1 if w ≥ θ,
0 otherwise,

and let f(x1, x2) = Π1(x1 +x2) determine if at least one of x1 and x2 is 1. If Xi is queried first, the expected
number of queries is 1 · pi + 2 · (1− pi) = 2− pi, since a policy can stop after querying an input with value
one and it has to query the second input if it queries an input with value zero. As a result, the optimal policy
should query X1 first if p1 is strictly greater than p2.

In theory, it is possible to express the computation complexity of any function and policy in terms of the
input probabilities and optimize the query order. But since the number of policies is exponential in n, this
may be computationally inefficient.

An alternative approach was proposed in [AJO11]. Instead of finding an optimal policy to compute a
function, they considered the simpler problem of finding an optimal policy to verify the function value. They
found a class of functions for which the two policies coincide.

In the verification of a function f , we are given the value of f(X), and are asked to query the inputs to
verify that this is indeed the function value. As with computation, we apply a policy that determines which
inputs to query and when to stop so that the function value can be determined. The only difference is that
we have a freedom to use different policies for different function values.

It is easy to see that a verification policy is just a collection of computation policies, one for each value
of f , and the advantage of verification is that for each value of f we can choose a policy that minimizes
the expected number of queries for that value of f . The difference between verification and computation
complexities is perhaps easier to demonstrate via a non-symmetric function of dependent random variables.

Example 2. Let n > 1 be an integer. Let ei be the unit vector in Rn, whose ith component is 1 and
all others are 0. Let X = ei with probability 1

n , i.e., one of the n unit vectors with equal probability. Let
f : {0, 1}n → {1, ..., n} be such that f(ei) = i. For example, for n = 3, f(100) = 1, f(010) = 2, and
f(001) = 3, and Pr(100) = Pr(010) = Pr(001) = 1/3.

3



To compute f , we must find an i such that Xi = 1. Therefore, we need to query the inputs till we find
the input whose value is 1 or find the n− 1 inputs whose values are 0. Hence the computation complexity is

1

n
(1 + 2 + . . .+ (n− 1) + (n− 1)) =

(n− 1)(n+ 2)

2n
.

However, for verification we are given f(X) = i for some i and we can verify Xi = 1 by only querying
Xi. Hence the verification complexity is 1.

For a more precise definition, the expected query complexity of policy P when f(X) = j is

C(P|f(X) = j)
def
= E [QP(X)|f(X) = j] =

∑
x:f(x)=j

p(x)QP(x)

Pr (f(X) = j)
.

The verification complexity of f when f(X) = j is the smallest expected number of inputs that need to
be queried to verify that f(X) = j, i.e.,

Vj(f)
def
= min

P
C(P|f(X) = j) = min

P

∑
x:f(x)=j

p(x)QP(x)

Pr (f(X) = j)
,

where the minimum is taken over all policies that verify f(X) = j. Equivalently we can take the minimum
over all policies computing f since for the values of f other than j the behavior of the computation policy
is not important.

The minimum expected verification query complexity or simply the verification complexity of f is

V (f)
def
=
∑
j

Pr(f(X) = j)Vj(f) =
∑
j

min
P

∑
x:f(x)=j

p(x)QP(x), (2)

where for each j, we find a potentially different policy P minimizing Vj(f).
An optimal verification policy is one whose expected query complexity is V (f). As with its computation

counterpart, f may have several optimal verification policies.
In the next section, we make a few observations about computation and verification complexity and in

Section 5, we show that for all symmetric functions of independent binary inputs, V (f) = C(f).

3 Preliminary observations

Since computation is one way of verification, or equivalently, a verification policy is a set of computation
policies, one for each value of f , the verification complexity is at most the computation complexity.

Observation 3. For all f , V (f) ≤ C(f).

Proof. Comparing Equations (1) and (2),

V (f) =
∑
j

min
P

∑
x:f(x)=j

p(x)QP(x) ≤ min
P

∑
x

p(x)QP(x) = C(f),

since the sum of minimums is at most the minimum of sum.

Recall that symmetric functions of binary inputs are determined by the input’s weight w
def
= w(X)

def
=∑n

i=1Xi. With a slight abuse of notation, we use f(w(X)) and f(X) interchangeably. The following
observation shows that when a policy computing f stops, the value of f is constant for all possible weights.

Observation 4. If for inputs x, a policy stops after querying n0 zeros and n1 ones, then w(x) can take any
value in the contiguous interval [n1, n − n0]. Furthermore, if the policy computes f , then f(x) is constant
for all x such that w(x) ∈ [n1, n− n0].

4



w(x)

f(w)
0

1

0 1 2 3 4 5 6 7 8

w(x)

g(w)
1

2

3

0 1 2 3 4 5 6 7 8

Figure 1: Example of function g

Proof. After querying n0 zeros and n1 ones,
∑
i xi can take any value in [n1, n−n0] depending on the values

of the unknown inputs. Since when the policy stops, the function value is determined, regardless of the
unknown inputs, f(x) must be the same for all inputs with w(x) ∈ [n1, n− n0].

Let the interval indicator function of f be the function g : [0, n] → [1, n + 1], defined by g(0)
def
= 1 and

the following recursion,

g(i+ 1)− g(i)
def
=

{
0 if f(i+ 1) = f(i),
1 if f(i+ 1) 6= f(i).

g(w) indicates which peacewise-constant interval of f , w(X) belongs to. Figure 1 demonstrates the relation

between f and g by example. Define Ij
def
= {w|g(w) = j} to be the jth peacewise-constant interval of the

function g. The next observation, lower bounds the number of inputs needed in order to compute g.

Observation 5. If w(x) ∈ Ij then for any policy P, QP(x) ≥ n− |Ij |+ 1.

Proof. From Observation 4, we conclude that g(x) = j for j ∈ [n1, n−n0], where n0 is the number of queried
zeros and n1 is the number of queried ones. Hence, [n1, n − n0]⊂Ij . Therefore, n − n0 − n1 + 1 ≤ |Ij |.
Equality is achieved, when [n1, n− n0] = Ij .

We divide intervals into two types. An interval Ij is large if |Ij | ≥ n+1
2 and small otherwise. In Section 5,

we consider the behavior of optimal verification policies for these two types of intervals separately. The next
observation shows that f and g have the same computation complexity.

Observation 6. For any f , a symmetric function of independent binary random variables,

C(f) = C(g).

Proof. For every symmetric function f , the value of g determines the value of f . Therefore, any policy that
computes g also computes f . Hence C(f) ≤ C(g). Conversely, while the value of f may not determine
the value of g, e.g., for the parity function, by Observation 4, when the value of f is determined, w(X) lies
in a known interval over which f is constant, and hence g is determined as well. Therefore, a policy that
computes f also computes g and C(g) ≤ C(f).

While the same result also holds for verification complexity, only one direction is easy to prove.

Observation 7. For any f , a symmetric function of independent binary random variables,

V (g) ≤ V (f).

Proof. Recall that verification policy for f is a collection of computation policies, one for each value of f .
Since g determines f , and a verification policy for f is also a verification policy for g, V (g) ≤ V (f).

Our main result, Theorem 15, shows that for all symmetric functions f of independent binary random
variables, V (g) = C(g). Combining the above observations, we obtain C(g) = V (g) ≤ V (f) ≤ C(f) = C(g)
and hence,

5



Corollary 8. For all symmetric functions f of independent binary random variables,

V (g) = V (f) = C(f) = C(g).

In general, verification complexity appears to be easier to determine than computation complexity, and
verification complexity of the interval indicator functions seems easier to determine than the verification
complexity of symmetric functions.

In the next section we give examples to demonstrate this simplicity. For these examples, we can find
the computation policy by only considering the verification one. A generalization of this result is given in
Section 5.

4 Simplicity of verification

In this section, we find the optimal computation policies for the threshold and delta functions. We start with
the threshold function and find a specific optimal verification policy for it. Next we show that there exists a
computation policy which follows that specific optimal verification policy. As a result, the computation policy
should be optimal since computation complexity is at least verification complexity. Finally we generalize the
result to delta functions. We start by a simple lemma about the property of optimal verification policies.

Consider the case when the threshold function Πθ(X) has value 1. This can be verified only when θ ones
have been observed. Therefore, an optimal verification policy should minimize the expected time to observe
θ ones. It is intuitive to first query the input with highest probability, i.e., X1, and then X2 if it is necessary
and so on. The following lemma formalizes this intuition.

Lemma 9. For Πθ(X) = 1, an optimal verification policy is to query in the order X1, X2, . . . until θ ones
are observed and for Πθ(X) = 0, the order is Xn, Xn−1, . . . until (n− θ + 1) zeros are observed.

Proof. We prove the optimality when Πθ(X) = 1. A similar argument holds when Πθ(X) = 0. It suffices
to show that querying X1 as the first input is optimal since after the first query, the problem reduces to
computing another threshold function for the rest of the inputs.

We prove optimality of querying X1 by induction on (n, θ). If n < θ the function is trivially zero. If
n = θ, all inputs must be queried to verify that Πθ(X) = 1. Therefore, X1 can be queried first.

For θ ≥ 2, suppose Xk is queried first. If Xk = 1, we have to find an optimal verification policy for n− 1
inputs and threshold θ − 1, and if Xk = 0, we have to find an optimal verification policy for n − 1 inputs
and threshold θ. By induction hypothesis, for both these cases there is an optimal hypothesis in which X1

is queried next. This implies that there is an optimal policy for our problem in which the first two observed
inputs are Xk and X1, and since θ ≥ 2 at least two inputs should be queried. Thus the order of Xk and X1

is immaterial and X1 could be queried first, followed by Xk and no further changes to the policy.
This leaves us with the case when θ = 1. For n = 1 it is trivial to ask X1. For n = 2, we proved in

Example 1 that X1 should be queried first. For n > 2 and θ = 1, we again use induction to prove X1 should
be queried first. Suppose an optimal policy P1 that queries Xk 6= X1 first. If Xk = 1 then policy P1 should
stop querying the inputs. On the other hand, if Xk = 0, then by induction hypothesis, policy P1 should
query X1 next. Now consider the new policy P2 which queries X1 and then Xk if needed, and from the third
step onwards, the policy follows the decision of the optimal policy P1. If (X1, Xk) = (0, 0) or (1, 1), then
P1 and P2 query the same number of inputs. Therefore, we only consider the case when {X1, Xk} = {0, 1},
i.e., one and only one of the X1 and Xk is 1. Let

α
def
= Pr (X1 = 1, Xk = 0|{X1, Xk} = {0, 1}) =

p1p̄k
p1p̄k + p̄1pk

≥ 1

2
.

Observe that E [QP2(X)|{X1, Xk} = {0, 1}] = α + 2ᾱ and E [QP1(X)|{X1, Xk} = {0, 1}] = 2α + ᾱ. Since
α ≥ 1

2 , the expected query complexity of policy P2 is smaller than or equal to the expected query complexity
of policy P1. Equality only happens when p1 = pk. As a result, an optimal policy to verify Π1(X) = 1 could
query X1 first. Hence the lemma is proved.

6



The next lemma finds an input which can be queried first in an optimal verification policy for threshold
function. This lemma helps us to find the optimal computation policy.

Lemma 10. An optimal verification policy queries Xθ regardless of value of Πθ(X).

Proof. In Lemma 9 we showed that if Πθ(X) = 1, an optimal verification policy queries X1, X2, . . . till finding
θ ones. As a result, if Πθ(X) = 1, an optimal verification policy should query Xθ at some point. Similarly,
if Πθ(X) = 0, an optimal verification policy queries Xθ at some point.

Lemma 10 shows that if we query Xθ first, we can track an optimal verification policy without knowing
the function value. After observing the value of Xθ, the threshold function will reduce to a new threshold
function over n−1 inputs. Therefore, we can continue on tracking the optimal verification policy. Pseudocode
of this verification policy is described in Optimal-Policy-Threshold.

let i = j = θ and Y = 1
while θ ones or n− θ + 1 zeros are not queried

if Y = 1
query Xi, let Y = Xi, and decrement i

else
query Xj , let Y = Xj , and increment j

end while
output Y

Algorithm 1: Optimal-Policy-Threshold

Observe that Optimal-Policy-Threshold is an optimal verification policy for both Πθ(X) = 0 and
Πθ(X) = 1. This policy does not need to know the function value to proceed and therefore, it is also a
computation policy. Since computation complexity is at least verification complexity, Optimal-Policy-
Threshold is an optimal computation policy.

In the following we generalize this result to the delta function which is defined as

∆θ(w)
def
=

{
1 if w = θ,

0 otherwise.

When a policy computes ∆θ(w) it also shows us whether w < θ, w = θ or w > θ. This can be seen by
Observation 4. We consider the problem of verification for these cases separately. Using the results obtained
for threshold functions, we obtain the following optimal verification policies.

• w = θ: In this case all inputs must be queried to verify that the weight is exactly θ.

• w < θ: This problem is identical to the threshold problem with θ as the threshold value. We know
that an optimal verification policy is to query Xn, Xn−1, . . . until n− θ + 1 zeros are observed.

• w > θ: This problem is identical to the threshold problem with θ+ 1 as the threshold value. We know
that an optimal verification policy is to query X1, X2, . . . until θ + 1 ones are observed.

By comparing these optimal verification policies to optimal verification policies for the threshold function we
can easily show that Optimal-Policy-Threshold can be used for optimal computation policy for delta
function with only changing the stopping criterion. The new stopping criteria is when θ+ 1 ones or n− θ+ 1
zeros are observed, or all inputs have been queried. For the sake of completeness, the Pseudocode for this
policy is given in Optimal-Policy-Delta.

7



let i = j = θ and Y = 1
while θ + 1 ones or n− θ + 1 zeros are not queried

if all the inputs are queried
output 1 and stop

if Y = 1
query Xi, let Y = Xi, and decrement i

else
query Xj , let Y = Xj , and increment j

end while
output 0

Algorithm 2: Optimal-Policy-Delta

5 Equality of verification and computation complexities for sym-
metric functions of independent binary inputs

In this section we consider general symmetric functions of independent binary inputs. Similar to Section 4,
we show that verification and computation complexities of such functions coincide. In Theorem 15 we show
that there is a set of inputs that can be queried first regardless of the function (output) value. This result
will yield in an optimal computation policy that is also an optimal verification policy for all the function
values.

The proof of Theorem 15 is slightly involved and Figure 2 illustrates its key components. Recall the
definitions of large and small intervals from Section 3. In Lemma 13, we consider the optimal verification
policy when the input weight belongs to a large interval and we find some inputs of which one can be
queried first in an optimal verification policy. Conversely, when the weight of the inputs belongs to a small
interval, Lemma 14 finds some inputs any of which can be queried first in an optimal verification policy. A
combination of these two lemmas finds an input that can be queried first in an optimal verification policy
independent of the function value. Lemmas 11 and 12 will be the main tools to prove Lemmas 13 and 14.

By definition, a policy starts by querying a fixed input Xi and the next input to query is a function of
the value of Xi. An optimal policy is called second-input-fixed if the second input queried is some fixed Xj

independent of the value of Xi. On the other hand, a policy may query Xi first and then Xj or Xk next
depending on whether Xi = 0 or Xi = 1. Such a policy is called second-input-varies.

Second Input Fixed The next result is about second-input-fixed optimal policies. Suppose there is a
function for which there exists a second-input-fixed optimal policy, that queries some two inputs Xi and Xj .
Using the fact that the input probabilities are sorted and the function is symmetric, we show that for any
index k between i and j, there exists an optimal policy that queries Xk first.

Lemma 11. Let Popt be a second-input-fixed optimal policy (verification or computation) that queries Xi

and Xj as the first two inputs. Then for any k between i and j (inclusive), there exists an optimal policy
that queries Xk first.

Proof. We first note that since the function is symmetric and inputs are independent, when Xi + Xj = 1,
the policy which is optimal for the case Xi = 0 and Xj = 1 is also optimal for Xi = 1 and Xj = 0. Let
Popt,2 denote this policy. Let Popt,1, and Popt,3 denote optimal policies when Xi +Xj = 0, and Xi +Xj = 2
respectively. Figure 3 gives a schematic of the optimal policy for computing or verifying the value of the
function in this setting.

Without loss of generality, we assume that i < j, and let i < k < j. We will consider four policies, each
of which queries Xk first, and show that at least one of them is as good as Popt. We note that which of
these is optimal might be depend on the function itself. We now briefly describe the functioning of these
policies ( See illustration in Figure 4). After querying Xk, depending on whether its values is 0 or 1, we
query either Xi or Xj . This has four possible choices. After these two queries, the policy follows the steps

8



Side lemmas for differ-
ent type of second query

in an optimal policy

Lemma 11: All the inputs
between first and second query
are optimal to be queried first

Lemma 12: The median-
input of first query and

probable second queries is
optimal to be queried first

Lemma 13: If w ∈ Ij such that
Ij is large, it finds an optimal
input that can be queried first

Lemma 14: if w ∈ Ij such that
Ij is small, it finds optimal

inputs that can be queried first

Theorem 15: C(g) = V (g)

second-input-fixed second-input-varies

large intervals small intervals

Figure 2: Proof scheme for Theorem 15

Popt
Xi

Xj Xj

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3

︸ ︷︷ ︸

0 1

0 1 0 1

Figure 3: Second-input-fixed policy

9



P1

Xk

Xi Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3

︸ ︷︷ ︸
Xk→Xj Xk→Xj Xk→Xj

0 1

0 1 0 1

P2

Xk

Xi Xj

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,2 Popt,3

Xk→Xj Xk→Xj Xk→Xi Xk→Xi

0 1

0 1 0 1

P3

Xk

Xj Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,2 Popt,3

Xk→Xi Xk→Xi Xk→Xj Xk→Xj

0 1

0 1 0 1

P4

Xk

Xj Xj

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3

︸ ︷︷ ︸
Xk→Xi Xk→Xi Xk→Xi

0 1

0 1 0 1

Figure 4: Candidates for the optimal policy if second input is fixed

of Popt (imagining Xk as one of the Xi or Xj which was not queried). When Popt requires querying Xk (in
the original policy), we simply query Xi or Xj (the one that was not queried). We next describe this in a
little more detail.

The first policy queries Xk and then Xi. It then follows Popt and queries Xj when Popt required querying
Xk. In the second policy Xk is queried first, and depending on its value we query Xi or Xj and follow Popt.
When Popt required querying Xk, we query the input among Xi and Xj that has not been queried yet. The
remaining two policies are similarly defined, taking care of the other cases.

We show that the expected query complexity of at least one of the four policies defined here is at most
the query complexity of Popt, namely one of these policies is as good as Popt.

Using linearity of expectations, the complexity can be written as

C(Popt) = p̄ip̄j(a00p̄k + b00pk) + p̄ipj(a01p̄k + b01pk)+

pip̄j(a01p̄k + b01pk) + pipj(a11p̄k + b11pk),

where ar,t and br,t are non-negative numbers depending on the structure of Popt (which in turn depends on
the output function), for r, t ∈ {0, 1}, independent of pi, pj and pk. The complexity of the four potential
policies can therefore be written as,

C(P1) = p̄kp̄i(a00p̄j + b00pj) + p̄kpi(a01p̄j + b01pj)+

pkp̄i(a01p̄j + b01pj) + pkpi(a11p̄j + b11pj),

C(P2) = p̄kp̄i(a00p̄j + b00pj) + p̄kpi(a01p̄j + b01pj)+

pkp̄j(a01p̄i + b01pi) + pkpj(a11p̄i + b11pi),

C(P3) = p̄kp̄j(a00p̄i + b00pi) + p̄kpj(a01p̄i + b01pi)+

pkp̄i(a01p̄j + b01pj) + pkpi(a11p̄j + b11pj),

C(P4) = p̄kp̄j(a00p̄i + b00pi) + p̄kpj(a01p̄i + b01pi)+

pkp̄j(a01p̄i + b01pi) + pkpj(a11p̄i + b11pi).

In order to compare these policies with the optimal policy, we subtract Popt from each of them. Upon

10



Popt
Xi

Xj Xk

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3 Popt,4

0 1

0 1 0 1

Figure 5: Second-input-varies policy

simplification, this yields

C(P1)− C(Popt) = p̄i(pj − pk)(b00 − a01) + pi(pj − pk)(b01 − a11),

C(P2)− C(Popt) = p̄i(pj − pk)(b00 − a01) + pj(pi − pk)(b01 − a11),

C(P3)− C(Popt) = p̄j(pi − pk)(b00 − a01) + pi(pj − pk)(b01 − a11),

C(P4)− C(Popt) = p̄j(pi − pk)(b00 − a01) + pj(pi − pk)(b01 − a11).

By assumption, input probabilities are sorted in decreasing order, and hence pi ≥ pk ≥ pj . If any of pi, pj ,
and pk are equal, the result follows trivially. Assume that they are all different. In the four equations above,
observe that the coefficients multiplied by (b00 − a01) and (b01 − a11) take all possible negative and positive
signs. Therefore, either all the equations are zero or at least one of them is negative. Hence, at least one of
the four policies performs at least as well as the optimal policy.

Second Input Varies We now consider second-input-varies policies. Consider an optimal policy that
queries Xi first and then Xj or Xk depending on whether Xi = 0 or Xi = 1 respectively. For the inputs
Xi, Xj , Xk, the median index is defined as the median of {i, j, k}. We call the corresponding input as the
median-input. We now show that there is an optimal policy that queries the median of these inputs first.

Lemma 12. For the second-input-varies policy defined above, there exists an optimal policy that queries the
median-input of {Xi, Xj , Xk} first.

Proof. If j < i < k or k < i < j, then by definition, the optimal policy first queries the median-input. We
consider the case when i > max{j, k}. The case when i < min{j, k} is similar.
Figure 5 describes an optimal policy Popt. As in the proof of Lemma 11,

C(Popt) = p̄ip̄j(p̄ka00 + pkb00) + p̄ipj(p̄ka01 + pkb01)+

pip̄k(p̄ja10 + pjb10) + pipk(p̄ja11 + pjb11).

Since Popt is optimal, changing Popt,2 to Popt,3 in Figure 5 should not decrease the complexity. As a result,

p̄ka01 + pkb01 ≤ p̄ka10 + pkb10. (3)

Similarly,

p̄ja10 + pjb10 ≤ p̄ja01 + pjb01. (4)

We consider the two possible orderings of j and k and for each we show that there exists an optimal policy
that queries the median input first.
Case 1 (j < k < i) We consider the policies in Figure 6 and show that at least one of them is as good
as Popt. Note that both of these policies query the median-input first. By the linearity of expectation, the
expected query complexity of the two policies in Figure 6 are

11



P1

Xk

Xi Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,3 Popt,3 Popt,4

Xk→Xj

0 1

0 1 0 1

P2

Xk

Xj Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3 Popt,4

Xk→Xi Xk→Xi

0 1

0 1 0 1

Figure 6: Candidates for the optimal policy if second input varies, j < k

C(P1) = p̄kp̄i(p̄ja00 + pjb00) + p̄kpi(p̄ja10 + pjb10)+

pkp̄i(p̄ja10 + pjb10) + pkpi(p̄ja11 + pjb11),

C(P2) = p̄kp̄j(p̄ia00 + pib00) + p̄kpj(p̄ia01 + pib01)+

pkp̄i(p̄ja10 + pjb10) + pkpi(p̄ja11 + pjb11).

either C(P1) ≤ C(Popt) or C(P2) ≤ C(Popt).
If C(P1) > C(Popt), then

pj p̄kp̄ib00 + p̄jpkp̄ia10 + pjpkp̄ib10 > pj p̄kp̄ia01 + p̄jpkp̄ib00 + pjpkp̄ib01.

Applying (4),

pj p̄kp̄ib00 + p̄jpkp̄ia01 > pj p̄kp̄ia01 + p̄jpkp̄ib00.

Since pj > pk, we have

b00 > a01. (5)

If C(P2) > C(Popt),

p̄j p̄kpib00+pj p̄kpib01 + p̄jpkp̄ia10 + pjpkp̄ib10 >

p̄j p̄kpia10 + pj p̄kpib10 + p̄jpkp̄ib00 + pjpkp̄ib01,

which can be rewritten as

p̄j p̄kpib00 + pj p̄kpib01 + (pkp̄i − pip̄k)(p̄ja10 + pjb10) > p̄jpkp̄ib00 + pjpkp̄ib01.

Since pkp̄i − pip̄k ≥ 0, using (4) this expression simplifies to

p̄j p̄kpib00 + pj p̄kpib01 + (pkp̄i − pip̄k)(p̄ja01 + pjb01) > p̄jpkp̄ib00 + pjpkp̄ib01.

Grouping terms, this yields

(pkp̄i − pip̄k)p̄ja01 > (pkp̄i − pip̄k)p̄jb00.

Since pkp̄i − pip̄k ≥ 0, this implies a01 > b00, contradicting (5).
Case 2 (k < j < i) Inequalities (3) and (4) still hold. As before we have two policies in Figure 7 and show
that at least one of them is as good as our optimal policy. This time we replace Popt,3 by Popt,2 as one of
the choices. By the linearity of expectation, the expected query complexity of the two policies are

12



P1

Xj

Xi Xi

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,2 Popt,4

Xj →Xk

0 1

0 1 0 1

P2

Xj

Xi Xk

..
.

..
.

..
.

..
.

Popt,1 Popt,2 Popt,3 Popt,4

Xj →Xi Xj →Xi

0 1

0 1 0 1

Figure 7: Candidates for the optimal policy if second input varies, j > k

C(P1) = p̄j p̄i(p̄ka00 + pkb00) + p̄jpi(p̄ka01 + pkb01)+

pj p̄i(p̄ka01 + pkb01) + pjpi(p̄ka11 + pkb11),

C(P2) = p̄j p̄i(p̄ka00 + pkb00) + p̄jpi(p̄ka01 + pkb01)+

pj p̄k(p̄ia10 + pib10) + pjpk(p̄ia11 + pib11).

If C(P1) > C(Popt),

p̄j p̄kpia01 + p̄jpkpib01 + pj p̄kpia11 > p̄j p̄kpia10 + p̄jpkpia11 + pj p̄kpib10

⇒ p̄j p̄ka01 + p̄jpkb01 − p̄j p̄ka10 > p̄jpka11 + pj p̄kb10 − pj p̄ka11.

Subtracting p̄jpkb10 from both sides,

p̄j (p̄ka01 + pkb01 − p̄ka10 − pkb10) > − (p̄jpk − pj p̄k) (b10 − a11) . (6)

Let E = p̄ka10 + pkb10 − p̄ka01 − pkb01. (3) shows that E ≥ 0. Observe that p̄jpk − pj p̄k = pk − pj > 0.
Therefore, (6) can be rewritten as

(pk − pj)(b10 − a11) > p̄j · E. (7)

If C(P2) > C(Popt),

p̄j p̄kpia01+p̄jpkpib01 + pj p̄kp̄ia10 + pjpkp̄ia11 >

p̄j p̄kpia10 + p̄jpkpia11 + pj p̄kp̄ia01 + pjpkp̄ib01,

which can be rewritten as

(pj p̄i − pip̄j) (p̄ka10 − p̄ka01 − pkb01) > −pk(pj − pi)a11.

Observe that pj p̄i − pip̄j = pj − pi > 0. Adding (pj − pi)pkb10 to both sides and substituting E = p̄ka10 +
pkb10 − p̄ka01 − pkb01,

E > pk(b10 − a11). (8)

Since pk > pj , combining (7) and (8) gives

E >
pkp̄j
pk − pj

E

=
pk − pjpk
pk − pj

E

> E,

a contradiction proving the lemma.

13



Recall that we defined intervals to be either large or small in Section 3. In Lemmas 13 and 14 we consider
the first input queried for optimal policies, for the cases when the input weight lies in large and small interval
respectively.

Lemma 13. Let w(X) be in a large interval with size L. There exists an optimal policy that queries some
Xi first where i ∈ [n− L+ 1, L], and verifies the value of g(w).

Proof. Suppose w(X) ∈ Im where Im is a large interval. Let Ln,L = {Xn−L+1, . . . , XL}. Our goal is to
show that there exists an optimal verification policy that queries some Xi ∈ Ln,L first.

The proof is by induction on n.
We first consider some corner cases. Consider the case when n ∈ Im. Then verifying the value of g(w) is
same as verifying w(X) ≥ n − L + 1 or Πn−L+1(w) = 1. From Lemma 10 on threshold functions, Xn−L+1

can be queried first in an optimal verification policy and Xn−L+1 ∈ Ln,L. Hence the lemma holds for this
corner case. The case of 0 ∈ Im follows similarly for verifying that a threshold function is 0.
We now prove the result when 0 and n are not in Im.

Assume the induction hypothesis that the lemma holds for any function g′ with n′ = n − 1 inputs.
Observation 5 shows that at least n−L+ 1 inputs must be queried. Since 0 /∈ Im and n /∈ Im, L is smaller
than n and at least two inputs need to be queried.

Let Popt be an optimal policy that queries Xi first. If Xi ∈ Ln,L then thre is nothing to prove. If
Xi /∈ Ln,L, then either i > L or i < n−L+ 1. We consider the case, when i > L and the case i < n−L+ 1
follows similarly.

Let X′ be all the inputs except Xi. Verifying w(X) ∈ Im is equivalent to verifying w(X′) + Xi ∈ Im.
Since 0 and n are not in Im, after querying Xi, verifying w(X′) +Xi ∈ Im is same as verifying w(X′) ∈ I ′m
for some I ′m such that |I ′m| = L.

By induction, there is an optimal policy P ′opt that verifies w(X) ∈ Im and queries Xi first and then
based on its value, it chooses one of the inputs inside Ln−1,L for the second query. Either the policy P ′opt is
second-input-fixed or second-input-varies and we consider them separately.

If P ′opt is second-input-fixed, then suppose it queries Xj as the second input such that Xj ∈ Ln−1,L. By
Lemma 11, any inputa among {Xj , . . . , Xi} can be queried first in an optimal policy and {Xj , . . . , Xi}

⋂
Ln,L 6=

∅. If the policy is second-input-varies, then suppose it queries Xj if Xi = 0, and Xk if Xi = 1, such
that Xj , Xk ∈ Ln−1,L. Then, by Lemma 12, there is an optimal policy that queries the median-input of
{Xi, Xj , Xk}, which is in Ln,L, first. Therefore, the lemma is proved for i > L and similar proof holds for
i < n− L+ 1.

The next lemma considers the case when the weight belongs to a small interval.

Lemma 14. Suppose w(X) belongs to a small interval of size `, then for each input in {X`, . . . , Xn−`+1},
there is an optimal policy that queries that input first.

Proof. The proof is by an induction on n and is similar to the proof of Lemma 13. We explain the general
scheme of the proof.

Consider an optimal policy that queries Xi first. The value of i can be in one three distinct sets, [1, `−1],
[`, n − ` + 1], and [n − ` + 2, n]. For all these possibilities, using Lemmas 11, 13 and induction hypothesis,
we can show that {X`, . . . , Xn−`+1} are eligible choices to be queried first in some optimal policy.

The following theorem is the main contribution of the paper. It states that for all symmetric functions
of independent binary inputs, there exists an optimal computation policy that is also an optimal verification
policy.

Theorem 15. C(g) = V (g).

Proof. Observe that all symmetric functions have at most one large interval, except the threshold function
Πn+1

2
(x) for odd n. The theorem is proved for this function in Section 4. In the remainder of the proof we

assume that there is at most one large interval.

14



Let Aj be the set of inputs that can be queried first in the optimal verification policy when w ∈ Ij . It
suffices to show that

⋂
j Aj 6= ∅ since it implies that there is an input that can be queried first in an optimal

verification policy regardless of the function value. After the first query, the similar argument can be used
for the rest of the inputs and we can track the optimal verification policies without knowing function value.

Let `j
def
= |Ij | and k be the index of the longest interval. If there is more than one longest interval, choose

one of them arbitrarily. We consider the two cases when `k <
n+1
2 and `k ≥ n+1

2 separately. For both the
cases, we show that

⋂
j Aj 6= ∅.

• When `k < (n+ 1)/2, then Ik is small interval. By Lemma 14, for all j,

{X`j , . . . , Xn−`j+1} ⊆ Aj .

Therefore, {X`k , . . . , Xn−`k+1} ⊆ Aj and
⋂
j Aj 6= ∅.

• When `k ≥ (n+ 1)/2, hence Ik is large interval. By Lemma 14, ∀j 6= k,

{X`j , . . . , Xn−`j+1} ⊆ Aj .

Note that,
{Xn−`k+1, . . . , X`k} ⊆ {X`j , . . . , Xn−`j+1}.

Therefore, ∀j 6= k, {Xn−`k+1, . . . , X`k} ⊆ Aj . By Lemma 13,

{Xn−`k+1, . . . , X`k}
⋂
Ak 6= ∅.

Hence
⋂
j Aj 6= ∅.

Therefore, ∩Aj is not empty.

From the proof of Theorem 15, we have the following observation. Let `max
def
= maxj |Ij |.

Observation 16. If `max < (n+ 1)/2, an optimal computation policy queries all the inputs X`max
, . . . , Xn−`max+1

and if `max = (n+ 1)/2, it queries X`max
.

Observation 16 can be used to find an optimal computation policy for a function with small `max. In
particular, if `max is small, using Observation 16, we reduce the number of inputs from n to 2`max − 2.
For a smaller number of inputs, it is possible to find the optimal computation policy using an exhaustive
search. In the following, we give an example to show how this result can be used in order to find an optimal
computation policy.

Example 17. In this example, we find the optimal computation policy for functions with `max ≤ 2. Obser-
vation 16 shows that the optimal computation policy should query all the inputs X2, . . . , Xn−1. As a result,
only X1 and Xn are left to be queried and the optimal computation policy for any symmetric function with
two inputs is trivial.

6 Functions with different verification and computation complex-
ities

Section 5 shows that computation and verification complexities are same for symmetric functions of inde-
pendent binary inputs. We show that the symmetry, independence, and binary restrictions are necessary,
and relaxing any of them may result in functions whose verification complexity is strictly lower than their
computation complexity.

15



X1

X2 X3

f = 1 X3 f = 2 X2

f = 4 f = 3 f = 4 X = 3

0 1

0 1 0 1

0 1 0 1

Figure 8: Optimal computation policy for Example 18

6.1 Non-symmetric Functions

The following example is a non-symmetric function of independent binary inputs that has different verification
and computation complexities.

Example 18. Let X1, X2, and X3 be independent bernoulli(1
2 ) random variables. Consider the non-

symmetric function f(x) defined in Table 1. We show that its verification complexity is,

V (f) =

4∑
j=1

Vj(f)p(f(X) = j) =
2

4
+

2

4
+

2

4
+

3

4
=

9

4
.

x1x2x3 000 001 100 110 011 111 010 101
f(x) 1 1 2 2 3 3 4 4

Table 1: Function in Example 18

The first three terms correspond to function values 1, 2, and 3, each occurring with probability 1/4 and
verifying them requires to query exactly two inputs. The fourth term corresponds to function value 4. In that
case, querying all the three inputs is necessary to verify the function value.

On the other hand, we show that the computation complexity is 5
2 . Suppose we start with querying X1 as

the first input. Querying X2 or X3 has a similar result. Based on the X1 value, the function can be rewritten
as in Table 2.

x1 = 0 x1 = 1
x2x3 00 01 11 10
f(x) 1 1 3 4

x2x3 00 10 11 01
f(x) 2 2 3 4

Table 2: Induced functions in Example 18

The optimal computation policy that queries X1 first is shown in Figure 8. A simple calculation shows
that the expected query complexity is 5

2 . As a result, computation and verification complexity are different
for this example.

Example 18 has a non-binary output. Next, we consider a binary-input and output function where the
inputs are independent and the verification and computation complexities are different.

Example 19. Let X1, X2, and X3 be independent bernoulli(1
2 ) and X4 be bernoulli( 1

10 ). Consider the
non-symmetric function f(x) defined in Table 3

With exhaustive search, we can show that if f = 0, then an optimal verification policy should query X4

first, however if f = 1 querying X3 before X4 results in a smaller expected query complexity. As a result,
different function values imply different set of inputs to be queried first in an optimal verification policy.
Therefore, computation and verification complexity are different for this example.

16



x1x2x3x4 0000 1000 0100 1100 0010 1010 0110 1110
f(x) 0 0 1 1 0 1 0 1

x1x2x3x4 0001 1001 0101 1101 0011 1011 0111 1111
f(x) 1 0 1 1 1 0 1 1

Table 3: Function in Example 19

6.2 Functions with dependent inputs

The next example is of a symmetric binary-input function that with dependent inputs has different verifica-
tion and computation complexities.

Example 20. Consider the symmetric binary function and input probabilities shown in Table 4, where ε is
a small positive constant so we can ignore its effect on our calculation.

f(x) = 1 x1x2x3x4 1100 1010 0110 0101 0011 1001
p(x) ε ε q q q 3q

f(x) = 1 x1x2x3x4 1110 1101 1011 0111 1111
p(x) ε ε ε ε ε

f(x) = 0 x1x2x3x4 0000 1000 0100 0010 0001
p(x) ε ε ε ε q

Table 4: Function and input probabilities in Example 20

If f(X) = 0, in an optimal verification policy, all the inputs other than X4 are eligible to be queried first.
However, if f(X) = 1, We can show that the first two steps of an optimal verification policy have to follow
Figure 9. Therefore, based on the function value, an optimal verification policy should query different set of
inputs first. Hence the verification and computation complexities are different.

X4

X2 or X3 X1

..
.

..
.

0 1

Figure 9: Optimal verification policy in Example 20 when f(X) = 1

6.3 Non-binary inputs

Our last example is a symmetric function of ternary independent inputs where the verification and compu-
tation complexities are different.

Example 21. Let four independent ternary random variables be distributed over ternary alphabet according
to Table 5. And consider the symmetric function of the variable sum

f(x) =


0 if

∑4
i=1 xi ≤ 2,

1 if 3 ≤
∑4
i=1 xi ≤ 5,

0 if 6 ≤
∑4
i=1 xi.

The minimum number of inputs to verify f(X) = 0, namely
∑4
i=1Xi ≤ 2, is 3 and the optimal verification

policy will query X2, X3 or X4 as a first input but not X1, since X1 has the smallest probability of zero
among the inputs. Similarly, If

∑4
i=1 xi ≥ 6 the optimal verification policy will query X1, X3 or X4 as a first

17



0 1 2
x1 2ε 1

2 − ε
1
2 − ε

x2
1
2 − ε

1
2 − ε 2ε

x3
1
2 − ε 2ε 1

2 − ε
x4 0.1 0.7 0.2

Table 5: Input probabilities in Example 21

input but not X2. With exhaustive search, we can show that if 3 ≤
∑4
i=1 xi ≤ 5 the optimal verification policy

should query X1 first. Since the first queries for different function values does not intersect, verification and
computation complexities are different.

References

[Aar03] Scott Aaronson. Quantum certificate complexity. In 18th Annual IEEE Conference on Computa-
tional Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages 171–178. IEEE,
2003.

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[AJO11] Jayadev Acharya, Ashkan Jafarpour, and Alon Orlitsky. Expected query complexity of symmetric
boolean functions. In Communication, Control, and Computing (Allerton), 2011 49th Annual
Allerton Conference on, pages 26–29. IEEE, 2011.

[Amb05] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and
element distinctness with small range. Theory of Computing, 1(1):37–46, 2005.

[AW01] Andris Ambainis and Ronald de Wolf. Average-case quantum query complexity. Journal of
Physics A: Mathematical and General, 34(35):6741, 2001.

[BDCG89] Shai Ben-David, Benny Chor, and Oded Goldreich. On the theory of average case complexity.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA, pages 204–216. ACM, 1989.

[BN95] Yosi Benasher and Ilan Newman. Decision trees with boolean threshold queries. Journal of
Computer and System Sciences, 51(3):495–502, 1995.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. CoRR, abs/cs/0606037, 2006.

[BW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002.

[DFO10] Anand K Dhulipala, Christina Fragouli, and Alon Orlitsky. Silence-based communication. In-
formation Theory, IEEE Transactions on, 56(1):350–366, 2010.

[DJO+12] Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan, and Ananda Theertha Suresh.
On the query computation and verification of functions. In Proceedings of the 2012 IEEE Inter-
national Symposium on Information Theory (ISIT), pages 2711–2715. IEEE, 2012.

[KK10] Hemant Kowshik and PR Kumar. Optimal ordering of transmissions for computing boolean
threshold functions. In Proceedings of the 2010 IEEE International Symposium on Information
Theory (ISIT), pages 1863–1867. IEEE, 2010.

18



[NW99] Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median
and related statistics. In Proceedings of the thirty-first annual ACM symposium on Theory of
computing, pages 384–393. ACM, 1999.

[San95] Miklos Santha. On the monte carlo boolean decision tree complexity of read-once formulae.
Random Structures & Algorithms, 6(1):75–87, 1995.

[Wan97] Jie Wang. Average-case computational complexity theory. Complexity Theory Retrospective II,
pages 295–328, 1997.

[Weg87a] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987.

[Weg87b] Ingo Wegener. The complexity of symmetric boolean functions. In Computation Theory and
Logic, In Memory of Dieter Rödding, pages 433–442, 1987.

19


	1 Introduction
	2 Notation and formulation
	3 Preliminary observations
	4 Simplicity of verification
	5 Equality of verification and computation complexities for symmetric functions of independent binary inputs
	6 Functions with different verification and computation complexities
	6.1 Non-symmetric Functions
	6.2 Functions with dependent inputs
	6.3 Non-binary inputs


