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Abstract—Motivated by protein sequencing, we con-
sider the problem of reconstructing a string from
the compositions of its substrings. We provide several
results, including the following. General classes of
strings that cannot be distinguished from their substring
compositions. An almost complete characterization of
the lengths for which reconstruction is possible. Bounds
on the number of strings with the same substring
compositions in terms of the number of divisors of
the string length plus one. A relation to the turnpike
problem and a bivariate polynomial formulation of
string reconstruction.

I. INTRODUCTION

A protein is a long sequence of amino acids whose
composition and order determine the protein’s prop-
erties and functionality. A common tool for finding
the amino-acid sequence is Mass Spectrometry [1, 2].
It takes a large number of identical proteins and
passes them through an ion source which randomly
breaks them into substrings. The resultant mixture
is then analyzed by a mass spectrometer that gives
the mass to charge ratio. This in conjunction with
other methods yield the weights of the substrings
generated. The weight information is then used to
infer the amino-acid sequence.

In this paper we make two simplifying assumptions
that reduce protein reconstruction to a combinato-
rial problem, which we analyze. The composition
of a string is the multiset of its elements, namely
the number of times each of its elements appears,
regardless of the order. For example, the compo-
sition of the sequence BABCAA is the multiset
{A, A,A, B, B, C}, which we often denote A3B2C,
indicating that the sequence has three A’s, two B’s,
and one C.

Assumption 1: The composition of every protein
substring can be deduced from its weight.

For example, let A, B, and C be three amino acids
with respective weights 13, 7, and 4. A sequence
of weight 11 clearly consists of one B and one C.
Similarly, a weight of 18 implies two B’s and one

C in any order possible. However, a weight of 20
could arise from one A and one B or from 5 C’s,
in which case we are not able to deduce the com-
position from weights. The assumption is that such
confusions never arise. While clearly idealized, the
assumption could be valid if all amino-acid weights
are sufficiently large and different.

Assumption 2: If the protein sequence is of length
n, then all

(n+1
2

)
substrings appear roughly equal

number of times in the mixture.
For example, the string AAB has 6 =

(3+1
2

)

substrings: A, A, B, AA, AB, and AAB. The
assumption implies that in the mixture, each substring
will appear the same number of times, hence for
example A will occur twice as many times as B,
AB, AA and AAB.

Under the first assumption, mass-spectrometry pro-
tein sequencing reduces to reconstructing a sequence
from a collection of its substring compositions where
each substring composition is given an unknown
number of times. With the second assumption, the
problem is further reduced to reconstructing a se-
quence from the collection of its substring compo-
sition, each given exactly once. We study the extent
to which that can be done.

II. DEFINITIONS

The composition multiset of a sequence s =
s1s2 . . . sn is the multiset

Ss
def= {{sisi+1 . . . sj} : 1 ≤ i ≤ j ≤ n}

of compositions of all
(n+1

2

)
substrings of s. For

example,

SAAB = {A, A,B,A2, AB,A2B},
SABA = {A, A,B,AB, AB, A2B}.

Note that each composition is given with the number
of times it appears. We study the extent to which a
sequence can be reconstructed from its decomposition
multiset.
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Two sequences s and t are confusable, denoted s ∼
t, if they have the same decomposition multisets.

The reversal of a sequence s = s1s2 . . . sn is the
sequence s′

def= snsn−1 . . . s1. A sequence and its
reversal clearly have the same composition multiset,
and are hence confusable. We call this a trivial con-
fusion, and are interested in non-trivial confusions.

Protein sequences are over alphabet of size 20,
corresponding to the number of amino acids. Yet
reconstruction of binary sequences can be extended to
reconstruct sequences over any finite alphabet. This
can be done by substituting a subset of symbols
with a 1 and others with 0. We then use the binary
reconstruction algorithm to get the position of 1’s.
The process can be repeated to get positions of all
symbols one after another. We therefore consider only
the problem of reconstructing binary sequences from
their composition multiset.

Let
Cs = {t : Ss = St}

be the set of all sequences which are confusable with
s, and let

Hn = max
s∈{0,1}n

|Cs|

be the largest number of mutually confusable n-bit
sequences. From the above, Hn ≥ 2 for every n ≥ 2,
and we would like to see when it is strictly larger.

III. RESULTS

We provide a general construction of non-trivially
confusable sequences. While we don’t know if this
construction covers all confusable sequences, we
show that it comes close to determining which se-
quence lengths n have non-trivial confusions.

Specifically, the construction shows that if n + 1
is a product of two integers, each ≥ 3, then Hn > 2,
namely there are non-trivial confusions. Conversely,
if n + 1 is not a product of two integers ≥ 3, then it
is either 8, a prime or twice a prime. We show that
if n + 1 is a prime then Hn = 2, namely there are
no non-trivial confusions, and that if n + 1 is twice
a prime then Hn ≤ 4, namely any sequence is non-
trivially confused with at most one sequence and its
reversal.

We also provide general bounds on Hn. We show
that Hn can be arbitrarily large as n increases by
proving that Hpk = 2k for p prime ≥ 3. We also
prove that for all n, Hn ≤ 2d(n+1)−1, where d(n) is
the number of divisors of n.

n Confusable Sequences Construction
8 {01001101, 01101001} 01◦01
11 {00100011001, 00110010001} 001◦01

{00100011001, 00110010001} 01◦001
14 {01001001001101, 01101001001001} 01◦0001

{01001001101001, 01001101001001} 01◦0010
{01001001101101, 01101101001001} 01◦0011
{01001101001101, 01101001101001} 01◦0101
{01010010110101, 01011010100101} 0101◦01
{00110001110011, 00111001100011} 0011◦01
{00010000110001, 00011000100001} 0001◦01

TABLE I
CONFUSABLE SEQUENCES OF LENGTH ≤14

To derive some of these results, we relate the se-
quence reconstruction problem to the turnpike prob-
lem and its formulation as polynomial factoriza-
tion [3, 4]. We show that sequence reconstruction can
be formulated as a bivariate polynomial factorization
problem, and use some turnpike-problem results as
well as some new ones specific to sequence recon-
struction to derive the bounds mentioned above. [5]
looks at the computational aspect of the problem and
mention an algorithm for reconstruction of sequences
from their multisets.

IV. CONFUSABLE STRINGS

Table I outlines all confusable sequences of length
at most 14. The complement of a sequence is obtained
by complementing each of its bits. If two sequences
are confusable, so are their complements. For parsi-
mony, the table therefore lists only sequences starting
with a 0, and omits reversals.

Note that for length n ≤ 7 there are only trivial
confusions, and the shortest non-trivially confusable
sequences are the 8-bit sequences 01001101 and
01101001. Then again there are no non-trivial confu-
sions until length 11, etc. All of these are explained
by the following constructions.

The confusable 8-bit sequences in the table can
be represented as 01 0 01 1 01 and 01 1 01 0 01.
These sequences are formed by interleaving 01 with
the bits 01 and with the bits 10 respectively. This
patterns extends to yield other confusable sequences.

The interleaving of sequence s with the bits of
a sequence t = t1 . . . tm is the sequence s ◦ t

def=
st1st2 . . . tms. The sequences above are 01 ◦ 01 and
01 ◦ 10. We prove that s1 ◦ s2 is always confusable
with s1 ◦ s′2, where s′2 was defined to be the reversal
of s2.

A sequence s is factorizable if it is of the form s1◦
s2 with both s1 and s2 of length at least 2. Following
are some useful properties of ◦.
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Lemma 1:
1) (s1 ◦ s2)′ = s′1 ◦ s′2.
2) ‘◦’ is associative, i.e., s1◦(s2◦s3) = (s1◦s2)◦

s3
def= s1 ◦ s2 ◦ s3.

3) Every sequence s has a unique maximal factor-
ization as s = s1 ◦ s2 ◦ · · · ◦ sm. !

The next theorem characterizes a class of mutually-
confusable sequences. The confusable sequences ob-
tained by this method can be related to the equiv-
alence condition for Ribbon Schur functions [6].
Another class of confusable sequences is provided
in Corollary 3.

Theorem 2: Let s1 ◦ s2 ◦ · · · ◦ sm be the maximal
factorization of s. Then s is confusable with all
sequences of the form t1 ◦ t2 ◦ · · · ◦ tm, where each
ti is either si or s′i.

Proof: s = s1 ◦ s2 ◦ · · · ◦ sm. Let s∗ be obtained
by replacing sj by s′j in s for some j. It suffices to
show that s ∼ s∗. This is because any configuration
of t can be reached from s by replacing one factor
of the factorization with its reversal at each step.

We first show that s = s1 ◦ s2 ∼ s1 ◦ s′2 = t. Let
s1 = sn

1 and s2 = tk1 . Consider any substring sb
a of

s. Let a = p ·(n+1)−q, and b = r ·(n+1)+s, with
q, s < n+1 and a ≤ b. Let a′ = (k+1−r)·(n+1)−q
and b′ = (k + 1 − p) · (n + 1) + s. The substrings
t
b′

a′ and sb
a can be seen to have the same composition.

This yields a bijection from the substrings of s to the
substrings of t such that each substring and its image
have same composition. This proves that the two have
same composition multiset. This and Lemma 1 prove
that s∗ ∼ s.

s∗ = s1 ◦ · · · sj−1 ◦ s′j ◦ sj+1 ◦ · · · sm

∼ (s1 ◦ · · · sj−1)′ ◦ s′j ◦ sj+1 ◦ · · · ◦ sm

∼ (s1 ◦ · · · sj−1)′ ◦ s′j ◦ (sj+1 ◦ · · · ◦ sm)′

= s′1 ◦ · · · ◦ s′m = s′ ∼ s. !

All confusable sequences of length less than 23
have the form described in the above theorem. The
23-bit sequences 01000101010000100011001 and
01010100010000110010001 are confusable but not of
the above form. Rather, they have the more general
structure described in the next corollary.

Corollary 3: Let s1, . . ., sm be sequences of the
same type (hence same length). Let s0 be any string
and s1s2 . . . sm−1 any sequence. Then

(s1 ◦ s0)s1(s2 ◦ s0)s2 . . . sm−1(sm ◦ s0) ∼
(s1 ◦ s′0)s1(s2 ◦ s′0)s2 . . . sm−1(sm ◦ s′0)

Note that if the theorems above provide complete
characterization of confusable sequences then se-
quences which are confusable with sequences other
than their reversals, must have length one less than
product of two numbers larger than 3. In particular,
n+1 cannot be a prime.

V. POLYNOMIAL FORMULATION

s = s1s2 · · · sn is a binary sequence. Consider
the following representation of the sequence as a
bivariate polynomial.

P (s) = P (x, y) =
n∑

i=0

xi−wiywi ,

where wi = s1 + s2 + · · ·+ si is the weight (number
of one’s) of the first i bits of s. For example

P (1011) = 1 + y + xy + xy2 + xy3.

This is called generating polynomial of the sequence.
We can represent a sequence with its generating
polynomial and vice versa.

A polynomial is generating polynomial of length n
if and only if 1) tt has n + 1 terms, exactly one each
of degree 0, 1, 2, . . . , n, 2) each term has coefficient
1 and 3) the ratio of the term of degree i + 1 to the
term of degree i is either x or y for i = 0, 1, . . .,
n − 1.

Let Ss(x, y) be the polynomial obtained by first
replacing in Ss each 0 and 1 with x and y respectively
and then summing up all the terms.

For P (s) = P (x, y) the following is easy to see

P (x, y)P (
1
x

,
1
y
) = n + 1 + Ss(x, y) + S−1

s (
1
x

,
1
y
).

Sequence reconstruction problem is thus equivalent
to the following:

Given P (x, y)P (
1
x

,
1
y
) find P (x, y).

Two sequences P (s) = P (x, y) and P (t) = Q(x, y)
have identical composition multiset if and only if

P (x, y)P (
1
x

,
1
y
) = Q (x, y) Q(

1
x

,
1
y
). (1)

A similar formulation was provided for the general
turnpike problem in [3, 4]. Lemmas 4,5 are from
these sources. We follow their arguments and prove
some results for the bivariate polynomial formulation
of the sequence reconstruction problem we defined
above. Using them we prove some of the results for
the reconstruction of sequences from their composi-
tion multisets.
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If P (x, y) is s1s2 . . . sn, P ( 1
x , 1

y ) (normalized) is
snsn−1 . . . s1. A polynomial P (x, y) is called recip-
rocal if there exist ν, µ ∈ Z, such that

P (x, y) = xµyνP (
1
x

,
1
y
).

A polynomial which is not reciprocal is called non-
reciprocal.

Lemma 4: If P (x, y), and Q(x, y) are two se-
quences which are not reversals and have same com-
position multisets, then there are nonreciprocal poly-
nomials A, B ∈ Z[x, y], and integers µ, ν satisfying

P (x, y) = A(x, y)B(x, y)

Q(x, y) = xµyνA(x, y)B(
1
x

,
1
y
). !

A polynomial whose all coefficients are 0 or 1 is
called a 0-1 polynomial. Every generating polynomial
is 0-1.

Lemma 5: Let P (x, y) be a 0-1 polynomial. Any
Q(x, y) satisfying

P (x, y)P (
1
x

,
1
y
) = Q(x, y)Q(

1
x

,
1
y
)

is also a 0-1 polynomial or negative of a 0-1 polyno-
mial. !

The proofs of these two lemmas can be derived
from [3, 4] with slight modification and are omitted
here.

Lemma 6: If P (x, y) is a generating polynomial
and Q(x, y) satisfies

P (x, y)P (
1
x

,
1
y
) = Q(x, y)Q(

1
x

,
1
y
)

then Q(x, y) is a generating polynomial or negative
of one.

Proof: It suffices to show that Q(x, y) satisfies
the conditions of generating polynomial mentioned
before.

By Lemma 5, Q(x, y) can be assumed to be 0-1
and hence satisfies Property 2.

We first show that there is exactly one term of each
degree in Q(x, y). It is easy to see that the number
of terms in Q(x, y) is exactly n + 1. The largest
degree term is unique, has degree n and coefficient
1. Hence, either there is exactly one term of each
degree in Q(x, y) or there are two distinct terms of
some degree. All 0 degree terms in P (x, y)P ( 1

x , 1
y )

are obtained by dividing terms of same degree with
each other. When P (x, y) is generating polynomial
then there is only one term of each degree and thus
each such division yields 1 and the constant term in

P (x, y)P ( 1
x , 1

y ) is n + 1. By the condition provided
in the lemma, we see that there cannot be more than
one distinct term of any degree. If not, we get a
term of total degree 0 which is not a constant in
Q(x, y)Q( 1

x , 1
y ). This proves property 1 of generating

polynomial.
To prove property 3., consider all the terms of

degree 1 in Q(x, y)Q( 1
x , 1

y ). There are n such terms
and each is obtained by dividing a term of degree
i + 1 by a term of degree i. By condition given in
the lemma, each such term is equal to either x or y
since they correspond to the number of 0’s and 1’s
in the sequence corresponding to P (x, y). !

The above lemmas imply:
Theorem 7: For a sequence s = P (x, y), let

P (x, y) = P0(x, y)P1(x, y)P2(x, y) . . . Pk(x, y),

where Pi(x, y) ∈ Z[x, y], P0 is reciprocal and
P1, . . . , Pk are non-reciprocal and irreducible, then
there are exactly 2k sequences in Cs. !

Theorem 8:

Hn ≤ min{2d(n+1)−1, (n + 1)1.23},

where d(n) is the number of divisors of n.
Proof: The argument (n + 1)1.23 of the min

function in the theorem follows from [4]. Replacing
y with xn+1 in P (x, y) we obtain P (x). We can
reprove all the theorems above for this P (x). It then
follows from [4] that

Hn ≤ (n + 1)1.232

Substituting y = x in P (x, y) we obtain,

P (x, x) = 1 + x + x2 + x3 + . . . + xn

⇒P (x, x)(x − 1) = xn+1 − 1.

The following [7, pp. 197] factorizes xn − 1.

xn − 1 =
∏

d|n

Φd((x),

where Φd(x) is the dth cyclotomic polynomial (lead-
ing coefficient 1 and degree φ(d) whose roots are the
dth primitive roots of unity). φ(d) is the euler totient
function giving the number of positive integers less
than d and relatively prime to it. Since cyclotomic
polynomials are irreducible, the number of factors of
xn − 1 is d(n). Substituting y = x in P (x, y) does
not change its degree, and we can conclude that the
number of non-reciprocal factors of P (x, y) is at most
d(n + 1)− 1. The size of a confusable class is upper
bounded by 2d(n+1)−1. !
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When n + 1 is a prime power, the bound in
Theorem 8 is tight.

Corollary 9: If n+1 = pk for a prime p ≥ 3, then

Hn = 2k.

Proof: Theorem 8 shows that Hn ≤ 2k. To prove
that there exists a sequence with |Cs| = 2k, choose
any non-reciprocal sequence of length p−1. Consider
the set of 2k sequences obtained by interleaving the
sequence or its reciprocal with itself or its recip-
rocal k times. Each such sequence has the same
composition multiset. For example, when n = 26,
n + 1 = 33. Consider, C = {s : s = s1 ◦ s2 ◦
s3, with si = 01 or 10}. It consists of 23 confusable
sequences. !

In particular, for length prime minus 1, there are
no non-trivial confusions, which also has a simple
proof.

Corollary 10: If n + 1 is prime,

Hn = 2.

Proof: Since n + 1 is a prime

P (x, x) = 1 + x + x2 + . . . + xn

is irreducible over Z, because all (n + 1)th root of
unity except ‘1’ are primitive. !

Corollary 11: If n + 1 is twice a prime ≥ 3,

Hn ≤ 4.

Proof: Clearly,

P (x, x) =1 + x + x2 + . . . + x2p−1

=(1 + x)(1 + x + x2 + . . . + xp−1)
(1 − x + x2 − x3 + . . . + xp−1)

P (x, y) has at most three factors. If it indeed has
three factors then we can show that one of them
must be 1 + x or 1 + y. Both these polynomials are
reciprocal and thus P (x, y) has at most two non-
reciprocal factors. !
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