
SIAM J. DISCRETE MATH. c© 2015 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 1340–1371

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS∗

JAYADEV ACHARYA† , HIRAKENDU DAS‡ , OLGICA MILENKOVIC§ ,
ALON ORLITSKY¶, AND SHENGJUN PAN‖

Abstract. Motivated by mass-spectrometry protein sequencing, we consider the problem of
reconstructing a string from the multisets of its substring composition. We show that all strings of
length 7, one less than a prime and one less than twice a prime, can be reconstructed uniquely up to
reversal. For all other lengths, we show that unique reconstruction is not always possible and provide
sometimes-tight bounds on the largest number of strings with given substring compositions. The
lower bounds are derived by combinatorial arguments, while the upper bounds follow from algebraic
approaches that lead to precise characterizations of the sets of strings with the same substring
compositions in terms of the factorization properties of bivariate polynomials. Using results on
the transience of multidimensional random walks, we also provide a reconstruction algorithm that
recovers random strings over alphabets of size ≥ 4 from their substring compositions in optimal
near-quadratic time. The problem considered is related to the well-known turnpike problem, and its
solution may hence shed light on this longstanding open problem as well.

Key words. string reconstruction, mass spectrometry, turnpike problem, polynomial factoriza-
tion, backtracking algorithm, protein sequencing

AMS subject classification. 05

DOI. 10.1137/140962486

1. Motivation. A protein is composed of long peptide chains, i.e., sequences of
amino acids whose composition and order determine the protein’s shape and functional
properties. A common family of technological methods for “reading” amino-acid
sequences is mass spectrometry [7, 20]. Mass spectrometers takes a large number
of identical proteins, randomly break the proteins into substrings, and analyze the
resulting mixture to determine the substring weights. The substring weights are
consequently used to infer the amino-acid sequence.

We make two simplifying assumptions that reduce protein mass-spectrometry se-
quence reconstruction to a simply-stated combinatorial problem that we then proceed
to analyze.

Assumption 1. The composition of every peptide substring may be deduced
uniquely from its weight. For example, let A, B, and C represent the letters as-
signed to three amino acids with respective weights 13, 7, and 4. Consider strings
consisting of these three letters. A string of weight 11 clearly consists of one B and
one C. Similarly, an observed weight 18 implies that the string consists of two B’s
and one C. However, a weight 20 string could potentially arise from one A and one B,

∗Received by the editors March 27, 2014; accepted for publication (in revised form) June 2, 2015;
published electronically August 4, 2015. Parts of this work appeared in Proceedings of the IEEE
International Symposium on Information Theory, 2010 and 2014.

http://www.siam.org/journals/sidma/29-3/96248.html
†Department of Electrical Engineering and Computer Science, Massachusetts Institite of Tech-

nology, Cambridge, MA 02139 (jayadev@csail.mit.edu).
‡Yahoo Labs!, Sunnyvale, CA 94089 (hdas@yahoo-inc.com).
§Department of Electrical and Computer Engineering, University of Illinois, Urbana Champaign,

IL 61801 (milenkov@illinois.edu).
¶Department of Electrical and Computer Engineering, University of California, San Diego, CA

92093 (alon@ucsd.edu).
‖Google, Mountain View, CA 94043 (s1pan@ucsd.edu).

1340

http://www.siam.org/journals/sidma/29-3/96248.html
mailto:jayadev@csail.mit.edu
mailto:hdas@yahoo-inc.com
mailto:milenkov@illinois.edu
mailto:alon@ucsd.edu
mailto:s1pan@ucsd.edu

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1341

or from 5 C’s; hence, we cannot deduce the composition of the string from its weight
alone. The underlying assumption states that such confusions never arise.

Assumption 2. Each peptide bond gets cut independently with the same probabil-
ity p. For example, if the sequence equals ABC, then the partition A|B|C is obtained
with probability p2, the partitions A|BC and AB|C are obtained with probability
p(1− p), while the partition ABC is obtained with probability (1− p)2.

While both assumptions are clearly idealized, there exist settings where they
roughly hold. For example, although there exist amino acids with the same weight, one
can distinguish the amino acids via reference genomes or via additional biochemical
testing. In addition, under the “uniform coverage” model, one may assume that each
peptide bond gets cut with the same probability 1/2. More flexible assumptions,
such as some amino-acid weight similarities, or unequal cut probabilities, may be
considered as well (see e.g., section 16), but the two current assumptions provide a
clean formulation amenable for combinatorial and algorithmic analysis. Additionally,
independently of their precise validity, these assumptions convert protein sequence
reconstruction to a simple string reconstruction problem that is interesting in its own
right. The problem is also a combinatorial simplification of the longstanding open
turnpike problem [8, 27] and may provide new insight into how to improve its current
solutions.

The composition of a string is the multiset of all symbols appearing in it. More
precisely, the information provided by the composition of a string is its symbol al-
phabet accompanied by the number of times each symbol occurs in the string. Com-
positions of strings, often referred to as string types, may be suitably represented by
Parikh vectors. For example, the composition of the string BABCAA is the multiset
{A,A,A,B,B,C}, denoted by w(BABCAA) = A3B2C to indicate that the string
consists of three A’s, two B’s, and one C. Given that the generative alphabet of the
string is (A,B,C), its Parikh vector equals (3, 2, 1).

To formulate the restricted reconstruction problem, observe that Assumption 1
implies that the composition, and hence also the length, of each substring can be
determined from its mass. The second assumption implies that, ignoring small effects
at the terminal ends of the sequence, all substrings of a given length should appear
roughly the same number of times. For example, for cut probability p, the number
of strings of length k would be proportional to p2(1 − p)k−1. Since the substring
lengths can be determined from the mass spectrometer measurements, their number
of appearances can be normalized so that the composition of each substring appears
exactly once. The problem then reduces to reconstructing a length-n sequence from
the multiset of all of its

(
n+1
2

)
substring compositions.

As an example, sequencing the string ACAB would result in
(
4+1
2

)
= 10 substring

compositions: A, A, B, C, AB, AC, AC, A2C, ABC, and A2BC. Note that for each
substring, only the composition, and not the order of the symbols, is given, and that
the compositions are provided along with their multiplicity, but not the location at
which they start in the string. To reconstruct the original string ACAB from its
substring compositions, note that the compositions imply that it consists of two A’s,
a B, and a C, and that the two A’s do not appear in consecutive order. Hence, the
string equals ABAC, ACAB, ABCA, or their reversals. The substring composition
A2C implies that the original string is ACAB or its reversal.

Clearly, a string and its reversal have the same composition multiset and hence
cannot be distinguished. Therefore, we attempt to recover a string from its multiset
composition only up to reversal.

1342 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

As a final simplification, note that peptide and protein sequences are specified
over an alphabet consisting of 20 letters representing the amino acids. However,
for the theoretical results in the paper, we only consider reconstruction of binary
strings from their composition multisets. In section 4, we show that whenever binary
strings can be uniquely reconstructed, strings over all other alphabets can be uniquely
reconstructed as well. Moreover, binary strings simplify the notation and make the
theoretical exposition easier to follow.

2. Definition and results. The composition multiset of a string s = s1s2 . . . sn ∈
{0,1}n is the multiset of multisets

Ss
def
= {{si, si+1, . . . ,sj} : 1 ≤ i ≤ j ≤ n, },

i.e., the multiset of compositions of all
(
n+1
2

)
contiguous substrings of s. For example,

S001 = {0, 0, 1, 02, 01, 021} and S010 = {0, 0, 1, 01, 01, 021},

where we used the previously described shorthand notation 02 = 00, and 021 =
001, or 010, or 100. Note that the number of substrings with a given composition is
reflected in the multiset, although the locations of the substrings within the string
are not known.

Two strings s and t are equicomposable, denoted s ∼ t, if they have the same
composition multisets. Equicomposability is clearly an equivalence relation. The

reversal of a string s = s1s2 . . . sn is the string s∗ def
= snsn−1 . . . s1. A string and its

reversal are clearly equicomposable. We say that a string is reconstructable if it is
equicomposable only with itself and its reversal, and hence may be determined up to
reversal from its composition multiset. A string s is nonreconstructable or confusable
if it is equicomposable with another string t �= s∗. In this case, we also call s and t
confusable strings.

Using computer simulations, we find that all binary strings of length at most 7
are reconstructable, and interestingly, for length 8, there are two confusable strings,
neither of which is reconstructable. In particular, in section 5, we give a simple
combinatorial argument to show that

01001101 ∼ 01101001.

An extension of the example yields nonreconstructable binary strings of length n,
whenever n+1 is a product of two integers, each at least 3. For example, we produce
nonreconstructable strings of length 8, as 8+1 = 3 ·3, length 11, as 11+1 = 4 ·3, etc.
This leads to the question as to whether all binary strings of the remaining lengths
are reconstructable. Observe that these remaining lengths n are precisely those for
which n+1 is either 8, a prime, or twice a prime. One of the results we prove is that
all strings of such lengths are reconstructable.

To do so, in sections 6 and 7 we represent a binary string s by a generating bivari-
ate polynomial Ps ∈ Z[x, y], and formally define the reciprocal P ∗ of the polynomial
P . We show that two strings s and t are equicomposable if and only if

PsP
∗
s = PtP

∗
t .

We also consider the sets

Es
def
= {t : t ∼ s}(1)

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1343

consisting of all strings equicomposable with s, and the sets

PEs

def
= {Pt : t ∼ s}(2)

of the generating polynomials of all strings equicomposable with s. We show that
these sets have a simple algebraic (polynomial) characterization, outlined in what
follows. Let

Ps = P1P2 · · ·Pk

be the prime factorization of Ps over Z[x, y]. The equicomposable set of s can be
expressed exactly and simply as

PEs = {P̃1P̃2 · · · P̃k : each P̃i is Pi or P
∗
i }.

In section 10, we use these results to show that, indeed, if n + 1 is 8, a prime,
or twice a prime, all length-n binary strings are reconstructable. Along with the
constructions of section 5, this establishes the exact lengths for which all strings are
reconstructable.

In sections 11 and 12, we consider lengths for which reconstruction is not always
unique. Let

En
def
= max {|Es| : s ∈ {0,1}n}

denote the largest number of mutually equicomposable n-bit strings. Since every
string is equicomposable with its reversal, En ≥ 2 for every n ≥ 2, and from the
previous discussion, En ≥ 4 whenever n+ 1 is a product of two integers ≥ 3.

Introducing a new interleaving sequence construction, we lower-bound En, and
using the polynomial representation results and results on cyclotomic-polynomials,
we also upper bound the same quantity. In particular, based on the unique-prime
factorization of n+ 1 = 2e0pe11 pe22 . . . pekk , we show that

2�
e0
2 �+e1+e2+···+ek ≤ En ≤ min{2(e0+1)(e1+1)···(ek+1)−1, (n+ 1)1.23},

where d(n + 1)
def
= (e0 + 1)(e1 + 1) · · · (ek + 1) is the number of distinct divisors of

n + 1. We also show that when n + 1 is a prime power or twice a prime power, the
lower bound is tight. For all k ≥ 1,

E2k−1 = 2� k
2 �,

and for primes p ≥ 3,

Epk−1 = E2pk−1 = 2k.

Plugging p = 3 above gives

En = (n+ 1)log3 2.

We then proceed to describe a backtracking algorithm that reconstructs a string
from its substring compositions. Using some well-known results on the behavior of
random walks in high dimensions, we show that with high probability, the algorithm
reconstructs a string in time O(n2 logn) with high probability for any constant al-
phabet size ≥ 4. The complexity of our algorithm is significantly smaller than that
of polynomial factorization algorithms, which comes at the cost of only having prob-
abilistic performance guarantees. The algorithm can also reconstruct strings over
alphabet sizes 2 and 3, although with weaker computational performance guarantees.

1344 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

3. Relation to other work. String reconstruction from multiset decomposi-
tions is a new problem, related to two types of known problems. Through its formu-
lation, it is similar to other string-reconstruction problems, while through its mathe-
matical analysis, it is closely related to the well-known turnpike problem.

Several string-reconstruction variations have been previously considered. Recon-
struction of a string from a few substrings was considered in [19], and in the context
of patterns matching, in the seminal paper [29]. Reconstruction of a string from
its subsequences (not necessarily contiguous) was considered in [18, 11, 3, 30]. How-
ever, all the aforementioned contributions assume that the substrings or subsequences
themselves, which include the order of their symbols, are given. By contrast, in our
problem, for each substring we are given just the composition, and neither the order
of the symbols within it nor the substring locations within the original string.

Note that four possible problems of reconstructing a string from its substrings
may be formulated within the described settings. They differ by whether or not one
is given (a) the order of the substrings in the string and (b) the order of the bits
in each substring. All four problems are of interest when only some of the

(
n+1
2

)
substrings are available. But when all substrings are given, knowing the order of
either the substrings or their symbols clearly determines the original string. It is only
when, as in the proposed mass-spectrometry application, neither the substring order
nor the symbol order are provided that our reconstruction question arises.1

As already pointed out, in terms of the solutions and proof techniques, our prob-
lem is closely related to the turnpike problem, where the locations of n highway exits
need to be recovered from the multiset of their

(
n
2

)
interexit distances [27]. For ex-

ample, the interexit distances 1, 2, 3, 3, 5, 6 correspond to exit locations 0, 1, 3, 6.
The turnpike problem originally arose in X-ray crystallography [23, 24] and has

found many applications, including to DNA analysis [10]. It is also of independent
theoretical interest as it has an algorithm whose run time is polynomial in the largest
interexit distance, but it is not known whether it has an algorithm whose run time
is polynomial in n, independently on the values of the distances. Several variations
of the problem have been recently considered, e.g., [9, 5] and references therein. A
related problem of characterizing strings that have the same set, instead of a multiset
of compositions, is considered in [12].

String reconstruction from substring multisets is a combinatorial specialization
of the turnpike problem [14, 5]. To see that this is the case, convert every string-
reconstruction instance to a turnpike problem whose solution implies the original
string as follows. Given an n-bit string reconstruction problem, replace each substring
composition by an interexit distance obtained by replacing each 0 by 1 and each 1 by
n+ 1 and summing the values. Then find the exit locations and replace back the bit
values.

For example, to recover the string 1011 from the compositions 0, 1, 1, 1, 01,
01, 11, 012, 012, 013, replace every 0 by 1 and every 1 by 4 + 1 = 5 to obtain the
interexit distances 1, 5, 5, 5, 6, 6, 10, 11, 11, and 16. These interexit distances in
turn correspond to the locations 0, 5, 6, 11, and 16. Writing the adjacent location
differences 5, 1, 5, and 5, and converting a 1 back to 0, and a 5 back to 1 produces
the original string 1011. Note that the mapping from 1 to n+ 1 is chosen to prevent
spurious solutions.

This reduction shows that the string reconstruction problem may be solved in
polynomial time [17], which is a useful observation but not the main focus of the

1Preliminary results on this problem were presented in [1, 2].

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1345

work. Instead, our scope is broader: we show that several questions unsolved for the
turnpike problem can be answered for string reconstruction. Hence, in addition to the
problem’s intrinsic theoretical and practical value, its solution may provide useful new
insights needed to analyze the general turnpike problem. For example, some of the
more important unsolved questions about the turnpike problem concern the number
of solutions a given instance may have [27]. A turnpike problem with n ≥ 6 exits may
have multiple solutions, but their largest possible number is not known for any such
n. By contrast, for string reconstruction, we show that when n + 1 is 8, a prime, or
twice a prime, reconstruction is always unique. We also determine the exact number
of maximal reconstructions whenever n+ 1 is a prime power or twice a prime power
and conjecture that the same formula holds for all remaining string lengths.

We also note that some of the polynomial techniques we use are related to those
applied to the turnpike problems [26, 27]. Yet others, such as the bivariate polynomial
formulation and relation to cyclotomic polynomials, seem new.

4. Binary and higher order alphabets. We start our analysis by showing
that if binary strings are reconstructable, then strings of over higher alphabet sizes
are also reconstructable. In fact, one can use the algorithmic methods for binary
reconstruction to achieve this task.

Lemma 1. If binary strings of a certain length are reconstructable, then strings
of the same length over any finite alphabet are reconstructable.

Proof. We first consider an example. Suppose that we want to reconstruct a
string from the multiset {A,A,B,C,AB,AC,AC,A2C,ABC,A2BC}. We replace
one of the symbols, say, A, by 1 and all other symbols, i.e., B and C, by 0. This
yields the compositions 0, 0, 1, 1, 01, 01, 01, 021, 012, 0212. Since the binary string is
reconstructable, we recover that the original string equals 1010 and that consequently,
A appears in the first and third position (or second and fourth, when ordered from
the opposite end). We then replace the symbols A and B with 1, and the symbol C
with 0. This gives the position of the symbols B relative to the positions of the A’s
and also yields the locations of C.

For general strings, we follow the same approach. We decide a (lexical) ordering
of the symbols appearing in the string, say, A1, . . . , Am. At stage i < m, we replace
the symbols A1, . . . , Ai with 1 and others symbols with 0. We are able to obtain the
relative positions of one symbol at a time and can therefore determine the complete
string at the end of this sequential procedure.

Hence, for the theoretical sections of the paper, we only consider the reconstruc-
tion of binary strings from their composition multisets. When we design randomized
reconstruction algorithms, we observe that larger alphabets make the problem actu-
ally much easier to handle.

5. Simple confusions. An exhaustive computer search shows that all binary
strings of length at most 7 are reconstructable. For length 8, we exhibit two strings,
01001101 and 01101001, which are confusable and are not reversals of each other. To
see that the strings are confusable, note that they can be parsed as 01 0 01 101 and
01 1 01 0 01. Both have a common substring 01, which is interleaved with 0 1 in the
first string and with its reversal 1 0 in the second string. This prompts us to define
the notion of string interleaving.

The interleaving of a string s with the bits of t = t1 . . . tm is the string s ◦ t def
=

s t1 s t2 · · · tm s. The first string in the above example may hence be written as 01◦01,
while the second string may be written as 01 ◦ 10. A similar notation is used when
interleaving multiple strings.

1346 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

For our subsequent discussion, recall that t∗ represents the reversal of t and that
∼ indicates that two strings are equicomposable.

Lemma 2. For any s and t, s ◦ t ∼ s ◦ t∗
Proof. We first prove the result when t has length 3. The interleaving s ◦ t

generated in this case is schematically depicted in the figure below, where each triangle
represents the string s.

s ◦ t: t1 t2 t3

s ◦ t∗: t1t2t3

There is a bijection from the substrings of s ◦ t to the substrings of s ◦ t∗ that
preserves compositions. For example, as illustrated in the figure, the substring in
s ◦ t consisting of a tail of s (blue), t1, s, t2, and a head of s (green) has the same
composition as the substring in s ◦ t∗ consisting of the same tail of s (blue), t2, s,
t1, and the same head of s (green). Thus, s ◦ t and s ◦ t∗ have the same multiset of
compositions and hence are equicomposable.

In general, suppose that s and t are strings of lengths m and m′, respectively. We
present a general bijection as done for m′ = 3. It is helpful to have the above figure in
mind when dealing with strings t of length longer than 3. Let r and r′ denote s◦ t and
s ◦ t∗, respectively. Consider a substring of r. If r does not contain elements from the
string t, then we map the substring to the same location in r′. In this case, we have
an identity map which preserves compositions. For substrings r that contain some
symbols ti, ti+1, . . . , tj from t, we consider the substring of r′ that contains the same
symbols in reversed order tj , tj−1, . . . , ti. We then identify the number of symbols
preceding tj in r′ and the same number of symbols preceding ti in r. We do the same
for symbols trailing ti in r′ and tj in r. This substring map preserves compositions
and hence proves the lemma.

If the lengths of s and t are m and m′, respectively, then the length of s◦ t equals
n = (m+1)(m′ +1)− 1. If m ≥ 2, m′ ≥ 2, we can always choose a nonpalindromic t,
namely, a t such that t �= t∗, ensuring that s◦ t �= s◦ t∗, and a nonpalindromic s, such
that s �= s∗, ensuring that s ◦ t �= (s ◦ t∗)∗. In particular, we can choose both s and t
to be strings of the form 100 . . .0, where the number of 0’s determines the lengths of
the sequences. As a corollary, we then obtain the result below.

Corollary 3. Whenever n+1 is a product of two integers, each ≥ 3, there exist
confusable n-bit strings.

6. Polynomial representation. The previous section described some confus-
able strings obtained via interleaving. To further characterize confusability, we repre-
sent strings as polynomials. A similar representation has been used for the turnpike
problem [26, 27], but the polynomials in the former work are univariate, whereas
bivariate polynomials are better suited for string reconstruction.

Polynomial representations are used to show that the strings equicomposable with
a string s can be determined by the prime factorization of the polynomial represent-
ing s and that s can be reconstructed from its composition multiset via polynomial
factorization.

All polynomials and factorizations in the paper are over Z[x, y]. A polynomial
whose nonzero coefficients are all equal to 1 is termed a 0-1 polynomial. We say that
xayb is a monomial with x-degree a, y-degree b, and total degree a+ b. With a slight
abuse of terminology, we refer to terms of the form xayb as monomials even when
the exponents a and b are negative. The x-, y-, and total-degrees of a polynomial are

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1347

the highest corresponding degrees of the monomials. For example, for x2y+ xy3, the
x-degree, y-degree, and total degree of the polynomial are 2, 3, and 4, respectively.

When representing strings by polynomials, 0 is denoted by x and 1 by y. Also,
ai denotes the number of 0’s in the first i bits of a string and a denotes their total
number, while bi and b represent the same counts for 1’s. By definition, a0 = 0 and
b0 = 0 for an empty string. For example, 01011 has a3 = a = 2, b3 = 1, and b = 3.

The generating polynomial of a binary string s = s1s2 · · · sn is defined as

Ps(x, y)
def
=

n∑
i=0

xaiybi =

n∑
i=0

xaiyi−ai .(3)

For example,

P0100(x, y) = 1 + x+ xy + x2y + x3y.

Generating polynomials of n-bit strings are characterized by the following suffi-
cient properties:

G1. The polynomials are 0-1.
G2. The polynomials have n + 1 monomials, exactly one of each total degree

0, 1, . . . , n.
G3. For all 1 ≤ i ≤ n, the ratio of the monomials of total degrees i and i − 1 is

either x or y.
By the definition of ai and bi, for i ≥ 1,
• ai+1 = ai + 1 and bi+1 = bi when the (i+ 1)th bit is a 0, and
• ai+1 = ai and bi+1 = bi + 1 when the (i+ 1)th bit is a 1.

Property G1 holds by virtue of the definition of Ps. Properties G2 and G3 are true
since each monomial is obtained by multiplying the monomial of total-degree by one
smaller either with x or y.

For example, the polynomial 1 + x+ xy + x2y + x3y is a string generating poly-
nomial, while 1− x, 1 + x2, and 1 + x+ y2 are not.

In a similar vein, we may represent a composition 0a1b by the monomial xayb

and define Ss(x, y) to be the sum of all monomials corresponding to the substring
compositions of s. For example,

S0100(x, y) = 3x+ y + x2 + 2xy + 2x2y + x3y,

which is the sum of the monomial representations of the compositions in the multiset
S0100 = {0, 0, 0, 1, 02, 01, 01, 021, 021, 031}.

We next provide a simple functional connection between the generating polyno-
mial of a string and the polynomial corresponding to its composition multiset.

Lemma 4.

Ps(x, y)Ps

(
1

x
,
1

y

)
= n+ 1 + Ss(x, y) + Ss

(
1

x
,
1

y

)
.

Proof. By (3) and the properties G1–G3, the product on the left-hand side is
precisely the sum of monomials of the form xajybj · (xaiybi)−1 for 1 ≤ i, j ≤ n.
Furthermore,

xajybj · (xaiybi)−1 = xaj−aiybj−bi

represents the composition of the substring si+1 . . . sj when i < j, and the reciprocal
of the composition of si+1 . . . sj when i > j. Therefore, the monomials with positive

1348 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

degree correspond to Ss(x, y), while the monomials with negative degree correspond
to its corresponding reciprocal polynomial.

For our running example, the lemma proves the following expansion:

P0100(x, y)P0100

(
1

x
,
1

y

)

= 5 + 3x+ y + x2 + 2xy + 2x2y + x3y +
3

x
+

1

y
+

1

x2
+

2

xy
+

2

x2y
+

1

x3y

= 5 + S0100(x, y) + S0100

(
1

x
,
1

y

)
.

To reconstruct a string from a composition multiset S, we need to find all strings
s whose generating polynomials Ps satisfy Lemma 4. To this end, we also have the
following simple lemma.

Lemma 5. Strings s and t are equicomposable if and only if

(4) Ps(x, y)Ps

(
1

x
,
1

y

)
= Pt(x, y)Pt

(
1

x
,
1

y

)
.

Proof. By the 1-1 correspondence between Ss and Ss(x, y), it follows that s ∼ t
if and only if Ss(x, y) = St(x, y). The result then follows from Lemma 4.

We next show that for a string s, an equation like (4) holds only for generating
polynomials. The approach we pursue is akin to that of [26, 27], with additional
verification that the polynomial obtained satisfies all the properties of generating
polynomials.

Lemma 6. If P is a generating polynomial, and Q ∈ Z[x, y] with Q(0, 0) > 0 is
such that

(5) P (x, y)P

(
1

x
,
1

y

)
= Q(x, y)Q

(
1

x
,
1

y

)
,

then Q(x, y) is a generating polynomial as well.
Proof. We first show that Q satisfies G1.
G1. Evaluating (5) at x = y = 1, we obtain P (1, 1)2 = Q(1, 1)2, which im-

plies that P (1, 1) = ±Q(1, 1). Suppose that the correct sign is “+.” Let P (x, y) =∑
i,j pi,jx

iyj and Q(x, y) =
∑

i,j qi,jx
iyj , where pi,j , qi,j �= 0. Then,

∑
i,j

pi,j =
∑
i,j

qi,j .

Comparing the constant terms on both sides of (5) gives∑
i,j

p2i,j =
∑
i,j

q2i,j .

Subtracting the last from the next to last expression shows that∑
i,j

pi,j(1− pi,j) =
∑
i,j

qi,j(1− qi,j).

Since P is a generating polynomial, by G1 all pi,j are 1, and the left and hence the
right side is identically equal to zero. For all integers, i, i(1− i) ≤ 0 with equality if

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1349

and only if i is either 0 or 1. Since all qi,j are nonzero integers, they must equal 1.
The case of a negative sign “−” is handled similarly.

G2. Each monomial in P (x, y)P (1/x, 1/y) is of the form xaj−aiybj−bi . Thus, the
exponents of x and y cannot have different signs in the polynomial product. The
polynomial Q cannot have two monomials of the same total degree because their
corresponding product in Q(x, y)Q(1/x, 1/y) would have a monomial with x- and y-
degrees of opposite signs, which by G1 do not get cancelled by another product term.
Let 0 = d0 < d1 < . . . < dn be the degrees of the different monomials in Q. The
largest degree monomial in (5) on the left-hand side is xanyn−an of degree n. The
largest degree on the right-hand side is dn−d0 = dn. So di = d0+ i = i, which proves
property G2.

G3. Consider the linear terms (of the form constant times x or y) in (5).
For any 0-1 polynomial F (x, y), the sum of the coefficients of the linear terms in
F (x, y)F (1/x, 1/y) is the number of pairs of monomials in F whose ratio is x or y.
The polynomial P has n such pairs, and hence so does Q. By G2, Q has n + 1
monomials, one of each total degree 0, 1, . . . , n. Therefore, the ratio between any two
“consecutive” monomials must equal x or y.

Recall Es and PEs defined (1) and (2).
Theorem 7.

PEs =

{
P (x, y) ∈ Z[x, y] : P (0, 0) > 0, P (x, y)P

(
1

x
,
1

y

)
= Ps(x, y)Ps

(
1

x
,
1

y

)}
.

7. Reciprocal polynomials. To apply existing results on polynomial factoriza-
tion, we relate P (1/x, 1/y) to a standard polynomial form known as the the reciprocal
polynomial of P . Let degx P and degy P be the highest x- and y-degrees of a bivariate
polynomial P . The reciprocal of P is the polynomial

P ∗(x, y) def
= xdegx P ydegy PP

(
1

x
,
1

y

)
.

For example,

(y + 3xy − 2y2)∗ = xy2
(
1

y
+

3

xy
− 2

y2

)
= xy + 3y − 2x.

We make use of the following properties of reciprocal polynomials:
R1. degx P

∗ ≤ degx P .
R2. The reciprocal of the product is the product of the reciprocals: (P1P2)

∗ =
P ∗
1 P

∗
2 .
R3. The reciprocal of the generating polynomial of s generates the reversal of the

string s: P ∗
s = Ps∗ .

The monomial in P ∗ with x−degree d in P is degx P − d ≤ degx P , which proves
claim R1. Property R2 follows from a simple expansion and matching of monomials
in the two polynomials. Recall that ai and bi denote the number of 0’s and 1’s within
the first i positions of s . Since s and s∗ are reversals of each other, they have the
same number of 0’s and 1’s (say, a and b). The number of 0’s and 1’s in the first
n − i symbols of s∗ is a − ai and b − bi, respectively, which leads to the monomial
xayb · 1

xai

1
ybi

of xaybPs(1/x, 1/y). This proves property R3.

For example,

P ∗
0100(x, y) = (1 + x+ xy + x2y + x3y)∗ = 1 + x+ x2 + x2y + x3y = P0010(x, y).

1350 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

These properties imply polynomial formulations of Lemmas 5 and 6 and Theo-
rem 7. The proofs of the results are omitted, as they closely follow those of previously
established counterparts.

Lemma 8. Strings s and t are equicomposable if and only if

PsP
∗
s = PtP

∗
t .

Lemma 9. If P is a generating polynomial and Q ∈ Z[x, y] with Q(0, 0) > 0 is
such that

PP ∗ = QQ∗,

then Q is also a generating polynomial.
Theorem 10.

PEs = {P (x, y) ∈ Z[x, y] : P (x, y) > 0, P (x, y)P ∗(x, y) = Ps(x, y)P
∗
s (x, y)}.

So far, we have studied products of generating polynomials and their reciprocals.
The next lemma addresses the question of factoring generating polynomials.

A polynomial P (x, y) over is reducible over Z[x, y] if it can be represented as a
product P1(x, y) · P2(x, y) for nonconstant polynomials P1 and P2, both in Z[x, y],
and is irreducible otherwise.

Lemma 11. Two strings satisfy s ∼ t if and only if for some A,B ∈ Z[x, y],

Ps = AB and Pt = AB∗.

Proof. Let A = gcd(Ps, Pt) be the greatest common divisor polynomial of Ps and
Pt over Z[x, y]. Then, we may write Ps = AB and Pt = AC for relatively prime
polynomials B and C. We show next that C = B∗.

By Lemma 8, PsP
∗
s = PtP

∗
t . By R2, P ∗

s = A∗B∗ and P ∗
t = A∗C∗, and hence

BB∗ = CC∗. Since B and C are relatively prime, C has to divide B∗. But since Ps

and Pt have the same total degree, B,B∗, C, and C∗, all have the same total degree.
And since Ps and Pt are generating polynomials, the four polynomials have constant
term 1. Hence, C = B∗.

Conversely, if Ps = AB and Pt = AB∗, then it is easy to see that PsP
∗
s =

(AB)(AB)∗ = AA∗BB∗ = AB∗(AB∗)∗ = PtP
∗
t .

For example, we saw that the 8-bit strings s = 01001101 and t = 01101001 are
confusable. Indeed Ps(x, y) = (1+x+xy)(1+x2y+x3y3) and Pt(x, y) = (1+x+xy)(1+
xy2 + x3y3) = (1 + x + xy)(1 + x2y + x3y3)∗. Here, A is a generating polynomial,
but this is not always the case. The 23-bit strings 01000101010000100011001 and
01010100010000110010001 are confusable, but the divisors A = 1 + y + xy + xy2 +
x4y8 + x4y9 + x4y10 + x5y10 and B = 1+ xy3 + x3y5 are not generating polynomials.
In the former examples, A and B are 0-1 polynomials, but even this claim does not
always hold true. The string 01001001001 can be factored as (1 + x + x3y − x4y2 +
x3y3 + x5y3 + x5y4)(1 + xy), where the first factor has a negative coefficient. We will
return to the structure of these factors in section 11.

The previous results imply a very simple expression for Es, the set of strings
equicomposable with s. Consider the prime factorization of Ps into (irreducible)
polynomials

Ps = P1P2 · · ·Pk.

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1351

The next theorem asserts that every product of the Pi’s or their reciprocals is a gen-
erating polynomial and that the resulting generating polynomials exactly correspond
to all strings equicomposable with s.

Theorem 12. For every string s,

PEs = {P̃1P̃2 · · · P̃k : each P̃i is Pi or P ∗
i }.

Proof. If P = P̃1P̃2 · · · P̃k, where each P̃i is either Pi or P
∗
i , let A be the product

of the nonreciprocated polynomials Pi and let B be the product of the reciprocated
polynomials Pi (i.e., P

∗
i). Then, Ps = AB and P = AB∗. Hence, PsP

∗
s = PP ∗, and

by Lemma 9, P = Pt for some string t. But then PsP
∗
s = PtP

∗
t , and by Lemma 8,

t ∈ Es.

Conversely, if t ∈ Es, then by Lemma 11, Ps = AB while Pt = AB∗. The prime
factorizations A = P1P2 · · ·Pj and B = Pj+1 · · ·Pk yield the prime factorizations
Ps = P1P2 · · ·Pk and Pt = P1P2 · · ·PjP

∗
j+1 · · ·P ∗

k . Therefore, Pt can be written as

P̃1P̃2 · · · P̃k.

The theorem provides a simple formula for the number of strings equicomposable
with any given string s. To derive the formula, we observe that a polynomial is
palindromic if it equals its reciprocal. For example, 1 + x + xy + xy2 + x2y2 is
palindromic, while 1 + x + xy ((1 + x+ xy)∗ = 1 + y + xy) is not. Let νs be the
number of nonpalindromic terms in the prime factorization of Ps(x, y).

Corollary 13. For every string s,

|Es| ≤ 2νs .

In particular, if νs = 1, then s is reconstructable.

Proof. The first part follows trivially from the theorem. The second part follows
as νs = 0 implies Es = {s}, and νs = 1 implies Es = {s, s∗}.

In section 9, we return to this result and show that the inequality can be replaced
with equality.

8. Cyclotomic polynomials. Theorem 12 characterizes equicomposability in
terms of prime factorization of generating polynomials. Factoring bivariate polyno-
mials is hard in general, but the current analysis is simplified by the fact that any
factorization of a generating polynomial P (x, y) implies a factorization of the univari-
ate polynomial P (x, x) obtained by evaluating P (x, y) at y = x. From properties G1
and G2 of generating polynomials, if P (x, y) generates an n-bit string, then

P (x, x) = 1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

Factorizations of xn−1, and hence of xn+1−1, have been studied extensively, and for
completeness we provide a small sampling of results from the literature (see e.g., [15,
21]) needed for our analysis of confusability.

The n complex numbers ω1 = e
2πi
n , ω2 = e2

2πi
n , . . . , ωn = en

2πi
n = 1, whose nth

powers are 1, are referred to as the nth roots of unity. They are exactly the roots of
xn − 1, and therefore

xn − 1 =

n∏
i=1

(x − ωi).

1352 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

The prime factorization of xn − 1 over Z[x] partitions the n degree-one polynomials
into groups, each group multiplying to an irreducible polynomial over Z[x].

For a positive integer d, a dth root of unity is primitive if none of its positive
powers ≤ d− 1 equals 1. Examples of primitive roots are listed in the table below.

d 1 2 3 4 5 6

primitive dth roots of unity 1 −1 e±2πi/3 ±i e2πij/5, j = 1, . . . ,4 e±2πi/6

The dth cyclotomic polynomial is defined as

Φd(x)
def
=

∏
ω

(x− ω),

where the product ranges over all primitive dth roots of unity ω. For example,

Φ1(x) = x− 1,

Φ2(x) = x+ 1,

Φ3(x) = (x − e2πi/3)(x − e−2πi/3) = x2 + x+ 1,

Φ4(x) = (x − i)(x+ i) = x2 + 1,

Φ5(x) =
4∏

j=1

(x − e
2πij

5) = x4 + x3 + x2 + x+ 1,

Φ6(x) = (x − e2πi/6)(x − e−2πi/6) = x2 − x+ 1.

Every nth root of unity is a primitive dth root of unity for some 1 ≤ d ≤ n such
that d | n, where d | n means d is a divisor of n. Hence, for every n,

(6) xn − 1 =
∏
d|n

Φd(x).

For example,

x2 − 1 = (x− 1)(x+ 1),

x3 − 1 = (x− 1)(x2 + x+ 1),

x4 − 1 = (x− 1)(x+ 1)(x2 + 1),

x5 − 1 = (x− 1)(x4 + x3 + x2 + 1),

x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1).

It is easy to verify that cyclotomic polynomials have integer coefficients. Compar-
ing coefficients shows that if a(x), b(x) ∈ Q[x] and a(x)b(x) ∈ Z[x], then a(x), b(x) ∈
Z[x]. By induction on n, assume that for all d < n with d | n, Φd(x) ∈ Z[x]. Then (6)
implies that

Φn(x) =
xn − 1∏

d<n, d|n
Φd(x)

.

Since different cyclotomic polynomials are relatively prime (as no two cyclotomic
polynomials share a root), Φn(x) ∈ Q[x], and by the fact mentioned above, Φn(x) ∈
Z[x]. Gauss showed, e.g., [15], that the cyclotomic polynomials are irreducible. The

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1353

irreducibility proof of general cyclotomic polynomials is somewhat involved. However,
we will mostly need to factor xp − 1 and x2p − 1 for a prime p. The factorizations
of these two polynomials require establishing the irreducibility of Φp(x) and Φ2p(x),
which follow easily from Eisenstein’s criterion.

Lemma 14 (Eisenstein’s criterion [13]). Let P (x) = anx
n + an−1x

n−1 + · · ·+ a0.
If some prime p | a0, a1, . . . ,an−1 but p � an and p2 � a0, then P (x) is irreducible
over Z.

Proof. Suppose toward a contradiction that P (x) = (bkx
k+· · ·+b0)(c�x

�+· · ·+c0),
where k, � ≥ 1 and bk, c� �= 0. Since p divides a0 = b0c0 but p2 does not, p divides
exactly one of b0 and c0. Without loss of generality, assume that p|b0. Since p
does not divide an = bkc�, there is a smallest index i < k < n such that p does
not divide bi. It follows that p | ai, b0, b1, . . . ,bi−1 and p � c0, bi, contradicting ai =
bic0 + bi−1c1 + · · ·+ b0ci.

Corollary 15. For every prime p,

Φp(x) = 1 + x+ x2 + · · ·+ xp−1

is irreducible over Z.

Proof. Substituting x by x+ 1, we may write

Φp(x+ 1) =
(x+ 1)p − 1

x
=

(
p

1

)
+

(
p

2

)
x+ · · ·+

(
p

p

)
xp−1.

Since p is prime, it divides
(
p
1

)
,
(
p
2

)
, . . . ,

(
p

p−1

)
but not

(
p
p

)
. Therefore, p divides all

coefficients except for the leading coefficient. Furthermore, p2 does not divide the
constant coefficient

(
p
1

)
. By Eisenstein’s criterion, Φp(x+ 1) and therefore Φp(x) are

irreducible over Z.
Note that Φ2p(x) = Φp(−x) for odd primes p and is therefore irreducible.

Lemma 16. Φd(x) is palindromic for all d ≥ 2.
Proof. For any polynomial P (x), the roots of P ∗(x) over C are exactly the re-

ciprocals of the roots of P (x), and the constant coefficient of P ∗(x) is the leading
coefficient of P (x). Since the reciprocal polynomial always exists, and the roots and
constant coefficient specify a polynomial, these two conditions are also sufficient for
a polynomial to be the reciprocal of P (x).

For every d, the roots of Φd(x) are on the unit circle, and hence the reciprocal of
a root is also its complex conjugate. Furthermore, since Φd(x) has real coefficients,
every root appears with its complex conjugate, and hence the reciprocals of the roots
are roots too. Finally, for d ≥ 2, Φd(x) has the same leading and constant coefficient,
namely, 1, and hence it is its own reciprocal.

9. The size of confusable sets. The next lemma shows that in any factoriza-
tion of a generating polynomial, no two terms are reciprocal of each other. Our proof
is significantly simpler than the one used in [27] for the general turnpike problem.

Lemma 17. Generating polynomials cannot have two mutually reciprocal factors.
Proof. Let P (x, y) generate an n-bit string. If A(x, y)A∗(x, y) divides P (x, y),

then A(x, x)A∗(x, x) = A2(x, x) divides P (x, x) = 1 + x + x2 + · · · + xn. Clearly,
A2(x, x) has roots of multiplicity two over C. The roots of 1 + x + · · · + xn are all
distinct, which implies that it has no roots of multiplicity larger than one. This leads
to a contradiction that establishes the claimed result.

If follows that Corollary 13 holds with equality.

1354 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

Corollary 18. For every string s,

|Es| = 2νs ,

and s is reconstructable if and only if νs ≤ 1.
For example, if s = 01001101, its generating polynomial has irreducible factoriza-

tion Ps(x, y) = (1+x+xy)(1+x2y+x3y3). Hence, νs = 2, and there are exactly four
strings confusable with s, E01001101 = {01001101, 01101001, 10110010, 10010110}.

10. Unique reconstruction for prime-related lengths. From Corollary 3,
we see that whenever n + 1 is a product of two integers ≥ 3, there exist confusable
n-bit strings. The lengths n remaining undecided regarding reconstructability are
those for which n + 1 is a prime, twice a prime, or equal to 8. We use the polyno-
mial representation to show that for all these lengths, reconstruction may always be
performed uniquely.

While factorization and irreducibility questions of P (x, y) are related to those
of P (x, x), the two are not equivalent. Irreducibility of P (x, y) does not imply ir-
reducibility of P (x, x). For example, P (x, y) = 2x2 − y2 = (

√
2x + y)(

√
2x − y) is

irreducible over Z, yet P (x, x) = x2 factors as x · x and is not irreducible.
Similarly, in the implication direction we need, irreducibility of P (x, x) does not

generally imply irreducibility of P (x, y) either. For example, P (x, y) = (x−y+1)(x+1)
is not irreducible even though P (x, x) = x + 1 is irreducible. Yet, as the next two
lemmas show, for generating polynomials, and more generally whenever degP (x, y) =
degP (x, x), either both P (x, x) and P (x, y) are irreducible or both polynomials are
reducible.

Lemma 19. Any factor of a generating polynomial has a single monomial of
highest total degree.

Proof. Let P̂ (x, y) be the sum of the highest-total-degree monomials in a poly-

nomial P (x, y), e.g., if P (x, y) = x3 + x2y2 + y4, then P̂ (x, y) = x2y2 + y4. If A(x, y)

is a factor of P (x, y), then Â(x, y) divides P̂ (x, y), and if P (x, y) is also generating,

then P̂ (x, y) consists of a single monomial, and hence so does its factor Â(x, y).
Lemma 20. The number of terms in the prime factorization of a generating

polynomial P (x, y) is at most the corresponding number for P (x, x). Hence, if P (x, x)
is irreducible, then so is P (x, y).

Proof. Let P1(x, y)P2(x, y) · · ·Pk(x, y) be the prime factorization of P (x, y). Then
P1(x, x)P2(x, x) · · ·Pk(x, x) is a factorization of P (x, x) into polynomials that by
Lemma 19 are nonconstant. In particular, this uses that degP (x, y) = degP (x, x) for
a generating polynomial P .

We are now ready to state the main results of the paper.
Theorem 21. All strings of length 7 are reconstructable.
Proof. The proof is given in Appendix A. The result was also independently

verified via computer search.
Theorem 22. All strings of length one less than a prime are reconstructable.
Proof. If s is (p− 1)-bits long, then by the properties of generating polynomials,

Ps(x, x) = 1 + x+ x2 + . . .+ xp−1.

By Corollary 15, Ps(x, x) is irreducible. By Lemma 20, Ps(x, y) is irreducible. By
Corollary 13, s is reconstructable.

For example, for n = 2, both P00(x, y) = 1 + x+ x2 and P01(x, y) = 1 + x + xy,
and their symmetric versions, P10(x, y) and P11(x, y), are irreducible.

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1355

To prove the result for n + 1 equal twice a prime, we find the following lemma
useful.

Lemma 23. If s is confusable, then Ps = AB for some nonpalindromic polyno-
mials A and B.

Proof. Let s be confusable with t. By Lemma 11, Ps = AB and Pt = AB∗ for
some A and B. If B is palindromic, then Ps = AB = AB∗ = Pt, namely, s = t, while
if A is palindromic, then P ∗

s = A∗B∗ = AB∗ = Pt, namely, s = t∗.
Theorem 24. All strings of length one less than twice a prime are recon-

structable.
Proof. Let s have length n one less than twice a prime. We show that in any

factorization

Ps(x, y) = f(x, y)g(x, y),

at least one of the two polynomials f(x, y) and g(x, y) is palindromic. By Lemma 23,
s is reconstructable.

Eisenstein’s criterion of Lemma 14 (also [21, 13]) implies the prime factorization

Ps(x, x) = 1 + x+ x2 + · · ·+ x2p−1

= (1 + x)(1 − x+ x2 − · · ·+ xp−1)(1 + x+ · · ·+ xp−1).

Hence, there are only three possible factorizations of Ps(x, y) into two factors:
Case 1. f(x, x) = 1+x and g(x, x) = (1−x+x2−· · ·+xp−1)(1+x+ · · ·+xp−1).
Case 2. f(x, x) = 1+x+ · · ·+xp−1 and g(x, x) = (1+x)(1−x+x2−· · ·+xp−1) =

1 + xp.
Case 3. f(x, x) = 1 − x + · · · + xp−1 and g(x, x) = (1 + x)(1 + x + · · · + xp−1).

We show that in all three cases, at least one of the polynomials f(x, y) and g(x, y) is
palindromic.

Case 1. By Lemma 19, f(x, y) must be either 1 + x or 1 + y, and both are
palindromic.

Case 2. Let s = s1s2 . . . sn. Then P (x, y)
def
= Ps(x, y) =

∑2p−1
i=0 xaiyi−ai . Denote

∂P

∂x
(x, y)|y=x by P ′

x, in which case

P ′
x =

2p−1∑
i=1

aix
i−1.

Therefore,

∂P

∂x
(x, y) = f(x, y)

∂g

∂x
(x, y) + g(x, y)

∂f

∂x
(x, y)

implies

P ′
x = (1 + x+ · · ·+ xp−1)g′x + (1 + xp)f ′

x,

and multiplying both sides by 1− x results in

(1− x)P ′
x = (1 − xp)g′x + [xp(1 − x) + (1− x)]f ′

x.

1356 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

The left-hand side may be written as

2p−1∑
i=1

aix
i−1−

2p−1∑
i=1

aix
i = a1+

2p−2∑
i=1

(ai+1−ai)x
i−a2p−1x

2p−1 =

2p−2∑
i=0

si+1x
i−a2p−1x

2p−1,

while the right-hand side may be written as

[(1− x)f ′
x + g′x]︸ ︷︷ ︸

(I)

+ xp · [(1− x)f ′
x − g′x]︸ ︷︷ ︸

(II)

.

Note that the degree of the term denoted by I is ≤ max{deg f, deg g − 1} = p − 1,
while all terms in (II) have degree ≥ p. Hence,

(1− x)f ′
x + g′x =

p−1∑
i=0

si+1x
i,

(1− x)f ′
x − g′x =

2p−2∑
i=p

si+1x
i−p − a2p−1x

p−1 =

p−2∑
i=0

si+1+px
i − a2p−1x

p−1.

Subtracting the two equalities leads to

2g′x =

p−2∑
i=0

(si+1 − si+1+p)x
i + (sp + a2p−1)x

p−1.

Since g has integer coefficients and since the si’s are binary valued, for i = 1, 2 . . . , p−1,

si = si+p,

and hence s = t ◦ u, where t consists of p − 1 bits and u is a single bit. Letting
a and b denote the number of zeros and ones in the concatenation tu, Ps(x, y) =
(1 + xayb)Pt(x, y). By Theorem 22, Pt(x, y) has at most one nonpalindromic factor.
It suffices to show that 1 + xayb, which itself is palindromic, has no nonpalindromic
factors. If a = 0 or b = 0, 1 + xayb has no nonpalindromic factor. If both a and b are
nonzero, since a + b = p, the underlying polynomial has at most two factors, one of
which by Lemma 19 is either 1 + x or 1 + y. This is clearly not possible.

Case 3. Similar to Case 2, under modulo 2 operations,

g(x, x) = (1 + x)(1 + x+ · · ·+ xp−1) = 1 + xp (mod 2).

Therefore, strings of length one less than twice a prime are reconstructable.

11. Lower bound on En. Recall that En denotes the largest number of mu-
tually equicomposable n-bit strings. In section 5, we constructed confusable strings
for all lengths n such that n + 1 is a product of two integers ≥ 3. The interleaved
strings are nonpalindromic, and hence En ≥ 4. We next generalize the interleaving
construction in two ways in order to construct equicomposable sets that for some n
are as large as (n+ 1)log3 2.

We first prove the following lemma.
Lemma 25. s ∼ s′ and t ∼ t′, and then

s ◦ t ∼ s′ ◦ t′.

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1357

Proof. Any substring of s ◦ t is of the form stail ti s ti+1 s · · · s tj shead, where the
tail and head substrings are of the form stail = s�s�+1 · · · sn for some integer �, and
shead = s1s2 · · · sh for some integer h. Note that the head or tail substrings may also
be empty or equal to the string s. We hence show that the above described substring
of s ◦ t may be bijectively mapped to a substring s′tail t

′
i′ s

′ t′i′+1 s
′ · · · s′ t′j′ s′head of

s′ ◦ t′, where s′tail = s′�′s
′
�′+1 · · · s′n and s′head = s′1s

′
2 · · · s′h′ .

s ◦ t: · · · ti ti+1 · · · tj · · ·
stail shead

s′ ◦ t′: · · · t′i′ t′i′+1 · · · t′j′ · · ·
s′tail s′head

s ◦ t: · · · ti ti+1 · · · tj · · ·
stail shead

s′ ◦ t′: · · · t′i′ t′i′+1 · · · t′j′ · · ·
s′tail s′head

Since s ∼ s′, there exists a bijection fs,s′ that maps every substring of s to a
substring of s′ with the same composition, and a similar bijection ft,t′ for the strings
t and t′. Let ft,t′ map the substring ti · · · tj to a substring t′i′ · · · t′j′ of the same com-
position, and therefore of the same length. Since s ∼ s′, the strings ti s ti+1 s · · · s tj
and t′i′ s

′ t′i′+1 s
′ · · · s′ t′j′ have the same composition.

s ◦ t: · · · ti
s

ti+1 · · · tj−1
s

tj · · ·

s′ ◦ t′: · · · t′i′
s′

t′i′+1 · · · t′j′−1
s′

t′j′ · · ·

Using the tail and head notation above, it remains to show that � and h can
be bijectively mapped to �′ and h′ such that stailshead and s′tails

′
head have the same

composition. There are two cases to consider.

If the length of stailshead is at most n, removing stail and shead from s yields
smiddle = sh+1 · · · s�−1, which fs,s′ maps to a substring s′middle = s′h′+1 · · · s′�′−1 of s′.
Removing s′middle from s′ yields a tail s′tail = s′�′ · · · s′n and a head s′head = s′1 · · · s′h′ of
s′. Their “combined composition” equals that of the original head and tail substrings.

s ◦ t: · · · ti ti+1 · · · tj · · ·
stail shead

smiddle

shead stail

s′middle

s′head s′tail

s′ ◦ t′: · · · t′i′ t′i′+1 · · · t′j′ · · ·
s′tail s′head

Similarly, if the length of stailshead is greater than n, stail and shead have a common
substring smiddle = s� · · · sh, which fs,s′ maps to a substring s′middle = s′�′ · · · sh′ in s′.
The head s′head = s′1 · · · s′h′ and tail s′�′ · · · s′n of s′ have the same combined composition
as the original head and tail.

1358 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

The second generalization of the interleaving construction is to interleave more
than two strings. For this multistring interleaving construction, we find the following
properties of interleaved strings useful:

Associativity. (s1 ◦ s2) ◦ s3 = s1 ◦ (s2 ◦ s3).
Unique factorization. Every string has a unique maximal factorization into inter-

leaved strings.
Proof. We first show that if s ◦ s′ = t ◦ t′, where s and t are irreducible under the

interleaving operation, then both equal u ◦ u′ for some string u of length (|s|+1, |t|+
1)− 1, where (m,n) is the greatest common divisor of m and n. If |s| = |t|, then we
easily get s = t, as otherwise we would have (|s| + 1) · (|s′|+ 1) = (|t|+ 1) · (|t′| + 1)
and hence (|s| + 1, |t| + 1) = |u| + 1 > 1. We can expand s = u1a1u2a2 · · ·uM ,
where M = (|s| + 1)/(|u| + 1), t = v1b1v2b2 · · · vN with N = (|t| + 1)/(|u| + 1) and
|ui| = |vi| = |u|. Note that each of the ai and bi elements are bits. Since (M,N) = 1
for any (i, j) ∈ ([M], [N]), there are substrings s∗ and t∗ of s◦s′ and t◦t′, respectively,
starting and ending at the same index, such that s∗ = ui and t∗ = vj . This implies
that ui = vj for all i and j, and thus both s and t are reducible.

Theorem 26.

Es1◦s2◦···◦sk = {t1 ◦ t2 ◦ · · · ◦ tk : ti ∼ si for all i}.

Proof. Proving ⊇ is straightforward. By associativity and induction, if si ∼ ti for
i = 1, . . . ,m, then

s1 ◦ s2 ◦ · · · ◦ sm ∼ t1 ◦ t2 ◦ · · · ◦ tm.

The proof of ⊆ is more involved and relegated to Appendix B.
The (⊇) part of the proof suggests a simple construction of large confusable sets.

Every string is equicomposable with its reversal, and hence

Es1◦s2◦···◦sk ⊇ {s̃1 ◦ s̃2 ◦ · · · ◦ s̃k : s̃i is either si or s
∗
i }.

If all the aforementioned strings si are nonpalindromic, then by unique factorization,
each of the resulting interleaved products is different. Hence,

|Es1◦s2◦···◦sk | ≥ 2k.

Let |si| = mi. We have |s1 ◦ s2| = (m1 + 1)(m2 + 1)− 1, and by induction

|s1 ◦ s2 ◦ · · · ◦ sk| =
k∏

i=1

(mi + 1)− 1.

For example, taking s1 = . . . = sk = 01 and n = 3k − 1 leads to

En = E3k−1 ≥ |E01◦01◦···◦01︸ ︷︷ ︸
k

| ≥ 2k = (n+ 1)log3 2.

For general lengths n, consider the unique prime factorization

n+ 1 = 2e0pe11 pe22 . . . pekk .

For every prime p ≥ 3, take a nonpalindromic string of length p − 1, and for every
pair of 2’s, take a nonpalindromic string of length 2 · 2− 1 = 3. (It is straightforward

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1359

to see that nonpalindromic binary strings of length greater than one always exist.)
Interleaving all these strings and their reversals lower bounds the largest number of
mutually equicomposable strings, as stated in the next theorem.

Theorem 27.

En ≥ 2�
e0
2 �+e1+e2+···+ek .

Throughout the remainder of the section, we discuss possible extensions of the
interleaving construction.

The confusable strings we have exhibited so far were interleaved as in Theorem
26. Exhaustive search shows that so are all confusable strings of length ≤ 22. Yet,
Theorem 26 shows that equicomposable sets larger than implied by Theorem 27 must
be based on noninterleaved strings. We next provide a number of examples of nonin-
terleaved confusable strings.

We begin with a polynomial interpretation of interleaving.
Lemma 28. For any string s with a 0’s and b 1’s and any string t,

Ps ◦ t(x, y) = Ps(x, y)Pt(x
a+1yb, xayb+1).

Proof. Let t
def
= t1t2 · · · tm, so that s ◦ t = st1st2 · · · tms, and define ai =

∑i
j=1 tj

and bi =
∑i

j=1(1− tj) to be the numbers of 0’s and 1’s in t1t2 · · · ti. Then,

Ps ◦ t(x, y)

= Ps(x, y) + xa+t1yb+(1−t1)Ps(x, y) + · · ·+ xma+t1+···+tmymb+(1−t1)+···+(1−tm)Ps(x, y)

= Ps(x, y)
m∑
i=1

xia+aiyib+bi .

Therefore,

m∑
i=1

xia+aiyib+bi =

m∑
i=1

x(ai+bi)a+aiy(ai+bi)b+bi

=

m∑
i=1

(xa+1yb)ai(xayb+1)bi = Pt(x
a+1yb, xayb+1),

proving the lemma.
The next result is a straightforward consequence of Theorem 12.
Theorem 29. Let s1, s2, . . . , sk be strings whose generating polynomials have a

common factor D(x, y). Derive t1, t2, . . . , tk from s1, s2, . . . , sk by replacing D(x, y)
by its reciprocal. Then for any x1x2 . . . xk−1,

s1 x1 s2 x2 · · · xk−1 sk ∼ t1 x1 t2 x2 · · · xk−1 tk.(7)

It is straightforward to see that equicomposable strings obtained via our inter-
leaving procedure represent a special case of the construction of Theorem 29. We also
have the following consequences of the aforementioned results.

Corollary 30. Let u ∼ v and for i = 1, 2, . . . , k, let (si, ti) ∈ {(u, v′), (v, u′)},
where u ∼ u′ and v ∼ v′. Then, for any string x̄ = x1x2 · · ·xk−1, the two strings
listed in (7) are equicomposable.

1360 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

Corollary 31. Let s1, . . ., sk be strings with the same composition. Then, for
any string s0 and bits x1x2 . . . xk−1,

(s1 ◦ s0)x1(s2 ◦ s0)x2 . . . xk−1(sk ◦ s0) ∼ (s1 ◦ s∗0)x1(s2 ◦ s∗0)x2 . . . xk−1(sk ◦ s∗0).

For example, taking s1 = 010, s2 = 001, s0 = 01, and x1 = 0, we obtain the
23-bit confusable strings

01000101010000100011001 = (010 ◦ 01)0 (001 ◦ 01)
∼ (010 ◦ 10)0 (001 ◦ 10)
= 01010100010000110010001.

These strings are clearly noninterleaved and represent the shortest example of non-
interleaved confusable strings. Note that this example also shows that string equicom-
posability differs from partition coarsening [4] using ribbon Schur functions.

12. Upper bounds on En. To upper bound the largest number of mutually
equicomposable strings, we use well-known results on the factorization of xn − 1.
Recall that d(n) denotes the number of divisors of n.

Theorem 32. For all n,

En ≤ min
{
2d(n+1)−1, (n+ 1)1.23

}
.

Proof. The (n+1)1.23 bound follows from results in [16] by replacing y in P (x, y)
by xn+1 to obtain a univariate polynomial, and reproving theorems therein for this
polynomial, showing that En ≤ (n+ 1)1.23.

To prove the first upper bound, let s have length n. Then,

Ps(x, x) = 1 + x+ x2 + x3 + . . .+ xn =
xn+1 − 1

x− 1
.

Hence, the prime factorization of Ps(x, x) contains d(n+1)−1 terms. From Lemma 20,
the prime factorization of Ps(x, y) contains at most that many terms, and the bound
follows from Corollary 13.

To relate the form of this upper bound to that of the lower bound described in
Theorem 27, let once more n + 1 = 2e0pe11 pe22 . . . pekk be the unique factorization of
n+ 1 into distinct primes. Then, d(n+ 1) = (e0 + 1)(e1 + 1) · · · (ek + 1), and hence

En ≤ min
{
2(e0+1)(e1+1)···(ek+1)−1, (n+ 1)1.23

}
.

The lower bound in Theorem 27 is tight when n+ 1 is a prime power or twice a
prime power.

Theorem 33. For any k,

E2k−1 = 2� k
2 �,

and for prime p ≥ 3,

Epk−1 = 2k.

Proof. Eisenstein’s criterion implies the prime factorization

Ps(x, x) = 1 + x+ x2 + · · ·+ x2k−1 =

k−1∏
j=1

(1 + x2j).

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1361

To prove the bound, it suffices to show that any factorization of Ps(x, y) of the form

f(x, y)g(x, y) with g(x, x) = 1 + x2i implies that g(x, y) is palindromic.
Let s = s1s2 . . . s2k−1 and as before, let ai be the number of zeros among s1, . . . ,si.

Then P (x, y)
def
= Ps(x, y) =

∑2k−1
i=0 xaiyi−ai . Denote

∂P

∂x
(x, y)|y=x by P ′

x. Then

(1− x)P ′
x =(1 − x)f(x, x)g′x + (1− x)g(x, x)f ′

x

implies that

2k−2∑
i=0

si+1x
i − a2k−1x

2k−1 =
(
1− x2i+ x2·2i − x3·2i+ · · · − x(2k−i−1)·2i

)
g′x

+ (1 + x2i)(1 − x)f ′
x.

The degree of g′x is 2i − 1 and that of (1− x)f ′
x is 2k − 1− 2i, so we may write

(1− x)f ′
x =

2k−i−2∑
j=0

xj·2ifj,

where each fj has degree ≤ 2i − 1. Defining f−1 = f2k = 0 and s2k = −a2k−1 leads
to

2k−2∑
i=0

si+1x
i − a2k−1x

2k−1 =
2k−i−1∑
j=0

(−1)jxj·2ig′x +
2k−i−2∑
j=0

xj·2ifj +
2k−i−1∑
j=1

xj·2ifj

⇒
2k−i−1∑
j=0

xj·2i
⎛
⎝2i−1∑

l=0

sj·2i+l+1x
l

⎞
⎠ =

2k−i−1∑
j=0

xj·2i ((−1)jg′x + fj−1 + fj
)
.

If we sum up all the terms with even values of j in the above equation and subtract
the result from the sum of the terms corresponding to odd values, we get

2k−i−1∑
j=0

(−1)j·2
i

⎛
⎝2i−1∑

l=0

sj·2i+l+1x
l

⎞
⎠ = 2k−ig′x.

Since all elements sl except for possibly s2k are either 0 or 1, we must have

g′x = a · x2i−1,

and thus

g(x, y) = 1 + g1(x, y) + xay2
i−a.

Claim 34. If f(x, x) = K, a constant, and f ′
x = 0, then (x− y)2|f(x, y)−K.

Proof. Let f(x, y) = (x − y)f1(x, y) + f2(x). Then, clearly f2(x) = K. Also,
f ′
x = 0 implies f1(x, x) = 0, and thus f1(x, y) has x− y as a factor.

Using the claim, we conclude that g(x, y) = 1 + (x− y)2g1(x, y) + xay2
i−a.

Now, consider

f(x, y) (g − g∗) .

1362 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

The polynomial is the difference of two generating polynomials, but substituting y =
−x, we see that each coefficient is divisible by 4, which cannot be true unless g−g∗ = 0.

It is easy to see that the bound is achievable by taking strings of the form t0 ◦
t1 ◦ t2 ◦ · · · ◦ t� k

2 �, where ti = 001 for i ≥ 1, and t0 is the empty string when k is even,

and otherwise it is the single bit 0.
When n = pk − 1 for a prime p ≥ 3, Theorems 27 and 32 provide the same

result.

13. Reconstruction algorithm. We next present an algorithm for reconstruct-
ing strings from their composition multiset. The algorithm takes as input the com-
position multiset Ss of a string s over an alphabet Σ and outputs elements of Es, the
set of all strings confusable with s. We show that for alphabet size ≥ 4, the string s
that generated Ss is added to the reconstructed sequence list in quadratic time. The
algorithm successively reconstructs s from both ends and backtracks when it errs. It
can be viewed as a modification of a similar algorithm for the turnpike problem [8].

We first establish two results regarding Ss that help reduce the search space of
the algorithm. The first result shows that the composition multiset determines the set
{si, sn+1−i} of symbols at the symmetric positions i and (n+1−i) for i = 1, 2, . . . , �n

2 �.
Lemma 35. Ss determines the multiset {si, sn+1−i} for i = 1, 2, . . . , �n

2 �.
Proof. Let the union of compositions be their multiset union: for example, A2B∪

ABC2 ∪ AC = A4B2C3. For a string s, let Mi denote the union of the compositions
of all substrings of length i. For example, for ABAC, M1 = A2BC, M2 = A3B2C.
Note that all unions Mi can be easily determined from the composition multiset Ss

and that for 1 ≤ i ≤ �n/2�, Mn+1−i = Mi. For a multiset S, let j ×U S denote the
j-fold union S ∪ . . . ∪ S. It is easy to see that

M2 ∪ {s1, sn} = 2×U M1,

and hence {s1, sn} can be determined from Ss. More generally, for i = 2, . . . ,�n
2 �,

Mi ∪ {si−1, sn−i+2} ∪ 2×U {si−2, sn−i+3} ∪ . . . ∪ (i − 1)×U {s1, sn} = i×U M1.

Using this equation inductively over i = 2, . . . ,�n
2 � yields all multisets

{si, sn−i+1}.
For 1 ≤ i < �n/2�, let Ti be the collection of compositions of strings skj where

j, k ≤ i, j, k ≥ n+1−i, or j ≤ i+1 ≤ n−i ≤ k, namely, the collection of compositions
of all strings that are either on “one side” of sn−i

i+1 or “straddle” sn−i
i+1 . (For ease of

notation, we henceforth use sji , j ≥ i, to denote the substring si, si+1, . . . , sj .)
The next lemma shows that the composition of the whole string, along with the

strings si and snn+1−i, determines Ti.
Lemma 36. Ss, s

i, and snn+1−i determine Ti.
Proof. Ti consists of compositions of three types of strings: those that are sub-

strings of si1, that are substrings of s
n
n+1−i, and that cover all symbols in between, i.e.,

sn−i
i+1 . The first and last i symbols determine the compositions of the first two type

of strings. The third type of strings are those that contain the string sn−i
i+1 . This is a

symmetric substring, namely, it has the same number of symbols on its left and right,
and by Lemma 35 we can determine its composition. Knowing this composition and
the first and last i symbols yields the multiset of strings of the third type.

We use the two lemmas to devise a method for reconstructing the underlying
string.

Lemma 37. Let w(s) and as before denote the composition of a string. If w(si1) �=
w(snn−i+1), then Ss, s

i
1, and snn+1−i determine the pair (si+1, sn−i).

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1363

Proof. By Lemma 36, we can determine Ti. Consider the two longest compositions
in Ss \ Ti. They correspond to the length-(n − i − 1) strings sn−i−1

1 and sni+2. The
complements of these two compositions are therefore the compositions of si+1 and
snn−i.

By Lemma 35, we can also determine the multiset {si+1, sn−i}. If si+1 = sn−i,
then we can determine si+1 and snn−i. Otherwise, si+1 �= sn−i, and since w(si1) �=
w(snn+1−i), it is easy to see that {w(si1) ∪ w(si+1), w(sn−i) ∪ w(snn−i+1)} �= {w(si1)
∪w(sn−i), w(si+1) ∪ w(snn−i+1)}, and hence we can determine the pair (si+1,
sn−i).

The algorithm reconstructs the string by sequentially deciding on the values of
the pair of symbols si and sn−i+1 that occupy symmetric positions. It starts with
the symbols s1 and sn at the two ends of the string and progressively moves toward
the center. The algorithm then determines s1s2 and sn−1sn, up to reversal. By
Lemma 35, we know the multiset {s1, sn} and may arbitrarily choose which symbol
is s1 and which is sn. The next step of the procedure is to determine s2 and sn−1.
Again, by the lemma, we know {s2, sn−1}, and if s1 = sn, we can decide on s2 and
sn−1 arbitrarily, while if s1 �= sn, by Lemma 37, we can determine s2 and sn−1. For
{s3, sn−2}, the ends s21 and snn−1 may differ, while their weights could be the same. In
such cases, Lemma 37 cannot be applied. However, if s3 = sn−2, which can be deduced
from Lemma 35, we can easily determine (s3, sn−2). In other words, if si = sn+1−i,
the algorithm easily determines (si, sn+1−i). Therefore, from this point on, when the
algorithm has reconstructed the first and last i symbols, and w(si1) = w(snn+1−i) but
si+1 �= sn+1−i, it guesses one of the two possibilities for (si+1, sn+1−i) and proceeds,
while keeping track of the number t and locations i1 < i2 < . . . < it where guesses
were made. After determining/guessing si+1 and sn−i, the algorithm updates Ti to
Ti+1. It then checks whether Ti+1 ⊆ Ss as multisets. If at some point Ti+1 � Ss,
the algorithm backtracks. It changes its guess at location it by swapping sit and
sn+1−it , changes t to t − 1, and restarts reconstruction from location it + 1. The
process continues until the whole string is reconstructed, namely, until i = �n

2 � and
T�n/2� = Ss. If at that point there are t ≥ 1 guesses, then as before the algorithm
backtracks to guess t and identify additional strings in Es.

Since our algorithm relies on the compositions of strings computed from both
ends, it is helpful to introduce some terminology that will ease the exposition.

Let

�s
def
=

∣∣{i < n/2 : w(si) = w(snn+1−i) and si+1 �= sn−i}
∣∣

be the number of substrings read from both ends having the same composition, such
that their immediately following two symbols are distinct. In other words, �s denotes
the number of maximal equicomposition substrings appearing as prefixes and suffixes.

Furthermore, let

Ls
def
= max

t∈Es

�t

be the largest value of � over all strings in Es.
The backtracking algorithm induces a binary tree where the nodes represent loca-

tions at which there are two possible reconstructions. The procedure described above
does a depth-first search. Instead, we could also perform a breadth first search, where
we consider all branches at once, namely, at any time, all potential reconstructions
correspond to level t or t+1. This implies that given Ss, the algorithm is able to find
s before depth �s + 1.

1364 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

We bound the time required to reconstruct s from Ss in the following theorem.
Theorem 38. The backtracking algorithm, run using proper data structures, and

given inputs Ss and �s, outputs a set of strings that contains s in time O(2�sn2 logn).
Furthermore, Es can be recovered in time O(2Lsn2 logn).

Proof. We assume an arbitrary order over the set of symbols in Σ. This introduces
a lexicographical ordering over compositions of strings on Σ. We use a red-black
tree [6] to store multisets of compositions. The advantage of this data structure is
that insertion, deletion, and search all require time O(log n), where n is the length of
the underlying string.

Notice that Ti+1 is obtained from Ti by adding the compositions of substrings
that have as endpoints si+1 or sn−i. In particular, at most 2n compositions are
added, requiring O(n log n) time. For each branch, we keep a copy of Ss and prune
it to populate T , i.e., while constructing Ti+1 we simultaneously remove the new
entries/compositions from the copy of S corresponding to this branch. This procedure
requires additionalO(n log n) operations. When there are two possible reconstructions
at any stage, we make copies of Ti and S corresponding to that node and proceed
along each. This step takes time O(n2 logn).

While reconstructing s, the algorithm does not “fork out” more then �s+1 times,
and therefore the number of branches created before reconstructing s is at most 2�s .
Along each path, we make n/2 iterations requiring a total time of O(n2 logn). Com-
bining these, the total complexity of reconstructing s is at most O(2�sn2 logn).

To reconstruct Es, we note that the number of “forks” is ≤ Ls. Therefore, a
similar computation shows that the algorithm runs in time O(2Lsn2 logn).

We have bound the run time of reconstructing a string as a function of �s. For
random strings, we bound the run time by studying the distribution of �s.

We do this by using some well-known results in random walk theory [28] and
Stirling’s approximation formula for factorials.

Lemma 39 (Stirling’s approximation). For any n ≥ 1, there is a θn ∈ (1
12n+1 ,

1
12n)

such that

n! =
√
2πn

(n
e

)n

eθn .

We now apply this result to bound the probability that two random strings have
the same composition. A stronger version of the result that finds asymptotic equality
is proved in [25] but is not required for our purposes.

Lemma 40. For |Σ| = k, let s and t be two random strings over Σ of length n.
Then, for k ≥ n,

P (w(s) = w(t)) <
n!

kn
,

and for k < n

P (w(s) = w(t)) <
kk/2e1/12n

(2πn)(k−1)/2
.

Proof. The probability that the symbols in Σ appear, respectively, i1, . . . ,ik times
in a random string of length n, under some lexical ordering of the symbols, is

1

kn

(
n

i1, . . . ,ik

)
,

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1365

where i1 + . . .+ ik = n. Therefore, the probability that two random strings have the
same composition is

∑
i1+...+ik=n

1

k2n

(
n

i1, . . . ,ik

)2

≤ 1

kn
max

i1+...+ik=n

(
n

i1 . . . ik

)
·

∑
i1+...+ik=n

1

kn

(
n

i1, . . . ,ik

)

=
1

kn
max
i1,...,ik

(
n

i1 . . . ik

)
,

where the last step follows from

∑
i1+...+ik=n

1

kn

(
n

i1, . . . ,ik

)
= 1.

For k ≥ n,

max
i1,...,ik

(
n

i1 . . . ik

)
= n!,

implying the first part of the claim.
For n ≥ k, note that

f(x)
def
=

√
2πx

(x
e

)x

is convex in (1,∞). Therefore,

k∏
j=1

ij!
(a)
>

k∏
j=1

f(ij)
(b)
>

(
f
(n
k

))k

=

(√
2π

n

k

)k (n

ke

)n

,

where (a) follows from Stirling’s approximation, and (b) follows from convexity of f .
Hence,

max
i1,...,ik

(
n

i1 . . . ik

)
<

n!(
f
(
n
k

))k <
kk/2e1/12n

(2πn)(k−1)/2
,

where in the last step we approximated n! using Stirling’s formula.

We now study the distribution of �s. We first consider alphabet sizes ≥ 4 in detail
and then provide separate performance guarantees for alphabet sizes 3 and 2.

14. Alphabet size ≥ 4. Consider two uniformly at random generated inde-
pendent infinite strings s∞ and t∞ over alphabet Σ of size k. A set of integers
i1 < i2 < . . . < im is termed nonconsecutive if ij+1 > ij + 1.

Let Fm be the event that there are at least m+ 1 nonconsecutive integers i0
def
=

0 < i1 < i2 < . . . < im such that for each j ≤ m, w(s
ij
1) = w(t

ij
1). After a location

ij at which w(s
ij
1) = w(t

ij
1) holds is reached, by independence, the process becomes

equivalent to a process starting at index 1. It hence follows that P (Fj+1|Fj) = P (F1).
Therefore,

P (Fm) = P (F1)
m.(8)

1366 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

Let M(s∞, t∞) denote the total number of nonconsecutive integers for which w(si1) =
w(ti1). Then by (8),

E[M] =
∑
m≥1

P (M ≥ m) =
∑
m≥1

P (Fm) =
P (F1)

1− P (F1)
.

However, if instead of nonconsecutiveness, we only restrict i1 ≥ 2, Lemma 40
shows that for an alphabet of size k, one has

E[M] ≤
k∑

n=2

n!

kn
+

∞∑
n=k+1

kk/2e1/12n

(2πn)(k−1)/2
.

The right-hand side of this equation is finite for k ≥ 4. In fact, it decays as O(1/k2)

with k. This implies that pk
def
= P (F1) < 1, and therefore for a random string s, (8)

gives

P (�s > m) ≤ P (Fm) = pmk ,

proving the following lemma.
Lemma 41. A random string over alphabet size k ≥ 4 with probability ≥ 1 − pmk

satisfies �s ≤ m.
This implies that with probability ≥ 1 − δ, �s < log1/pk

1
δ . Therefore, applying

Theorem 38 leads to the next theorem.
Theorem 42. For a random string s over an alphabet of size ≥ 4, the backtrack-

ing algorithm with probability > 1 − δ outputs a subset of Es containing s in time
Oδ,k(n

2 logn).
Recall from Theorem 32 that |Es| < n1.23. Therefore, by the union bound, we

obtain the following result.
Lemma 43. With probability ≥ 1 − n1.23pmk , a random string over alphabet size

k ≥ 4 satisfies Ls < m.
Applying these two lemmas to Theorem 38, we prove the next theorem.
Theorem 44. For a random string s over an alphabet of size ≥ 4, the backtrack-

ing algorithm with probability > 1− δ outputs Es in time Oδ

(
n1.23 log1/pk

2n2 logn
)
.

Recall that pk decays as 1/k2, and for sufficiently large k, the algorithm recon-
structs the entire set Es in near quadratic time.

We now consider strings over alphabet sizes 3 and 2.

15. Alphabet size 3 and 2. By Lemma 40 for k = 3, two random strings of
length n ≥ 2 have the same composition with probability less than

3
√
3e1/12n

2πn
<

0.87

n
.

Recall that the harmonic sum Hn = 1 + 1/2 + . . .+ 1/n converges to lnn+ γ, where
γ is the Euler–Mascheroni constant, and therefore, for a random string s,

E[�s] <

n/2∑
i=2

0.87

n
< 0.87 lnn+ 0.87γ.

By Markov’s inequality, with probability ≥ 1 − δ, a random string over alphabet of
size 3 satisfies �s < 0.84 lnn+0.84γ

δ . Again, applying Theorem 38 establishes the next
theorem.

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1367

Theorem 45. The backtracking algorithm for random strings over alphabet size

3 outputs with probability ≥ 1− δ a subset of Es containing s in time O
(
n

0.6
δ

)
.

For alphabet size 2, Lemma 40 shows that

E[�s] < 1.9
√
n+ 0.84γ.

A similar use of Markov’s inequality and Theorem 38 yield to the last theorem of this
section.

Theorem 46. The backtracking algorithm for random strings over alphabet size

2 outputs a subset of Es containing s with probability ≥ 1− δ in time O
(
2

2
√

n
δ

)
.

16. Conclusions and extensions. Starting with the problem of protein mass-
spectrometry reconstruction, we made two simplifying assumptions: that all peptide
bond cuts are equally likely and that substring weights imply their compositions.
These two assumptions reduced protein-reconstruction to the simple problem of re-
constructing a string from its substring compositions. We noted that this is the only
unstudied variation of four related substring reconstruction problems, that solving
the problem for binary strings suffices to provide a solution for all alphabet sizes,
and that the reconstruction problem represents a combinatorial simplification of the
long-open turnpike problem.

We called strings with the same composition multiset equicomposable, strings
equicomposable only with themselves and their reversal reconstructable, and those
with more than these two trivial equicomposable strings confusable. We noted that
all strings of length at most seven are reconstructable. For all lengths one short of
a product of two integers, each at least three, we obtained confusable strings of this
length.

Extending polynomial techniques used for the turnpike problem, we represented
strings as bivariate generating polynomials. We used this formulation to characterize
equicomposability in terms of both polynomial multiplication and polynomial factor-
ization, showing in particular that equicomposable strings are determined exactly by
the prime factorization of their generating polynomials. We then showed that all
strings of lengths not included in the earlier construction, namely, seven, and one less
than either a prime or twice a prime, are reconstructable.

Interleaving multiple strings, we constructed sets of (n+ 1)log3 2 length-n strings
that are mutually equicomposable and exhibited a pair of noninterleaved confusable
strings. Using cyclotomic polynomials, we upper bounded the largest number of con-
fusable strings, showing in particular that the lower bound is tight when the sequence
length is one short of a prime power and twice a prime power.

Many questions remain. All confusable strings that we are aware of are described
by Theorem 29. Finding other confusable strings, or proving that this describes
all confusable strings, would be of interest. We made two assumptions. The first
implied that we are given the composition of all substrings. What happens when
we are given a fraction of all substrings or of all substrings of a given length? The
proofs provided here use algebraic arguments. Direct combinatorial proofs would be
of interest. The second assumption was that all compositions are given correctly. It
would be interesting to know whether some errors can be tolerated.

While prime-related reconstructability may be interesting, reconstructability for
arbitrary lengths may be of more practical relevance. It would be interesting to
determine whether the lower bound of the size of equicomposable sets in Theorem 27
is always tight. It would mean that every string is confusable with at most a sublinear

1368 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

number of strings. A related question is whether most strings of a given length are
reconstructable. This question is related to the open problem of whether most 0-1
polynomials are irreducible over the integers [22].

A related question addresses the number of composition multisets. If this number
is close to 2n, then most strings can be reconstructed. Another variation is when
instead of a string, the bits are arranged on a ring. The constructions presented here
extend to ring. Proving the upper bounds is still open.

Other problems relate to algorithms for reconstructing a string from its substring
composition. As noted earlier, n-bit reconstruction can be reduced to solving a turn-
pike problem with n+ 1 exits and total length ≤ n2. This implies a polynomial-time
algorithm for the reconstruction. However, such a generic algorithm may have high
complexity, and an algorithm that uses the structure of the reconstruction problem is
of interest.

Appendix A. Proof of Theorem 21. The proof follows along the same line
as the derivations behind Theorem 24.

We first show that in any factorization

Ps(x, y) = f(x, y)g(x, y),

at least one of the polynomials f(x, y) and g(x, y) is palindromic. By Lemma 23, s is
reconstructable.

Write

Ps(x, x) = 1 + x+ x2 + · · ·+ x7 = (1 + x)(1 + x2)(1 + x4).

Hence, there are only three factorizations of Ps(x, y) into two factors, considered
separately in what follows:

Case 1. f(x, x) = 1 + x and g(x, x) = (1 + x2)(1 + x4). This scenario is identical
to Case 1 of Theorem 24.

Case 2. f(x, x) = 1+ x2 and g(x, x) = (1+ x)(1 + x4). In this case, we note that
f(x, y) has no linear terms; otherwise it must have both the terms x and y, which
would imply the existence of terms of the form xa and yb for positive integers a and
b, which violates G3.

Case 3. f(x, x) = 1 + x4 and g(x, x) = (1 + x)(1 + x2).

Let us focus on g(x, x) = (1 + x)(1 + x2) = 1 + x+ x2 + x3. Just as in the Case 2 of
the proof of the Theorem 24, we can show that the string is a concatenation of the
form tut, where t is a length 3 string and u is a binary symbol. This implies that
Ps = Pt(1+xayb), where a and b are the number of 0’s and 1’s in tu, so that a+b = 4.
Since 1 + x4 is irreducible, this factor is palindromic, which proves the third case as
well.

Appendix B. Proof of ⊆ in Theorem 26. We start by proving the following
lemma.

Lemma 47. Let P (x, y) be a generating polynomial. Any Q(x, y) ∈ Z[x, y] with
constant term equal to 1, satisfying

P (xa+1yb, xayb+1)P ∗(xa+1yb, xayb+1) = Q(x, y)Q∗(x, y),

has the form R(xa+1yb, xayb+1), where R(x, y) is a generating polynomial.

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1369

Proof: Similar to the proof of Lemma 9, we can show that

(9) P (xa+1yb, xayb+1)P

(
1

xa+1yb
,

1

xayb+1

)
= Q(x, y)Q

(
1

x
,
1

y

)
,

where Q(x, y) is a 0-1 polynomial.
Note that all monomials in the expansion of the left-hand side of (9) have the

form(
xa+1yb

)s (
xayb+1

)t · 1

(xa+1yb)
s′
(xayb+1)

t′ = x(a+1)(s−s′)+a(t−t′) yb(s−s′)+(b+1)(t−t′).

For any monomial xiyj present in Q(x, y), consider another monomial of the form
xiyj · 1 in the expansion of the right-hand side of (9). Then, for some h, l and h′, l′,

i = (a+ 1)(h− h′) + a(l − l′),
j = b(h− h′) + (b+ 1)(l − l′).

For simplicity, let uij = h− h′ ∈ Z and vi,j = l − l′ ∈ Z. Then

Q(x, y) =
∑
i,j

xiyj =
∑
i,j

(
xa+1yb

)uij
(
xayb+1

)vij
.

Let R(x, y) =
∑

i,j x
uijyvij . Then Q(x, y) = R(xa+1yb, xayb+1).

It remains to show that R(x, y) is a generating polynomial. Let u
def
= min uij ,

and v
def
= min vij . Then T (x, y)

def
= x−uy−vR(x, y) ∈ Z[x, y]. It is straightforward to

see that

P (x, y)P

(
1

x
,
1

y

)
= T (x, y)T

(
1

x
,
1

y

)
.

From Lemma 9, it follows that T (x, y) is a generating polynomial. Also, note that

Q(x, y) = (xa+1yb)u(xayb+1)v T
(
xa+1yb, xayb+1

)
.

Since both Q(x, y) and T
(
xa+1yb, xayb+1

)
are polynomials with constant term 1, we

must have (a + 1)u + av = 0 and bu + (b + 1)v = 0, which imply that u = v = 0.
Hence, R(x, y) = T (x, y) is a generating function, and

Q(x, y) = R(xa+1yb, xayb+1).

Proof of Theorem 26. It suffices to consider k = 2, i.e., s = s1 ◦s2. For i = 1, 2, let
Pi(x, y) be the generating polynomial of Si. By Lemma 28, the generating polynomial
of s is Ps(x, y) = Ps1(x, y)Ps2

(
xa+1yb, xayb+1

)
, where a and b are the numbers of

ones and zeroes in s1. Let

Ps1 (x, y) =

k1∏
i=1

Ai(x, y), and Ps2

(
xa+1yb, xayb+1

)
=

k2∏
i=1

Bi(x, y),

where A1, A2, . . . Ak1 and B1, B2, . . . , Bk2 are irreducible factors. Then

Ps(x, y) =

k1∏
i=1

Ai(x, y)

k2∏
i=1

Bi(x, y).

1370 J. ACHARYA, H. DAS, O. MILENKOVIC, A. ORLITSKY, AND S. PAN

Since s ∼ t, by Theorem 12, there exist integers K1 ⊆ [k1] and K2 ⊆ [k2] such that

Pt(x, y) =
∏
i∈K1

Ai(x, y)
∏

i∈[k1]\K1

A∗
i (x, y)

∏
i∈K2

Bi(x, y)
∏

i∈[k2]\K2

B∗
i (x, y).

Let

Q1(x, y)
def
=

∏
i∈K1

Ai(x, y)
∏

i∈[k1]\K1

A∗
i (x, y),

Q2(x, y)
def
=

∏
i∈K2

Bi(x, y)
∏

i∈[k2]\K2

B∗
i (x, y).

Note that Q1(x, y) and Q2(x, y) satisfy

Q1(x, y)Q
∗
1(x, y) = Ps1(x, y)P

∗
s1 (x, y),

Q2(x, y)Q
∗
2(x, y) = Ps2(x

a+1yb, xayb+1)P ∗
s2(x

a+1yb, xayb+1).

The first equation and Lemma 9 imply that Q1(x, y) is a generating polynomial. Since
both Pt and Q1 have constant term 1, Q2(x, y) also has constant term 1. Then the
second equation and Lemma 47 imply that

Q2(x, y) = R(xa+1yb, xayb+1),

where R(x, y) is a generating polynomial. By Lemma 28, t = t1 ◦ t2, where t1 has
generating polynomial Q1(x, y), and t2 has generating polynomial R(x, y).

Acknowledgments. We thank Sampath Kannan, Ananda Theertha Suresh, and
Alex Vardy for helpful discussions and suggestions.

REFERENCES

[1] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, On reconstructing a string
from its substring compositions, in Proceedings of the IEEE Symposium on Information
Theory, 2010, pp. 1238–1242.

[2] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, Quadratic-backtracking
algorithm for string reconstruction from substring compositions, in Proceedings of the 2014
IEEE International Symposium on Information Theory (ISIT), IEEE, 2014, pp. 1296–1300.

[3] T. Batu, S. Kannan, S. Khanna, and A. McGregor, Reconstructing strings from random
traces, in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
2004, pp. 910–918.

[4] L. J. Billera, H. Thomas, and S. van Willigenburg,Decomposable compositions, symmetric
quasisymmetric functions and equality of ribbon Schur functions, Adv. Math., 204 (2006),
pp. 204–240.

[5] S. Chen, Z. Huang, and S. Kannan, Reconstructing numbers from pairwise function values,
in Proceedings of the International Symposium on Algorithms and Computation, 2009,
pp. 142–152.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed., MIT Press, Cambridge, MA, 2001.

[7] T. E. Creighton, Proteins: Structures and Molecular Properties, 2nd ed., W. H. Freeman,
San Francisco, 1992.

[8] T. Dakic, On the Turnpike Problem, Ph.D. thesis, Simon Fraser University, Burnaby, Canada,
2000.

[9] A. Daurat, Y. Gérard, and M. Nivat, Some necessary clarifications about the chords’ prob-
lem and the partial digest problem, Theor. Comput. Sci., 347 (2005), pp. 432–436.

[10] T. I. Dix and D. H. Kieronska, Errors between sites in restriction site mapping, Comput.
Appl. Biosci., 4 (1988), pp. 117–123.

STRING RECONSTRUCTION FROM SUBSTRING COMPOSITIONS 1371

[11] M. Dudik and L. J. Schulman, Reconstruction from subsequences, J. Combin. Theory Ser. A,
103 (2003), pp. 337–348.

[12] G. Fici and Z. Lipták, On prefix normal words, in Developments in Language Theory, G.
Mauri and A. Leporati, eds., Lecture Notes in Comput. Sci. 6795, Springer, New York,
2011, pp. 228–238.

[13] D. J. H. Garling, A Course in Galois Theory, Cambridge University Press, Cambridge, 1986.
[14] S. Kannan, Private communication, 2009.
[15] S. Lang, Algebra, 3rd ed., Grad. Texts in Math., Springer, New York, 2002.
[16] P. Lemke and M. Werman, Inverting the Autocorrelation and the Problem of Locating Points

on a Line, Given Unlabelled Distances Between Them, Technical report 453, IMA preprint,
Institute for Mathematics and Its Applications, Minneapolis, MN, 1988.

[17] A. K. Lenstra, H. W. Lenstra, and Lászlo Lovász, Factoring polynomials with rational
coefficients, Ann. of Math., 261 (1982), pp. 515–534.

[18] V. I. Levenshtein, Efficient reconstruction of sequences from their subsequences or superse-
quences, J. of Combin. Theory Ser. A, 93 (2001), pp. 310–332.

[19] D. Margaritis and S. S. Skiena, Reconstructing strings from substrings in rounds, in Proceed-
ings of the 36th Annual Symposium on Foundations of Computer Science, 1995, pp. 613–
620.

[20] D. W. Mount, Bioinformatics: Sequence and Genome Analysis, 2nd ed., Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY, 2001.

[21] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of
Numbers, 5th ed., Wiley Interscience, New York, 1991.

[22] A. M. Odlyzko and B. Poonen, Zeros of polynomials with 0, 1 coefficients, Enseign. Math.,
39 (1993), pp. 317–348.

[23] A. L. Patterson, A direct method for the determination of the components of interatomie
distanees in crystals, Zeitsehr. Krist., 90 (1935), pp. 517–554.

[24] A. L. Patterson, Ambiguities in the X-ray analysis of crystal strycture, Phys. Rev., 65 (1944),
pp. 195–201.

[25] L. B. Richmond and J. O. Shallit, Counting Abelian squares, Electron. J. Combin., 16 (2009),
pp. 317–348.

[26] J. Rosenblatt and P. D. Seymour, The structure of homometric sets, SIAM J. Algebr.
Discrete Methods, 3 (1982), pp. 343–350.

[27] S. S. Skiena, W. D. Smith, and Paul Lemke, Reconstructing sets from interpoint distances
(extended abstract), in Proceedings of the Sixth Annual Symposium on Computational
Geometry, ACM, 1990, pp. 332–339.

[28] F. Spitzer, Principles of Random Walk, Grad. Texts in Math. 34, Springer, New York, 2001.
[29] E. Ukkonen, Approximate string-matching with q-grams and maximal matches, Theoret. Com-

put. Sci., 92 (1992), pp. 191–211.
[30] K. Viswanathan and R. Swaminathan, Improved string reconstruction over insertion-deletion

channels, in Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2008, pp. 399–408.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

