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ABSTRACT OF THE DISSERTATION

Estimation and Compression Over Large Alphabets

by

Jayadev Acharya

Doctor of Philosophy in Electrical Engineering (Communication Theory and
Systems)

University of California, San Diego, 2014

Professor Alon Orlitsky, Chair

Compression, estimation, and prediction are basic problems in information

theory, statistics and machine learning. These problems have been extensively

studied in all these fields, though the primary focus in a large portion of the work

has been on understanding and solving the problems in the asymptotic regime,

i.e., the alphabet size is fixed and the length of observations grow. Compression of

long i.i.d. sequences over a small alphabet has been studied extensively. Kieffer,

Davisson, and others showed that there is no good scheme for compression of

i.i.d. distributions over an infinite alphabet. With the advent of data with larger

underlying alphabet size over the past decade, researchers have considered various

methods/models for which efficient compression is possible.
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We use redundancy, the extra number of bits beyond the optimal as the

performance metric. We consider three general models to address compression of

large alphabets.

The first model considers sources with only a few modes. Most natural

distributions over the integers consists of only a few modes. Moreover, mixture

of a few simple distributions also satisfies this property. However, even the class

M of all monotone distributions over N also has infinite redundancy. In spite of

this, Foster, Stine and Wyner constructed encoding schemes that have diminishing

redundancy for any monotone distribution with a finite entropy. We restrict our

attention toMk, the class of monotone distributions over k alphabets. The precise

redundancy of this class of distributions is characterized by Shamir for the range

k = O(n), i.e., for block-length at most linear in the alphabet size. We extend

the characterization and in fact show that as long as the underlying alphabet

size is sub-exponential in the block-length, it is possible to compress monotone

distributions with diminishing per-symbol redundancy. We extend these results to

distributions with a constant number of modes, whose locations are unknown.

A second elegant approach proposed by Boucheron, Garivier and Gassiat

considers distributions that are bounded by an envelope. They provide charac-

terization of the redundancy of such classes and in particular, find bounds on the

redundancy of power-law and exponential envelopes. Bontemps and later Bon-

temps, Boucheron and Gassiat consider the class of sub-exponential envelopes and

characterize its redundancy precisely. However, these methods do not work for

distributions with a heavy tail, e.g., the power-law distributions. Poisson sam-

pling is a widely used method to introduce independence among the number of

symbol appearances, and thereby simplifying the analysis of many algorithms. We

show that for discrete distributions, the redundancy of Poisson sampled sequences

is sufficient to characterize the redundancy of fixed length sequences. Using this,

we provide simple bounds on the redundancy of envelope classes. We then demon-

strate the efficacy of these bounds by proving tight bounds on the redundancy of

power-law classes, answering an open question of Boucheron et al.

The third approach, proposed initially by Aberg, Shtarkov and Smeets, and

xiii



studied extensively by Orlitsky, Santhanam, Zhang, and Shamir, consider com-

pressing the structure (called pattern) and dictionary of the sequence separately.

In particular, they show that patterns can be compressed with redundancy that

grows as O(n1/2) with the block-length n, independent of the underlying alphabet

size. This problem can also be interpreted as studying the Good-Turing proba-

bility estimation problem under logarithmic loss. We develop several simple and

useful tools to bound redundancy of distribution classes and use them with Poisson

sampling to show that the redundancy of patterns grows as O(n1/3).

xiv



Chapter 1

Introduction

Information theory, machine learning and statistics are closely related dis-

ciplines. One of their main intersection areas is compression redundancy, online

estimation and learning, and hypothesis testing.

It is well known since Shannon proved in 1948 [1] that the number of bits

required to compress a distribution P over A is its entropy H(P ). This is achieved

by an encoding that uses roughly log(1/P (x)) bits to encode x. However in most

practical applications, the distribution generating the data is unknown. In such

problem a general assumption is that the data is generated by an unknown dis-

tribution from a known class P of distributions, for example the collection of all

i.i.d. distributions or all Markov distributions. This uncertainty in the underlying

distribution raises the number of bits above the entropy of some distribution in the

class. This is studied in Universal compression [2, 3, 4, 5, 6]. Any encoding corre-

sponds to some distribution Q over the encoded symbols. Hence the increase in the

expected number of bits used to encode P is EP log(1/Q(x))−H(P ) = D(P ||Q),

the KL divergence between P and Q. Typically one is interested in the highest

increase for any distribution P ∈ P , and finds the encoding that minimizes it. The

resulting quantity called the (expected) redundancy of P , e.g., [7] is given by the

following min-max expression

R(P)
def
= inf

Q
sup
P∈P

D(P ||Q),

where the infimum is over all possible distributions over A.

1



2

1.1 Log-loss prediction and redundancy

The same quantity arises in online-learning, e.g., [8, Ch. 9], where the

probabilities of random elements X1, . . . , Xn are sequentially estimated. One of

the most popular measures for the performance of an estimator Q is the per-

symbol log loss 1
n

∑n
i=1 logQ(Xi|X i−1). As in compression, for underlying distri-

bution P ∈ P , the expected log loss is EP log 1/Q(X), and the log-loss regret is

EP log 1/Q(X) −H(P ) = D(P ||Q). The maximal expected regret for any distri-

bution in P , minimized over all estimators Q is again the KL minimax, namely,

redundancy.

1.2 Packing and distinguishability

In statistics, redundancy arises in multiple hypothesis testing. Consider the

largest number of distributions that can be distinguished from their observations.

For example, the largest number of topics distinguishable based on text of a given

length. This is a form of packing of distributions. For a class P of dsitributions

over A. As in [9], a sub-collection S ⊆ P of the distributions is ε-distinguishable

if there is a mapping f : X → S such that if X is generated by a distribution

S ∈ S, then P (f(X) 6= S) ≤ ε. This is a much stronger condition than the related

packing number of P , which is the largest number of subset of distributions in a

class with all pairwise `1 distances ≥ ε.

In Chapter 2 we discuss the notations, and give an overview of the notions

involved. In particular, we will consider universal compression in greater detail,

and discuss the stronger notion of worst case redundancy in greater detail. We will

relate the problems of compression and prediction, describe patterns and profiles,

and finally discuss some mathematical results that will be used.

To prove the results on redundancy we use several basic results on redun-

dancy. While the results themselves are not hard to prove, we believe that these are

interesting, and to the best of our knowledge not been presented together before.

Therefore, we discuss these general results, which will serve as tools for proving

redundancy results in Chapter 3.
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1.3 Large alphabets

Most of the work done in compression and prediction are in the following

regime. A is typically sequences over an underlying alphabet X of a fixed (usually

small) size k = |X |, and the results are guarantees that are a function of k.

However, in a wide range of applications the natural underlying alphabet could be

comparable or even larger than the length of sequences/number of observations.

The number of possible pixels of an image is 224 (≈ 16MP ), which is roughly

the size of a typical picture from a digital camera. The number of words in an

article is a few hundred, which is a miniscule fraction of the number of all possible

words. Most of the results are vacuous in this regime. Consider another well known

example where the underlying alphabet is unknown. We collect butterfly species

in the wild and after collecting a few butterflies, the objective is to predict the

distribution of butterflies, not only the species that have been observed, but also

the elements that have not been observed. This framework is similar to the Good-

Turing estimator where we have to assign probabilities to the elements observed

and to the symbols that have not been observed.

1.4 Approaches for studying large alphabets

Two differenct approaches have been pursued to study the redundancy of

such classes of distributions.

One of the methods is to consider classes of distributions with certain

tail properties. For example, [10] consider the class of all monotone distribu-

tions over the integers. They design a class of efficient codes such that length n

i.i.d. sequences from any fixed monotone distribution P can be encoded using

nH(P ) + on(nH(P )) bits. However, the class of monotone distributions over N is

not universally compressible. This led to other researchers to consider classes with

slightly stricter conditions. [11] considered the class of monotone distributions over

a finite alphabet alphabet of size k, i.e., |X | = k. For this class of distributions

they characterize the redundancy and characterize the redundancy as a function

of k and n in the regime n = O(k). [12] consider universal compression of se-



4

quences from distributions over the integers. Among other results, they consider

the two specific classes of distributions, that obey the power law, and exponen-

tial law, i.e., there are constants C and α such that any distribution satisfies for

any i, P (i) ≤ C/iα for power law, and P (i) ≤ Ce−αi for exponential law. They

prove upper and lower bounds on the redundancy of these classes, however their

bounds are not optimal, e.g.,, for power law envelope they mention, “We are not

in a position to claim that one of the two bounds is tight, let alone which one is

tight”. [13] solved the exponential envelope problem by finding the growth rate up

to first order terms.

We first consider the well known “Poisson sampling” technique from the

balls and bins set-up to provide an alternate bounds on the redundancy. This

technique yields explicit upper and lower bounds on the redundancy of any enve-

lope class. We prove that these simple expressions are able to find the redundancy

of both the power law and exponential class up to the first order term. Further-

more, our result improves the second order term of [13]. In chapter 5 we consider

the class of envelope distributions and prove these results.

Another line of work initiated by [14] and studied extensively by [15]. Mo-

tivated by language modeling for speech recognition and machine learning applica-

tions this approach separates the symbols and structure of the sequence, called its

pattern. For example, the length-9 sequence defendant has the pattern 123241546,

which represents the ordering of the sequence, disregarding the actual symbols.

For a wide range of problems such as estimating the support size, entropy, or

other symmetric properties of distributions, the patterns are a sufficient statis-

tic [16, 17, 18]. This notion can also be extended to multiple sequences for the

problems of closeness testing and classification [19, 20, 21, 22].

[23] considered the problem of probability estimation in the celebrated

Good-Turing set-up. Relating the problem of density estimation in this setting

to compression of patterns of i.i.d. distributions they study the performance of

the Good-Turing estimator and propose a variant of the original Good-Turing es-

timator that works well under their criterion. Their work considers a stringent

metric of worst-case performance of the algorithm and they provide sub-linear
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bounds on the log-loss of the estimator. This implies that per-symbol loss goes

to zero with the sequence length. This and the fact that the result is indepen-

dent of the underlying alphabet size generated much interest about this result.

They also considered the results from a purely compression framework in [15] and

proved similar results. More precisely, they proved that with the block length n,

the worst-case redundancy of patterns is between n1/3 and
√
n.

The slightly less stringent criterion of average redundancy was studied

by [24] who showed an upper bound of n0.4. We essentially solve the problem by

determining the pattern redundancy up to logarithmic factors. We prove the lower

bound by designing a larger class of distinguishable distributions based on binary

codes with a given minimum distance. We obtain the upper bound by constructing

a smaller class of distributions that form a covering over the patterns. We use

Poisson sampling as before, to simplify the computation. In chapter 6 we consider

pattern redundancy in detail. We discuss relation of the pattern redundancy to

other problems concerning large alphabet learning.



Chapter 2

Preliminaries

2.1 Standard notation

Most of the symbols we use throughout the thesis are given in the following

table. Beyond these, we use capital P , Q to denote distributions, P , to denote a

collection of distributions.

Table 2.1: Notation

notation description

µ multiplicity

τ type

ψ pattern

ϕ̄ profile

X underlying alphabet

A final alphabet

k alphabet size

n sequence lengths

R redundancy

D(·||·) KL divergence

6
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2.2 Universal compression, prediction and redun-

dancy

Let A be a discrete alphabet. An encoding is a prefix-free 1-1 map from

A to {0,1}∗. Let l(a) be the length of the code of symbol a. It can be shown

that evey encoding corresponds to an implied distribution Q over A such that the

length of symbol a is approximately log(1/Q(a)), i.e., Q(a) ≈ 2−l(a).

The length of a code with implied distribution Q under a distribution P is∑
a∈A

l(a)P (a) =
∑
a∈A

P (a) log
1

Q(a)
.

Source coding theorem of Shannon states that the smallest length of a code with

respect to a distribution P is its entropy

H(P )
def
=
∑
a∈A

P (a) log
1

P (a)
,

achieved by a code with the same implied distribution as the underlying distribu-

tion.

In most practical applications the underlying distribution is unknown and

one has to compress data from these unknown distributions. The extra number of

bits to encode a when Q is used to encode P is

log
1

Q(a)
− log

1

P (a)
= log

P (a)

Q(a)
.

The expected extra number of bits to encode P using a code Q is

D(P ||Q)
def
=
∑
a∈A

P (a) log
P (a)

Q(a)
,

the KL-divergence between P and Q.

A natural method to deal with unknown distributions is to assume that the

distribution belongs to a known class P of distributions and then design codes such

that for any distribution in the class the extra number of bits beyond its entropy

is not large. This notion is captured in the definition of (average) redundancy of

the class P given by

R(P)
def
= inf

Q
sup
P∈P

D(P ||Q), (2.1)
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where the infimum is over all possible distributions over A, and not necessarily an

element of P . This quantity is the minimum expected extra number of bits used

over all possible distributions in P .

A stronger concept is that of worst case redundancy given by,

R̂(P)
def
= inf

Q
sup
P∈P

sup
a∈A

log
P (a)

Q(a)
, (2.2)

the minimum extra number of bits used over the worst symbol in the worst dis-

tribution. By its definition the worst case redundancy is always larger than the

average redundancy and hence is a more stringent criterion on the quality of codes.

Furthermore, let P̂ (a)
def
= supP∈P P̂ (a), then the Shtarkov sum [25] of P is

S(P)
def
=
∑
a∈A

P̂ (a).

Shtarkov showed that the worst case redundancy is

R̂(P) = log S(P),

achieved by the Normalized Maximum Likelihood [9] distribution assigning proba-

bility P̂ (a)/S(P) to symbol a.

2.2.1 Compression of i.i.d. sequences

In most of this thesis, our objective is compression/prediction of i.i.d. sam-

ples from unknown distributions. In the later part, we consider patterns of i.i.d.

sequences. For a distribution P over an underlying alphabet X , let P n be the

product distribution P × P . . .× P over X n, i.e., for a sequence xn1 ∈ X n,

P n(xn1 ) =
n∏
i=1

P (xi).

Let P belong to a known class P . Let

Pn def
= {P n : P ∈ P}

be the class of all distributions P n with P ∈ P . The notation restricts each element

to be the product distribution of the same distribution.
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Coding length-n sequences over X equivalently is encoding symbols from

A = X n. Such block compression can be treated as a one-shot coding when we treat

each xn1 ∈ X n as a symbol a. As before we consider the class of all distributions

(not only i.i.d.) Qn over X n to define

R(Pn)
def
= inf

Qn
sup
Pn

D (P n||Qn) ,

R̂(Pn)
def
= inf

Qn
sup
Pn

sup
xn1∈Xn

log
P n(xn1 )

Qn(xn1 )
,

as the worst case redundancy, or minimax regret of Pn. The class P is said to be

universal if R(P) = o(n), i.e., redundancy is sublinear in the block-length.

For x ∈ X n, let

P̂ n(x)
def
= sup

Pn∈Pn
P n(x),

be the maximum likelihood (ML) probability of x and P̂ n is the ML distribution.

Since we are compressing length-n sequences, A = X n,

S(Pn) =
∑
x∈Xn

P̂ n(x),

where P̂ n(x) is the distribution in Pn that assigns the highest probability to x.

The most widely studied class of distributions is Ik, the class of distributions

over k elements, e.g., [k]. By the previous definition, Ink is the collection of i.i.d.

distributions over sequences of length n over an alphabet X of size k. Under

our notation the A = [k]n, since the we are interested in compressing length-

n sequences. A succession of papers [26, 27, 28, 29, 30, 31, 32] show that for

k = o(n)

R(Ink ) + f1(k) = R̂(Ink ) + f2(k) =
k − 1

2
log

n

k
(2.3)

and for n = o(k)

R(Ink ) + g1(n) = R̂(Ink ) + g2(n) = n log
k

n
,

where f ’s are independent of n and g’s independent of k.

An encoding is called universal if the per-symbol redundancy → 0 with n.

For a given alphabet size k as length n grows there exist universal codes for Ink .
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2.2.2 Prediction and redundancy

Redundancy is closely related to the problem of prediction under logarith-

mic loss.

We describe the problem of prediction. An observer sees a sequence of

observations x1, x2, . . . , xt, . . . over alphabet X . At each time t the observer has

to provide a distribution Qt+1(·|xt1) over X . If the underlying distribution was

Pt+1 the observer incurs a loss which is the KL divergence between the Pt and Qt.

When the underlying distribution is i.i.d. then Pt = P for all t. The cumulative

loss of the observer up to time n is

Rn =
n∑
t=1

D(P ||Qt)

= D(P n||Q1 ·Q2 · · ·Qn).

The distribution Q1 · Q2 · · ·Qn induces a distribution over length-n sequences on

X .

If the class of underlying distributions belongs to P then the cumulative

loss of prediction to time n is the average redundancy of the class Pn.

2.2.3 Large alphabets

However in many applications the natural alphabet that captures the data

is very large, possibly infinite. For example, the building block of a language is

words, not the letters in the alphabet. For example, a typical article consists of a

few hundred words compared to the hundreds of thousands of words in the English

dictionary. The natural symbols in a typical digital image are pixels, which can

take 224 distinct values.

A study of universal compression over large or arbitrary alphabets was

undertaken by Kieffer [4]. He derived a necessary and sufficient condition for

universality, and used it to show that i.i.d. distributions over infinite alphabets

entail infinite redundancy. Further results in the case of large alphabets was done

by [33, 32]. In these problems the alphabet size k � n, and if the underlying

distribution is i.i.d., then R̂(Ink ) is large and increases to infinity as k grows.
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Faced with Kieffer’s impossibility results, subsequent universal compression

work has typically avoided general distributions over large alphabets. An approach

to this was proposed in [14] and was subsequently studied by [15]. The method

is to describe a sequence as its pattern and the associated dictionary. The details

are proved in the next section on patterns, and the related concept of profiles.

2.3 Patterns

Patterns contain all the structural information about a sequence and dis-

cards the information about the individual symbols appearing in it. The pattern

of a sequence xn1
def
= x1 . . . xn, denoted ψ(xn1 ) is the integer sequence obtained by re-

placing each symbol in xn1 by the number of distinct symbols up to (and including)

its first appearance. The definition of patterns is simple and is now explained with

a few examples. The pattern of the length four sequence G O O D is 1223 since

G is the first distinct symbol, O the second and D the third. ψ(T O D O) = 1232

since here T, O and D are the three distinct symbols appearing in that order.

When X is the set of all english words, then the pattern of the phrase to be or not

to be is ψ(to be or not to be) = 123412.

A sequence can be described by encoding its pattern and the dictionary sep-

arately. For example, one can encode 12314151231 and then convey the dictionary

as 1→ G, 2→ O, 3→ D.

We consider the distributions induced on Ψn when length−n sequences are

i.i.d. generated. Let P be a distribution over any X . The probability of a sequence

x ∈ X n under P is P n(x)
def
=
∏n

i=1 P (xi), i.e., the probability that the outcome

is x when a length−n sequence is generated independently according to P . The

probability of a pattern is

P n(ψ)
def
=

∑
x:ψ(x)=ψ

P n(x),

the probability of observing a sequence with pattern ψ. For example, the proba-

bility of pattern 1232 under i.i.d. distribution P over X = {A,B, . . . , Z} is

P 3(1232) = P 3(ABCB) + P 3(ABDB) + . . .+ P 3(ZY XY ).
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2.4 Profiles

Profiles serve the same role for patterns as types do for sequences. Pat-

tern redundancy and prediction bounds seem easier to accomplish by considering

profiles. Since we consider i.i.d. distributions, the order of the elements does not

affect its probability. For example, for every distribution P , the probability of

generating a pattern 112 is the same as that of 122.

The profile or fingerprint of a sequence is the multiset of multiplicities of all

the symbols appearing in it [15, 19, 34]. For example, the sequences T O D O and

G O O D both have one element with multiplicity 2 and two elements appearing

once, therefore the profile of both of them is {1, 1, 2}.
Let Φn be the set of all profiles of length-n sequences. Clearly, Φ1 =

{{1}} and Φ2 = {{2}, {1, 1}} since any sequence of length-2 either contains one

symbol appearing twice or two symbols each appearing once. Similarly, Φ2 =

{{3}, {1, 2}, {1, 1, 1}}. Using this notion it can be shown that there is a bijtection

between the set of all profiles of length n and the integer partitions of n.

2.5 Mathematical preliminaries

2.5.1 Stirling’s approximation

Stirling’s approximation is a characterization of n! as an exponent. We will

use the following tight form of this approximation.

Lemma 1. For any positive integer n,

n! =
√

2πn
(n
e

)n
eθn , for some θn ∈

(
1

12n+ 1
,

1

12n

)
.

2.5.2 Poisson distribution and tail bounds

Let poi(λ) denote the Poisson distribution with mean λ, and let

poi(λ, µ)
def
=
e−λλµ

µ!
,

is the probability of µ under poi(λ).
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The KL divergence of a Poisson random variable has a closed form expres-

sion and can be bounded as follows.

Lemma 2. Let poi(λ) and poi(λ′) be Poisson random variables. Then

D
(

poi(λ)||poi(λ′)
)

= λ′ − λ+ λ log
λ

λ′
≤ (λ− λ′)2

λ′
.

Proof. By the definition of Poisson distribution, poi(λ, µ) = e−λλµ/µ!,

D
(

poi(λ)||poi(λ′)
)

=
∞∑
µ=0

poi(λ, µ) log
poi(λ, µ)

poi(λ′, µ)
=
∞∑
µ=0

e−λ
λµ

µ!
log
( e−λλµ
e−λ′λ′µ

)
=
∞∑
µ=0

e−λ
λµ

µ!

(
(λ′ − λ) + µ log

(λ
λ

)
=λ′ − λ+ λ log

( λ
λ′

)
(a)

≤λ′ − λ+ λ
( λ
λ′
− 1
)

=
(λ− λ′)2

λ′
,

where (a) uses log(x) ≤ x− 1.

Using the Chernoff bounds, we show strong concentration of Poisson ran-

dom variables around its mean. We first look at the moment generating function

of a poi(λ) random variable.

Lemma 3. Let X ∼ poi(λ),

E[etX ] = eλ(et−1).

Proof. By definition,

E[etX ] =
∑
µ≥0

poi(λ, µ)etµ =
e−λ(λet)µ

µ!
= eλ(et−1).

Using this we prove the following tail bounds on Poisson random variables.

Lemma 4. ([35]) Let X ∼ poi(λ), then,
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1. For x ≥ λ,

Pr(X ≥ x) ≤ exp(−λ)

(
eλ

x

)x
≤ exp

(
(x− λ)2

2x

)
,

2. and for x ≤ λ,

Pr(X ≤ x) ≤ exp(−λ)

(
eλ

x

)x
≤ exp

(
(x− λ)2

2λ

)
.

Proof. For any t ≥ 0 and x ≥ λ,

Pr(X ≥ x) = Pr(etX > etx) ≤ E[etX ]

etx
.

Substituting the moment generating function and plugging t = ln(x/λ) yields the

first inequality in the first item. The second inequality is simple calculus. The

second item can be proved similarly.

2.5.3 Binary codes

A binary code C(k, d) of length k and minimum distance d is a collection of

length-k binary strings (codewords) such that the Hamming distance between any

two codewords is at least d. The size of the code, denoted |C(k, d)| is the number

of codewords in it. For large lengths, when the minimum distance is stipulated

to be a constant (α < 1/2) fraction of the length then there exist codes with

size exponential in the length. This is shown by the following Gilbert-Varshamov

bound.

Lemma 5 ([36]). Let 0 < α < 1/2. There exists C(k, αd) with

|C(k, d)| ≥ 2k(1−h(α)−o(1)).

Proof. A simple volume argument (Gilbert-Varshamov bound) shows that there

exists C(k, d) for d ≤ k/2 with

|C(k, d)| ≥ 2k

d
(
k
d

) .
By Stirling’s approximation,

(
k
αk

)
≤ 2kh(α)√

2πmα(1−α)
. Plugging d = αk, we obtain

|C(k, αk)| ≥ 2k(1−h(α)− log k
k

).
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2.6 Poissonization

Throughout this thesis, we would be interested in sampling distributions

independently n times for some large n. We then consider the sequence, or a

function of the sequence that is observed (in the case of patterns and profiles

considered in Chapter 6).

Let P be a distribution over a discrete alphabet X . and recall that P n is

the product distribution over X n obtained by i.i.d. sampling of P is sampled n

times.

When P is sampled n times then the number of appearances of different

symbols are dependent (e.g., they sum to n). A classic technique that removes

this dependency and simplifies many arguments/computations is Poisson sampling.

Instead of sampling the distribution n times consider the alternate two step process:

• Generate n′ ∼ poi(n), the Poisson distribution with mean n.

• Sample P independently n′ times to obtain a sequence in X n′ .

This process defines a distribution P poi(n) over X ∗ where the probability of a se-

quence xn
′

1 ∈ X ∗ is

P poi(n)(xn
′

1 ) = poi(n, n′)P n′(xn
′

1 ) = poi(n, n′)
n′∏
i=1

P (xi). (2.4)

Similar to Pn, let

Ppoi(n) def
= {P poi(n) : P ∈ P}

be the class of distributions over X ∗ via sampling a distribution i.i.d. poi(n) times.

Note that even though the length of sequence generated by P poi(n) is ran-

dom, it is concentrated arount n as a Poisson random variable. For large n, the

length n′ is concentrated around the mean n with standard deviation
√
n. Some

useful properties of Poissonization are described in the following lemma.

Lemma 6 ([35]). Let P be a distribution sampled independently n′ ∼ poi(n) times.

1. Conditioned on n′, the distribution induced on X n′ is P n′.
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2. A symbol x ∈ X with P (x) = p appears poi(np) times independently of all

other symbols.

Proof. The first statement follows from the method of sampling. For notational

ease suppose the distribution P is over a1, a2, . . . with probabilities p(a1), p(a2), . . .

respectively. Let Nj be the number of appearances (multiplicity) of aj in a sample

∼ P poi(n). Then,

Pr(Nj = µ) =
∞∑
n′=µ

poi(n, n′)

(
n′

µ

)
p(aj)

µ(1− p(aj))n
′−µ

=
∞∑
n′=µ

e−n
nn
′

n′!

n′!

µ!(n′ − µ)!
p(aj)

µ(1− p(aj))n
′−µ

=
e−n(np(aj))

µ

µ!

∞∑
n′=µ

(n(1− p(aj)))n
′−µ

(n′ − j)!

=
e−n(np(aj))

µ

µ!
e(n(1−p(aj)))

= poi(np(aj), µ).

This proves that number of appearances are Poisson distributed. To prove inde-

pendence, we find Prob(N1 = µ1, N2 = µ2, . . .). By part 1, conditioned on number

of samples n′, this corresponds to P n′ . Using the multinomial theorem,

Pr(N1 = µ1, N2 = µ2, . . .)

= Pr(n′ = µ1 + µ2 + . . .) · Prob(N1 = µ1, N2 = µ2, . . . |n′ = µ1 + µ2 + . . .)

=poi(n, n′) ·
(

n′

µ1, µ2, . . .

)∏
j≥1

p(aj)
µj

(a)
=e−n(p(a1)+p(a2)+...)n

µ1+µ2+...

n′!

n′!∏
j≥1 µj!

∏
j≥1

p(aj)
µj

=
∏
j≥1

e−np(aj)
(np(aj))

µj

µj!

=
∏
j≥1

Prob(Nj = µj),

where (a) uses p(1) + p(2) + . . . = 1. This proves independence of the number of

multiplicities of symbols.



17

We now provide a relation between the Shtarkov sums of Poisson-sampling

and sampling n times.

Lemma 7. For a class P,

S
(
Ppoi(n)

)
=
∑
n′≥0

poi(n, n′)S
(
Pn′
)

Proof. By the first item of the previous lemma or Equation 2.4, the Shtarkov sum

conditioned on the length does not change, namely for a sequence xn
′

1 the same

distribution attains maximum likelihood for both poi(n) sampling and sampling

i.i.d. n′ times, for any n. Therefore,

S
(
Ppoi(n)

)
=
∑
n′≥0

poi(n, n′)
∑
xn
′

1

sup
P∈P

P n′(xn
′

1 ) =
∑
n′≥0

poi(n, n′)S
(
Pn′
)
,

where in the first step we sum maximum likelihoods of sequences by their lengths.

We will use these results to provide simplified expressions and analyses. In

Chapter 5 we obtain simple bounds on the redundancy, and in Chapter 6 we bound

the redundancy of patterns using Poissonization.



Chapter 3

Basic results on redundancy

Let P be a class of distributions over A. We now state a few preliminary

results on redundancy that are used to prove the results in this thesis.

First in Lemma 9 we show a lower bound on the average redudancy in terms

of the number of distributions in the class that form a packing in `1 distance. Such

a result also shows lower bound on the worst case redundancy. We then prove

three general results for both average and worst case redundancy. For any function

from A, P induces a class of distributions on the image space. In Lemma 11, we

show that the induced class has smaller redundancy. In the average case, this

results is similar to a data processing inequality. It is reasonable that a class

consisting of similar distributions has a small redundancy. Our approach would

be to divide the class of distributions on profiles into classes such that each class

has similar distributions. Lemma 17 bounds the redundancy of a class in terms

of the individual classes and the number of classes. Using Lemma 11, we show

that the redundancy of profiles is upper bounded by the redundancy of a class

consisting of product distributions. Lemma 14 relates the redundancy of a class

of product distributions to the redundancy of the class of marginal distributions

over the individual spaces.

18
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3.1 A redundancy capacity lower bound on re-

dundancy

One of the standard techniques to lower bound the average redundancy is to

relate it to the capacity of a specific channel and using the Redundancy-Capacity

theorem [7, Chapter 13]. Consider the discrete memoryless channel where the

inputs of the channel correspond to the different possible distributions of the source

(i.e., all elements in P). The output of the channel for a given input distribution is

simply a sample from the distribution. Let C(P) be the capacity of this channel.

Then,

Theorem 8 (Redundancy Capacity Theorem). For any P,

R(P) = C(P).

However, for some problems computing the capacity may not be easy.

Therefore instead of finding by the capacity, which corresponds to block length

∞, we lower bound redundancy by the number of bits one can transmit with block

length 1 and error ε.

A sub-collection S ⊆ P of the distributions is δ − distinguishable if there

is a mapping f : A → S, such that if X is distributed according to P ∈ S, then

Pr(f(X) 6= P ) ≤ δ. An equivalent criterion for δ−distinguishablity of S is as

follows. There exists a partition of A into |S| classes {AP : P ∈ S}, such that for

any P ∈ S,

P (AP ) ≥ 1− δ.

Let M(P , δ) be the largest number of δ−distinguishable distributions in P , i.e.,

M(P , δ) = max
M
{∃Pi ∈ P ,Ai ∈ A for 1 ≤ i ≤M : Ai ∩ Aj = ∅, Pi(Ai) ≥ 1− δ},

which is the maximum number of input distributions from P that can be trans-

mitted over the (sampling) channel used once with error probability ≤ δ.

Lemma 9. R(P) + 1 ≥ (1− δ) log [M(P , δ)].
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Proof. Let Q be any distribution over A. Since Ai are disjoint, there is an i, such

that Q(Ai) ≤ 1/M . Then

sup
P∈P

D(P ||Q) ≥D(Pi||Q)

=
∑
a∈Ai

Pi(a) log
Pi(a)

Q(a)
+
∑
a∈Ai

Pi(a) log
Pi(a)

Q(a)

(a)

≥Pi(Ai) log
Pi(Ai)
Q(Ai)

+ Pi(Ai) log
Pi(Ai)
Q(Ai)

(b)

≥(1− δ) log
1− δ
1/M

+ δ log
δ

1− 1/M

≥(1− δ) logM − h(δ),

where the (a) follows from the log-sum inequality (which follows from the concavity

of logarithms), (b) uses Pi(Ai) ≥ 1− δ. h(·) is the Shannon entropy, thus bounded

by 1. Taking Q to be the distribution that achieves average redundancy of P
(Equation (2.1)) proves the Lemma.

3.2 Redundancy of functions

Let f : A → B be a function. For P ∈ P , let f(P ) be the distribution

induced over B by P via f . In other words, the probability assigned to b ∈ B is∑
f(a)=b P (a). Let f(P) = {f(P ) : P ∈ P}. The following Lemma shows that the

number of distinguishable distributions in f(P) cannot be larger than that of the

original class.

Lemma 10 (Distinguishability of functions). For any δ > 0

M(P , δ) ≥M(f(P), δ).

Proof. Consider the set of distributions in f(P) that achieve M(P , δ). The images

of these distributions form a class of δ-distinguishable distribtuions on P proving

the lemma.

The next result is a variation of states that the redundancy of f(P) is at

most the redundancy of P . In other words, compressing functions random variables
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can be achieved with fewer loss than the original random variables. The result is

a variation of the data processing ineuquality for average redundancy.

Lemma 11 (Redundancy of functions). R(f(P)) ≤ R(P), and R̂(f(P)) ≤ R̂(P).

Proof. For any b ∈ B,

P̂ (b) = sup
P∈P

f(P )(b) = sup
P∈P

∑
f(a)=y

P (a) ≤
∑
f(a)=y

sup
P∈P

P (a) =
∑
f(a)=b

P̂ (a).

S(P) =
∑
a∈A

P̂ (a) =
∑
b∈B

∑
f(a)=b

P̂ (a) ≥
∑
b∈B

sup
f(P )∈f(P)

P (b) = S(f(P)).

Taking logarithm yields the result.

While this result holds in general we would be interested in functions that

preserve redundancy of classes since the alternate classes could allow for simpler

characterization and computation of redundancy. Let f : A → B be a function

such that if f(a) = f(a′) then all distributions in P assign the same probability to

these symbols, i.e.,

f(a) = f(a′)⇒ P (a) = P (a′)∀P ∈ P . (3.1)

Lemma 12. If f satisfies (3.1), then R(f(P)) = R(P), and R̂(f(P)) = R̂(P).

Proof. Consider all symbols that map to the same element. They have the same

maximum likelihood distribution P̂ . By Equation (3.1) f(P̂ ) assigns the largest

probability to the image of these symbols, proving the lemma.

Using this we now show that the redundancy of i.i.d. distributions is the

same as the redundancy of the types.

3.2.1 Redundancy of types

The type of a sequence x over X = {a1, . . . , } is

τ(x)
def
= (µ(a1), µ(a2), . . .),
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the tuple of multiplicities of the symbols in the sequence x. For example, if ai = i,

for i = 1, . . . , 6 denotes the possible outcomes of a die. Then the sequence of

outcomes 2, 3, 1, 6, 1, 3, 3, 4, 6 has type τ = (2, 1, 3, 1, 0, 2). For i.i.d. sampling the

types are sufficient statistic of the sequence, namely all sequences with the same

type have the same probability. Let τ(P n) be the distribution induced on types by

P n. Let

τ(Pn)
def
= {τ(P n) : P ∈ P}

be all distributions over types from distributions of the form P n. Similarly, let

τ(Ppoi(n))
def
= {τ(P poi(n)) : P ∈ P}.

Since type is a sufficient statistic, as a function of the sequence it satisfies Equa-

tion 3.1, we obtain the following result.

Lemma 13. For R ∈ {R, R̂},

R(Pn) = R (τ(Pn)) and R(Ppoi(n)) = R
(
τ(Ppoi(n))

)
.

Proof. We show the result for R̂ due to simplicity. For a sequence in X n, let

P̂ n(x) =
∑
P∈P

P n(x).

All sequences with the same type are assigned the same probability, therefore the

maximum likelihood distribution is same for types and sequences.

S(Pn) =
∑
x∈Xn

P̂ n(x) =
∑
τ

∑
x:τ(x)=τ

P̂ n(x) =
∑
τ

P̂ n(τ) = S(τ(Pn)).

Taking logarithms proves the result. For Poisson-sampling, by Lemma 7,

S
(
Ppoi(n)

)
=
∑
n′≥0

poi(n, n′)S
(
Pn′
)

=
∑
n′≥0

poi(n, n′)S
(
τ(Pn′)

)
=S

(
τ(Ppoi(n))

)
,

where in the last step we use the definition of Poisson sampling.
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3.3 Redundancy of product distributions

In many applications the random variable considered is a tuple or collection

of random variables,e.g., the type of a length-n sequence is the collection of multi-

plicities of all symbols. In such problems it may be easier to study the individual

random variables. While it may not be always possible, in the special case when

the random variables are independent we can relate the redundancy of the class

to the redundancy of the classes introduced by the marginals. More formally, for

a class P consisting of product (independent) distributions over A× B, i.e., each

element in P is a distribution of the form P × Q, where P and Q are distribu-

tions over A and B respectively. Let PA and PB be the class of marginals. The

redundancy of P is at most the sum of the marginal redundancies.

Lemma 14 (Redundancy of products). For a collection P of product distributions

over A× B,

R(P) ≤ R(PA) +R(PB), and R̂(P) ≤ R̂(PA) + R̂(PB).

Proof. For any a× b ∈ A× B,

sup
(P,Q)∈P

P (a)Q(b) ≤ sup
P∈PA

P (a) sup
Q∈PB

Q(b).

Now,

S(P) =
∑

(a,b)∈A×B

sup
(P,Q)∈P

P (a)Q(b)

≤
∑
a∈A

sup
P∈PA

P (a)
∑
b∈B

sup
Q∈PB

Q(b) ≤ S(PA)S(PB),

where the inequality follows from the equation above, and the lemma follows by

taking logarithms.

Corollary 15. Suppose P = PA × PB, i.e., all marginals are possible, then

R(P) = R(PA) +R(PB), and R̂(P) = R̂(PA) + R̂(PB).

Proof. The inequality in the Lemma’s proof becomes an equality.
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The independence requirement is crucial as follows from the following ex-

ample.

Example 16. Let P = {P1, P2} consist of two distributions over {0, 1} × {0, 1}.

P1((0, 0)) = P1((1, 1)) =
1

2
, P1((0, 1)) = P1((1, 0)) = 0,

P2((0, 0)) = P2((1, 1)) = 0, P2((0, 1)) = P2((1, 0)) =
1

2
.

The Shtarkov sum of P is

S(P) = 4× 1

2
= 2⇒ R̂(P) = 1.

Note that both the distributions have the same marginal distribution. Clearly, a

class consisting a single distribution has zero redundancy (Shtarkov sum equals 1).

Therefore the sum of redundancies equals 0. This shows that all random variables

need not satisfy the lemma.

3.4 Redundancy of unions

Suppose we can partition P into T collections of distributions such that the

distributions within each collection are close in KL divergence, implying that the

redundancy of each collection is small. In such cases it may be easy to bound the

redundancy of the collections individually. We now show that an upper bound on

the redundancies of the T collections yields an upper bound on the whole class.

For classes P1,P2, . . . ,PT of distributions, let P = ∪Ti=1Pi.

Lemma 17 (Redundancy of unions).

R(
⋃

1≤i≤k

Pi) ≤ max
1≤i≤T

R(Pi) + log T, and R̂(
⋃

1≤i≤k

Pi) ≤ max
1≤i≤T

R̂(Pi) + log T.

Proof. For any a ∈ A,

sup
P∈P

P (a) ≤
T∑
i=1

sup
P∈Pi

P (a).
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Summing over all x,

S(P) =
∑
a∈A

sup
P∈P

P (a) ≤
∑
a∈A

T∑
i=1

sup
P∈Pi

P (a)

=
T∑
i=1

∑
a∈A

sup
P∈Pi

P (a)

=
T∑
i=1

S(Pi)

≤ T · max
1≤i≤T

S(Pi).

Taking logarithm, the results follows.



Chapter 4

Efficient compression of

distributions with a few modes

Recall that the redundancy of i.i.d. distributions over an infinite alphabet,

e.g., N is infinite. In this chapter, we consider the sub-class of distributions that

have only a few modes. Monotone and unimodal distributions are a special case

of such distributions with zero and one mode respectively.

We now define monotone and m-modal distributions.

Definition 18. A distribution P over N is monotone (decreasing) if P (i) ≥ P (i+

1) for all i.

Let M be the class of all monotone distributions over N, and Mk be the

class of all monotone distributions over [k]. Let

Mn
k

def
= {P n : P ∈Mk}

denote the distributions obtained by sampling distribution in Mk i.i.d. n times.

An interval [l1, l2]
def
= {l1, l1 + 1, . . . , l2} is called a mode if, for all i, j ∈ [l1, l2]

P (i) = P (j) and (P (l1 − 1)− P (l1))(P (l2 + 1)− P (l2)) > 0. Such sets denote the

ups and downs of a distribution.

Definition 19. A distribution is m-modal if it has at most m modes.

Let Mk,m be the collection of all m-modal distributions over [k], and

Mn
k,m

def
= {P n : P ∈Mk,m}

26
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be all distributions over [k]n obtained by sampling a distribution in Mk,m i.i.d. n

times.

Most natural distributions have only a few modes. For example, the life

expectancy of a population can be expected to be unimodal. Poisson and Binomial

distributions are both unimodal. Mixture distributions have received attention in

various communities over the past decade, since many real world phenomenon

can be modeled as mixtures of simple distributions. Such mixtures of m simple

distributions are typically m-modal. There has been enormous work in the past

decade in learning mixtures of distributions.

Mixture distributions were initially studied by Pearson [37], who after ob-

serving measurements (say diameter over heights) of Naples crab population, pos-

tulated that the data was best explained as a mixture of two Gaussians, predicting

the presence of more than one specie. However, most of the theoretical results

beyond using EM algorithm for learning mixture distributions are relatively new.

Monotone distributions are a special case of m-modal distributions with

m = 0. We first study monotone distributions and then apply the results to

prove redundancy bounds on m-modal distributions. Monotone distributions are

extremely interesting on their own. For example [38], the probability of a per-

son being affected by an epidemic decreases with the distance from the center.

Monotone distributions are those where we have prior knowledge about the rela-

tive probabilities of symbols, though we may not know the exact probabilities. In

a text document we have some knowledge about word frequencies and probabili-

ties. In such language modeling applications, Zipf distributions are common [39].

Geometric distributions over integers are useful in compressing residual signals in

image compression [40].

4.1 Related Work

Codes for monotone distributions were studied initially by [41, 42, 43, 44].

They consider per-symbol codes, i.e., codes that compress one symbol at a time.

Their motivation was to design good codes for N. If such codes are used to code
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a sequence of random variables, the redundancy is linear. [44] show that for the

class Mk,

R(Mk) = log

(
1 +

k∑
i=2

(
1− 1

i

)i
1

i− 1

)
.

Since (1− 1/i)i → e−1 and
∑k

i=1 1/i ∼ log k,

R(Mk) ∼ log log k.

Elias codes [41] that assign codewords of length log i + 2 log log i to the

symbol i are therefore nearly optimal. This result also shows that the redundancy

of M, and therefore Mn is infinite.

Rissanen [42] considred compressing random variables from Mk with the

goal of finding the following min-max quantity

r(P) = inf
Q

sup
P

R(P,Q)

H(P )
.

They come up with the optimal Q, as the solution to a convex optimization prob-

lem.

In a more recent work [45] consider the problem of designing codes for

monotone distributions that minimize the min-ave redundancy. The min-ave re-

dundancy of a code is the average value of its redundancy over a distribution cho-

sen at random from the class (not the worst ditsribution as we usually consider).

They show that the min-ave redundancy is constant for monotone distributions,

as opposed to the average redundancy of log log k.

These papers consider codes for compressing a single symbol generated by

a monotone distribution over N, i.e., they consider the class M or Mk. We are

interested in encoding sequences of random variables generated from monotone

distributions, namely, the class Mn
k . This follows a more “classical” flavor, where

the distribution is fixed and a block of symbols is observed. [10] was the first work

to consider the compression of distributions inMn. They show that even while the

redundancy of this class is infinite, the set of all distributions in M with a finite

entropy can be compressed with a diminishing relative redundancy. In particular,

they prove the following result.



29

Theorem 20 ([10]). There exists a code Q over Nn such that for any P ∈M with

H(P ) <∞

R(P n, Q) ≤ nH(P )
log log(nH(P ))

log(nH(P ))
.

Remark We note that the theorem holds for any distribution with a finite

entropy, even with infinite support. In particular, if we let H grow as a polymonial

of n, then the code is no longer universal. For example, a uniform distribution

over [exp(
√
n)] elements has the redundancy guarantee of at most n3/2.

The works of Shamir, and in particular [11] is perhaps closest to our work.

They consider compression of Mn
k as a function of both the alphabet size k and

block-length n. Interestingly, they show that up to alphabet size n1/3, the block-

redundancy grows linearly with k, and behaves similar to the redundancy of the

class Ink . However, for the range of O(n1/3) to O(n), they show that the redundancy

grows as almost like n1/3 up to logarithmic factors.

They consider compression of monotone distributions restricted to [k] and

varying the block length n. They show tight lower and upper bounds on R(Mn
k)

for all k = O(n). In particular, for k = O(n),

R(Mn
k) = Õ(n1/3).

This shows among other things that monotone distributions have diminishing per-

symbol redundancy when the block length grows linearly with the alphabet size.

These results can be extended by using methods from [46, 47] to show that k =

2o(
√
n) the Mn

k is universally compressible.

The following result summarizes their results for various ranges of k. For

clean representation we drop the constants and lower order terms from the expres-

sions.

Monotone distributions have also been studied in statistics and theoretical

computer science. Birgé [48] consider the related problem of learning monotone

and unimodal distributions with least number of samples. The sample complexity

of learning m-modal distributions over an alphabet of size k was considered more

recently by [49]. Testing distributions for monotonicity has been considered in a

variety of settings [50, 51, 52, 53].
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Table 4.1: Known bounds on R(Mn
k)

Range Lower bound Upper bound

k = o(n1/3) Ω(k log n
k
) O(k log n

k
)

k = nO(1) Ω(n1/3) O(n1/3 log n)

4.2 Results

In this work we significantly extend the alphabet size for which Mn
k has

diminishing per-symbol redundancy. We show that as long as alphabet size is

sub-exponential in the block-length (or block length is super-logarithmic in the

alphabet size), Mn
k is universally compressible. We complement this result by

showing that for k growing exponentially with n, Mn
k has linear redundancy in

the block-length, thereby showing a nearly tight characterization of the range of

alphabet size for which universal coding is possible. We also consider the case

k = 2ω(n), where alphabet size is super-exponential in the block length. For this

case, we show that there is essentially no advantage of block-compression over

symbol by symbol compression.

In particular, we prove the following results.

Theorem 21. For large n and any k,

R(Mn
k) ≤

√
40n log k log n.

It follows that

Corollary 22. For any k = 2o(n/ logn),

R(Mn
k) = o(n).

We also provide a nearly matching lower bound.

Theorem 23. For k = 2Ω(n),

R(Mn
k) = Ω(n).
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Theorem 24. For k = 2ω(n),

n log
log k

n
−O(n) ≤ R(Mn

k) ≤ n log log k.

We extend these results to bound the redundancy of m-modal distributions

in terms of monotone distributions.

Theorem 25. For large n and any k ≥ m

R(Mn
k,m) ≤ log

(
k

m

)
+ (m+ 1)R(Mn

k).

As a corollary we show that for a constant number of modes, Mn
k is uni-

versally compressible for k ≤ 2o(n/ logn).

Corollary 26. For m = O(1) any k = 2o(n/ logn),

R(Mn
k) = o(n).

4.3 Proofs

4.3.1 Proof of Theorem 21

The main ingredient of our proof is to show that even though the un-

derlying monotone distribution has alphabet size k, it can be approximated in

KL-divergence by a step distribution with m � k steps. This can be thought of

as reducing the degres of freedom from k to m. While such approximation results

are known in `1 distance [48], proving the same for KL divergence is non-trivial as

KL divergence is not a metric and does not satisfy triangle inequality. This is the

most technical part of the paper and we defer it to the next section. Let I1, . . . , Ib

be a partition of [k] into consecutive intervals. Let M(Ib1) be the set of monotone

step distributions such that for any i, j ∈ Il, then p(i) = p(j). For an interval I,

|I| denotes the number of integers in that interval.

Theorem 27. Let b ≥ 10 log k. There exists a set of intervals I1, I2, . . . Ib such

that for ever P ∈M, there is a P̄ ∈M(Ib1) such that

D(P ||P̄ ) ≤ 10
log k

b
.
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Using the above result we first show that the redundancy is o(n) for k <

2o(n).

For a distribution P ∈Mk let P̄ ∈M(Ib1) be the distribution whose mean

in each interval is same as P , i.e., for x ∈ Ij

P̄ (x) =
P (Ij)

|Ij|
. (4.1)

As before P̄ n is the distribution obtained by sampling P̄ i.i.d. n times.

Then for any distribution Qn over [k]n,

D(P n||Qn) =
∑

xn1∈[k]n

P n(xn1 ) log
P n(xn1 )

Qn(xn1 )

=
∑

xn1∈[k]n

P n(xn1 )

[
log

P n(xn1 )

P̄ n(xn1 )
+ log

P̄ n(xn1 )

Qn(xn1 )

]

=nD(P ||P̄ ) +
∑

xn1∈[k]n

P n(xn1 ) log
P̄ n(xn1 )

Qn(xn1 )
,

where the last step follows since the KL divergence for product distributions is the

sum of KL divergence of distributions on each coordinate.

By Theorem 27 and the definition of redundancy

R(Mn
k) ≤ 10n log k

b
+ inf

Qn
sup
P∈Mk

∑
xn1∈[k]n

P n(xn1 ) log
P̄ n(xn1 )

Qn(xn1 )
.

We now use Equation (2.3) to obtain a distribution over [k]n that has a small KL

divergence with respect to any distribution in Mn
k . By Equation 2.3 there is a

distribution Qb,n over [b]n such that for any distribution P over [b],

D(P n||Qb,n) ≤ (b− 1) log n. (4.2)

We use the intervals to map [k]n → [b]n, and then use Qb,n to obtain a

distribution over [k]n.

For any x ∈ [k], let j be the interval such that x ∈ Ij. Let f(x) = j, then

f maps [k] to [b]. Then f(xn1 ) = f(x1, . . . , xn)
def
= f(x1), . . . , f(xn) maps [k]n to

[b]n. Let f(xn1 ) = j1, . . . , jn. The number of xn1 that map to jn1
def
= j1, . . . , jn is

|Ij1| . . . |Ijn|. Using this we define distribution Q̄n over [k]n as

Q̄n(xn1 ) =
Qb,n(jn1 )∏n
i=1 |Iji |

.
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Then for any distribution P ∈Mk∑
xn1∈[k]n

P n(xn1 ) log
P̄ n(xn1 )

Qn(xn1 )

=
∑
jn1 ∈[b]n

∑
xn1 :f(xn1 )=jn1

P n(xn1 ) log
P̄ n(xn1 )

Qn(xn1 )

(a)
=
∑
jn1 ∈[b]n

∑
xn1 :f(xn1 )=jn1

P n(xn1 ) log
P (Ij1) . . . P (Ijn)

Qb,n(jn1 )

=
∑
jn1 ∈[b]n

log

∏n
i=1 P (Iji)

Qb,n(jn1 )

 ∑
xn1 :f(xn1 )=jn1

P n(xn1 )

 ,

where (a) uses Equation (4.1). Now, for jn1 ∈ [b]n,

∑
xn1 :f(xn1 )=jn1

P n(xn1 ) =
∑

xn1 :xi∈Iji

n∏
i=1

P (xi) =
n∏
i=1

P (Iji).

Therefore,

∑
xn1∈[k]n

P n(xn1 ) log
P̄ n(xn1 )

Qn(xn1 )
=
∑
jn1 ∈[b]n

n∏
i=1

P (Iji) log

∏n
i=1 P (Iji)

Qb,n(jn1 )

Now, a distribution P induces a distribution over the intervals I1, . . . , Ib and

this expression is the KL divergence of the product distribution over the intervals

to Qb,n. Therefore by Equation (4.1) is bounded by (b− 1) log n.

Plugging this we obtain,

R(Mn
k) ≤10n log k

b
+ inf

Qn
sup
P∈Mk

∑
xn1∈[k]n

P n(xn1 ) log
P̄ n(xn1 )

Qn(xn1 )

≤10n log k

b
+ sup

P∈Mk

∑
xn1∈[k]n

P n(xn1 ) log
P̄ n(xn1 )

Q̄n(xn1 )

=
10n log k

b
+ sup

P∈Mk

∑
jn1 ∈[b]n

n∏
i=1

P (Iji) log

∏n
i=1 P (Iji)

Qb,n(jn1 )

≤10n log k

b
+ (b− 1) log n.

Choosing b =
√

10n log k
logn

results in the Theorem. We now prove Theorem 27.
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Proof of Theorem 27

We first state a simple result on the set of non-negative numbers.

Lemma 28. For 0 ≤ x1 ≤ x2 . . . ≤ xn with mean x̄

n∑
i=1

(xi − x̄)2 ≤ n(xn − x1)x̄.

Proof.

n(xn − x1)x̄−
n∑
i=1

(xi − x̄)2 = nxnx̄−
n∑
i=1

x2
i + nx̄2 − nx̄x1

≥ nxnx̄−
n∑
i=1

x2
i ≥ 0.

As a simple application of the above result we bound the KL divergence

between P and P̄ . Let p+
j and p−j be the maximum and minimum value of proba-

bilities in the interval Ij. Let kj be the number of non-zero probabilities in interval

Ij.

Lemma 29.

D(P ||P̄ ) ≤
b∑

j=1

kj(p
+
j − p−j ).

Proof. By Jensen’s inequality,∑
x∈Ij

p(x) log
p(x)

p̄j
≤
∑
x∈Ij

p(x)
p(x)− p̄j

p̄j

=
∑
x∈Ij

p2(x)− p̄2
j

p̄j

=
1

p̄j

∑
x∈Ij

(p(x)− p̄j)2.

The rest of the proof follows from Lemma 28 applied to each interval.

Let γ = 2 log k
b

. We now choose the intervals as follows:

|Ij| =

1 if j ≤ b
2
,

b2(1 + γ)j−b/2c else,
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Since
b∑
i=1

|Ij| ≥ b/2 +
b∑

i=b/2+1

b2(1 + γ)j−b/2c

≥
b∑

i=b/2+1

2(1 + γ)j−b/2

= 2
1 + γ

γ

(
(1 + γ)b/2 − 1

)
.

For γ ≥ 2 log k
b

, the above quantity is ≥ k and the intervals span all the alphabet.

Since |Ij| is 1 for j ≤ b/2, we have p+
j = p−j for j ≤ b/2. By Lemma 29,

D(P ||P̄ ) ≤
b∑

j=1

kj(p
+
j − p−j )

=
b∑

j= b
2

+1

kj(p
+
j − p−j )

= kb/2+1p
+
b/2+1 +

b∑
j=b/2+1

(p+
j+1kj+1 − p−j kj)

≤ kb/2+1p
+
b/2+1 +

b∑
j=b/2+1

p−j (kj+1 − kj).

Observe that kj+1 is non-zero only if kj = |Ij|. Hence if kj+1 is non-zero,

kj+1 − kj ≤ |Ij+1| − |Ij| ≤ 2γ|Ij| ≤ 2γkj.

The factor 2 appears because of the floor in defining Ij. Even if kj = 0, we have

kj+1 − kj ≤ 2γkj. Hence,

D(P ||P̄ ) ≤ kb/2+1p
+
b/2+1 + 2γ

b∑
j=b/2+1

p−j kj

≤ |Ib/2+1|p+
b/2+1 + 2γ.

Substituting values of γ and |Ib/2+1| and the fact that p+
b/2+1 ≤

2
b

proves the result.

4.3.2 Proof of Theorem 24

In this section we prove the upper bound of the theorem, and sketch the

lower bound in the final section. We use the following simple lemma that states
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that block compression has smaller redundancy than using a single compression

scheme.

Lemma 30. For a class P,

R(Pn) ≤ nR(P).

Proof. By the definition of redundancy,

R(Pn) = inf
Qn

sup
Pn

D (P n||Qn) ,

≤ inf
Qn:product

sup
Pn

D (P n||Qn)

=
n∑
i=1

inf
Q

sup
P∈P

D (P ||Q) = nR(P),

where the inequality follows by restricting Qn to product distributions.

Using this along with R(Mk) ≤ R̂(Mk) ∼ log log k gives,

R(Mn
k) ≤ nR(Mk) ∼ n log log k.

4.3.3 m-modal distributions

In this section consider the redundancy of m-modal distributions and prove

Theorem 25. We decompose the class Mk,m into
(
k
m

)
classes and then invoke

Lemma 17, which bounds the redundancy of union of classes.

For any m-modal distribution, if we are given one point from each of the

modes, then the distribution is monotone within the intervals thus formed. The

number of possibilities of the m points is at most
(
k
m

)
.

We therefore consider one class of distributions fromMk,m, specified by m

points. It is not hard to repeat the computations of monotone distributions on

each of the m+1 monotone distributions formed over the intervals. Once again by

monotonicity of redundancy with block-length, each and therefore the total extra

number of bits can be bounded by (m + 1)R(Mn
k). Combining with Lemma 17

with T =
(
k
m

)
proves the theorem.
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4.3.4 Lower bounds

By Lemma 9, suppose there exist M distributions P1, . . . , PM in Mk, and

a partition of [k]n into S1, . . . ,SM such that for some 0 < e < 1,

P n
i (Si) > 1− e,

then

R(Mn
k) ≥ (1− e) logM − h(e).

Note that since Mk ⊂ Mk+1 , R(Mn
k) ≤ R(Mn

k+1), it will suffice to prove Theo-

rem 23 for k = 2n.

For k = 2n, we now construct a class of M = 2cn distributions for a constant

c, with the above property. This will give a lower bound of ∼ cn(1−e) on R(Mn
k).

We first restrict to the following subclass of Mk. Consider distributions in Mk

such that for each j < log n, one of the following two conditions are satisfied.

1. For all 2j < i ≤ 2j+1,

p(i) =
2

3 · 2j
1

n
.

2. For all 2j < i ≤ 2j+1,

p(i) =
4

3 · 2j
1

n
.

Since we have partitioned the interval [k] with interval size doubling at each step,

we see that any distribution that satisfies the conditions above is monotone.

p(2j) ≥ 2

3 · 2j−1
=

4

3 · 2j
≥ p(2j + 1).

Since a distribution changes values at precisely these points, it is monotone.

Any distribution satisfying the above condition assigns probability 1/2n or

3/2n to each interval (2j, 2j+1]. Assuming that n is even, such a distribution satis-

fies each of the above condition in exactly half of the intervals, (since probabilities

sum to 1).

In fact this shows that the number of such distributions is precisely
(
n
n/2

)
.

We now select a set of distributions from these to satisfy our requirements. For

such a distribution P , let S(P ) be the n/2 intervals that satisfy condition 1.
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By the Gilbert-Varshamov bound of Lemma 31, we can now show the fol-

lowing result.

Lemma 31. There exist a class of M = 2n(1−h(α)−o(1)) monotone distributions

P1, . . . , PM satisfying the condition described, such that any two such distributions

Pi and Pj satisfy

|S(Pi) ∩ S(Pj)| < n(1− α)/2.

In other words for any pair of distributions, their distributions are different

in at least a fraction (1− α)/2 of the intervals.

Consider n samples obtained from any such distribution, say P1. The num-

ber of samples in S(P1) is B(n, n/3), i.e., about n/3 samples fall in these intervals

and the remaining 2n/3 from the other intervals. By Lemma 31, the number of

samples from distribution Pj, j 6= 1, is B(n, n(1 + α)/3).

By simple tail bounds on the Binomial distributions, it follows that we

can choose an α < 1/2 such that the distributions can be reconstructed from the

samples with a constant probability. This proves Theorem 23.

By a similar construction over log k bins with doubling sizes also proves the

lower bound of Theorem 24 and is omitted.

4.4 Summary

The following table summarizes the current knowledge of the redundancy

of Mn
k .

Table 4.2: Current bounds on R(Mn
k)

Range Lower bound Upper bound

k = o(n1/3) Ω(k log n
k
) O(k log n

k
)

k = nO(1) Ω(n1/3) O(n1/3 log n)

k = exp(o(n)) Ω(n1/3) O(
√
n log k)

k = exp(ω(n)) O(n log((log k)/n)) O(n log log k)
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Open problem 32. Find R(Mn
k), for the range k = exp(o(n)) and k = nω(1). In

particular, show that in this range,

R(Mn
k) = Õ(n1/3(log k)2/3).
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Chapter 5

Compression of envelope classes

In the introduction we discussed that the class of i.i.d. distributions over an

infinite underlying alphabet has infinite redundancy, and also saw in the previous

chapter that the same holds even for the class of monotone distributions over N.

We considered monotone distributions over bounded support, and provided bounds

on the redundancy in terms of support size k and block length n. In particular we

showed that monotone distributions can be universally compressed in the regime

k = exp(o(n)).

In this chapter, we consider another natural and elegant approach proposed

in [12]. They study universal compression of a fairly general class of distribu-

tions, called envelope classes, which as the name suggests are distributions that

are bounded by an envelope. An envelope class is characterized by a function

f : N→ R+.

Definition 33. The envelope class associated with a function f is the class

Pf
def
= {(p1, p2, . . .) : 0 ≤ pj ≤ f(j), and p1 + p2 + . . . = 1}

of all distributions such that the symbol probability is bounded by the value of the

function at that point.

Similar to the definition of Pn, let

Pnf
def
= {P n : P ∈ Pf}

40
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be the class of length-n i.i.d. distributions of an envelope distribution.

[12] provide general bounds on the redundancy of envelope classes. The

upper bounds on the worst-case redundancy are obtained by bounding the Shtarkov

sum. They provide bounds on the more stringent (for lower bounds) average case

redundancy. They provide a relatively complex bound employing the redundancy-

capacity theorem.

Envelope classes capture a wide range of distributions. They also take into

account scenarios in which there is a prior knowledge that the source distributions

are close to a class of “nice” distributione. For example, the distributions could be

from an almost power law class, in which we know that the probability of symbol

i is close to a power law distribution.

There are a number of problems in which there is some form of side infor-

mation about the data. In language modeling, it is common to assume that word

distributions follow the Zipf distribution [39], which is a monotone distribution. In

image compression, geometric distributions over integers arise [40, 54]. Power-law

distribution is very common in modeling numerous types of random variables, for

example the distribution of wealth, etc [55].

In this chapter we are interested in compression of restricted classes of i.i.d.

distributions over countably infinite alphabets, e.g., N. In particular, we first

discuss conditions on the class of distributions to be universally compressible. We

then consider envelope classes of distributions. Based on the Poisson sampling

framework we derive bounds on the redundancy of a general envelope class. These

bounds are simple to represent and apply. We show the efficacy of our bounds

by giving the exact growth rate of the power-law class, solving an open problem

in [12]. We also provide alternate proof and slightly strengthen the bounds on the

redundancy of exponential envelope class.

In the next section, we prove some relations between the redundancy of

Poisson sampling to sampling exact n times. This shows that it suffices to consider

Poisson-sampling.



42

5.1 Poisson redundancy

The next result captures some properties of redundancy of classes of the

form Pn over any discrete alphabet (even countably infinite).

Lemma 34. 1. Monotonicity: For all n, R̂(Pn+1) ≥ R̂(Pn)

2. Linearity: If S(P) <∞, then R̂(Pn) < nR̂(P)

3. Finiteness: S(P) <∞ ⇔ R̂(Pn) <∞

4. Sublinearity: If S(P) <∞ then R̂(Pn) = o(n).

Proof. Monotonicity follows by marginalizing the (n+ 1)th coordinate.

S(Pn+1) =
∑

xn+1
1 ∈Xn+1

sup
P∈P

P n(xn+1
1 )

≥
∑
xn1∈Xn

sup
P∈P

P n(xn1 )

 ∑
xn+1∈X

P (xn+1)


≥
∑
xn1∈Xn

sup
P∈P

P n(xn1 )

= S(Pn).

The second item follows using S(Pn) < S(P)n which is a consequence of

P̂ n(x) ≤
∏
P̂ (xj). Combining the first two items yield the third. The final part is

a result of [12]. It states that if the worst case redundancy of a class is finite, then

it must grow sub-linearly.

Let

Ppoi(n) def
= {P poi(n) : P ∈ P},

where recall from Section 2.6 that P poi(n) is the distribution over X ∗ when P is

sampled independently poi(n) times.

The next theorem bounds the redundancy of P n in terms of the redundancy

of P poi(n). This implies that finding bounds on one of them also provides bounds

on the other. We would be primarily interested in the second bound, since will

provide stronger upper bounds on the redundancy of envelope classes.
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Theorem 35. Suppose R̂(P) <∞. For any ε > 0 there is n0(ε,P), such that for

n > n0,

R̂(Ppoi(n(1−ε))− 1 ≤ R̂(Pn) ≤ R̂(Ppoi(n)) + 1

Proof. The second inequality is easier to show.

S(Ppoi(n))
(a)
=
∑
n′≥0

poi(n, n′)S(Pn′)

(b)

≥ S(Pn)
∑
n′≥n

poi(n, n′)

(c)

≥ 1

2
S(Pn),

where (a) follows from Lemma 7, (b) from monotonicity of S(Pn) and (c) from the

fact that median of a Poisson distribution larger than its mean for large means.

Taking logarithms gives the result.

For the first inequality

S(Ppoi(n(1−ε))) =
∑
n′

poi(n(1− ε), n′)S(Pn′)

By the Poisson tail bound of Lemma 4,for n′ ≥ n

poi(n, n′) ≤ Pr(poi(n(1− ε)) ≥ n′) < e−n
′/ε2 .

By item 4 of Lemma 34 since R̂(Pn) = o(n), S(Pn′) = exp(R̂(Pn′)) = exp(o(n′))

the contribution of terms ≥ n are negligible. Using monotonicity yields the result.

In the next section, we bound the redundancy of general envelope classes.

5.2 Redundancy bounds on envelope classes

We bound the redundancy of Ppoi(n) in terms of the redundancy of the

following primitive class

POI(λmax)
def
= {poi(λ) : λ < λmax}.
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This is the class of all Poisson distributions with mean bounded above. This class

is simple enough, and we can bound its redundancy tightly.

We first investigate POI(λ) and then bound the redundancy of i.i.d. distri-

butions in terms of R̂(POI(λ)).

5.2.1 Redundancy of Poisson distributions

The maximum likelihood Poisson distribution of a non-negative integer j

over all Poisson distributions is poi(j). The distributions in POI(λ) that maximizes

the probability of an integer j is:

arg max
POI(λ)

P (i) =

poi(i) if i ≤ bλc

poi(λ) otherwise.

Using this, the Shtarkov sum of the class is

S
(

POI(λ)
)

=

bλc∑
i=0

e−i
ii

i!
+

∞∑
bλc+1

e−λ
λi

i!
(5.1)

(a)
=1 +

bλc∑
i=0

(
e−i

ii

i!
− e−λλ

i

i!

)
, (5.2)

where (a) uses that
∑

µ poi(λ, µ) = 1.

From this Equation we obtain the following bound on redundancy of POI(λ).

Lemma 36. For λ ≤ 1,

R̂
(

POI(λ)
)

= log (2− exp(−λ)) ≤ λ,

and for λ ≥ 1, √
2(λ+ 1)

π
≤ R̂

(
POI(λ)

)
≤ 2 +

√
2λ

π
.

Proof. For the first part, we use Equation (5.2), for the equality, and the inequality

follows from e−x + ex ≥ 2. For the second part, using the Stirling’s Approxima-
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tion(Lemma 1) with Equation (5.1)

S
(

POI(λ)
)
< 2 +

bλc∑
j=1

e−j
jj

j!

(a)

≤ 2 +

bλc∑
j=1

e−j
jj

√
2πj( j

e
)j

= 2 +

bλc∑
j=1

1√
2πj

(b)

≤ 2 +

√
2λ

π
,

where (a) follows from j! >
√

2πj( j
e
)j, and (b) from a simple integration. The

lower bound follows from a similar computation.

5.2.2 General envelope class

Recall that the class of distributions associated with an envelope function

f : N→ R+ is

Pf
def
= {(p1, p2, . . .) : 0 ≤ pj ≤ f(j), and p1 + p2 + . . . = 1}.

Suppose the envelope class is integrable, i.e.,∑
j≥1

f(j) <∞,

then Lemma 34 implies that S(Pf ) <∞. If the sum is not finite then S(Pf ) =∞.

For an envelope characterized by f , let

λmax
j

def
= nf(j)

be the largest possible value of np where p is the probability of j. Let lf be the

smallest integer such that ∑
j≥lf

fj ≤ 1− ε.

This also implies that
∑

j≥lf λ
max
j ≤ n(1− ε). We do not mention `f as a function

of epsilon, since it will have little effect on the results, as seen later.

We now state our main result on envelope classes.
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Theorem 37. For the envelope class Pf , for large n and fixed ε > 0,
∞∑
i=lf

R̂ (POI(λmax
i )) ≤ R̂

(
Ppoi(n)
f

)
≤

∞∑
i=1

R̂ (POI(λmax
i )) ,

where λmax
i = nfi.

Proof. By Lemma 13, it suffices to consider the redunadncy of types of sequences.

By item 2 of Lemma 6, for a distribution a distribution P = (p1, p2, , . . .) over

X = {1, 2, . . .} can be rewritten as

τ(P poi(n)) = (poi(np1), poi(np2), . . .),

where each coordinate is an independent Poisson distribution. Similar to this, we

can show that the class of type distributions induced by Pf is

τ
(
Ppoi(n)
f

)
=
{

(poi(λ1), poi(λ2) . . .) : λi ≤ nfi,
∑

λi = n
}
.

In other words, under Poisson sampling the distribution of types is a product of

Poisson distributions, where the parameter of ith coordinate is at most nf(i) =

λmax
i . It follows that

Ppoi(n)
f ⊂ POI(λmax

1 )× POI(λmax
2 )× . . . .

The product redunadncy lemma (Lemma 14) can be generalized to products of

any countable number of distributions, and hence

R̂
(
Ppoi(n)
f

)
= R̂

(
τ(Ppoi(n)

f )
)
≤ R̂ (POI(λmax

1 )) + R̂ (POI(λmax
2 )) + . . . .

For the lower bound, note for any choice of λi < λmax
i for i ≥ lf corresponds to a

distribution in Ppoi(n)
f . In other words, all product distributions in

POI(λmax
lf

)× POI(λmax
lf+1)× . . .

are valid projections of a distribution in Ppoi(n)
f along the coordinates i ≥ lf .

Therefore, along these coordinates Lemma 14 holds with equality. Dropping the

other coordinates simply reduces the redundancy, thus proving the lower bound.

We now consider power-law and exponential envelopes and apply Theo-

rem 37 to obtain sharp bounds on redundancies of these classes improving the

previous results.
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5.3 Applications to specific envelope classes

We now find bounds on the redundancy of Power-law and exponential en-

velopes.

Definition 38. The power-law envelope class Λc·−α with parameters α > 1 and

c is the collection of distributions over N bounded by a power-law envelope with

exponent α > 1 and coefficient c, i.e.,

f(i) =
c

iα
.

The redundancy of Λn
c·−α was considered in [12] who prove that for large n,

C0n
1
α ≤ R̂(Λn

c·−α) ≤
( 2cn

α− 1

) 1
α
(log n)1− 1

α +O(1), (5.3)

where C0 is a constant (function of α and c).

We show that simply applying Theorem 37 to these classes and bounding

the resulting expressions gives tight redundancy bounds, removing the logarithmic

factor. We prove that the lower bound of [12] on the average redundancy is within

a constant factor of the actual worst case redundancy by proving the following

theorem.

Theorem 39. For large n

(cn)1/α
[α

2
+

1

2(α− 1)
− log 3

2

]
− 1 ≤ R̂(Λn

c·−α) ≤ (cn)1/α
[α

2
+

1

α− 1
+ log 3

]
+ 1.

Proof. By Definition 38, for power-law class Λc·−α ,

λmax
i =

cn

iα

is the largest expected multiplicity of symbol i. Let b
def
= (cn)1/α, then λmax

i ≥ 1

for i ≤ b and λmax
i < 1 otherwise.

Then,

R̂(Λ
poi(n)

c·−α )
(a)

≤
∑
i≤b

R̂(POI(λmax
i )) +

∑
i>b

R̂(POI(λmax
i ))

(b)

≤
∑
i≤b

log

(
2 +

√
2λmax

i

π

)
+
∞∑
i>b

λmax
i ,
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where (a) follows from Theorem 37 and (b) from Lemma 36.

We consider the two summations separately. For the first term, we note

that for λ ≥ 1, 2 +
√

2λ/π < 3
√
λ and use it with the following simplification.

B∑
i=1

log
B

i
= log

BB

B!
≤ B,

which follows from B! > (B/e)B using Stirling’s approximation. Therefore,

b∑
i=1

log

(
2 +

√
2λmax

i

π

)
<

b∑
i=1

log

(
3

√
cn

iα

)

= b log(3) +
α

2

b∑
i=1

log
((cn)

1
α

i

)
(a)
< (cn)1/α

(
log(3) +

α

2

)
,

where (a) follows since b = (cn)1/α.

Taking the second term,

∞∑
i=b+1

λmax
i = cn

∞∑
i=b+1

1

iα

=
c1/α

α− 1
n1/α,

where (b) follows by using s = b+ 1 = (cn)1/α + 1 in

∞∑
i=s

1

ir
≤
∫ ∞
s

1

(x− 1)r
≤ (s− 1)1−r

(r − 1)
. (5.4)

Finally applying Theorem 35,

R̂(Λn
c·−α) ≤ R̂(Λ

poi(n)

c·−α ) + 1 ≤ (cn)1/α
[

log 3 +
α

2
+

1

α− 1

]
+ 1.

We now prove the lower bound. Let ε > 0 be any constant. Then by

Equation (5.4)
∞∑

j=`+1

λmax
j ≤ cn

`1−α

(α− 1)
,

and therefore for

`
def
=

(
c

(α− 1)(1− ε)

) 1
α−1
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the sum above is at most n(1− ε). Applying the lower bound from Theorem 37,

R̂(Λ
poi(n)

c·−α ) ≤
∑
i>`

R̂(POI(λmax
i ))

=
∑
`<i≤b

R̂(POI(λmax
i )) +

∑
i>b

R̂(POI(λmax
i )).

Considering the second term and using 2− e−λ < 1 + λ/2,∑
i>b

R̂(POI(λmax
i )) >

cn

2

∑
i>b

1

iα
>
cn

2

(b+ 2)1−α

α− 1
.

Substituting b = (cn)1/α and since b � 2, we can bound the lower bound the

expression above with 1
2
(cn)1/α/(α− 1)− 1.

We use that R̂(POI(λ)) ≥
√
λ/3, which follows from a Shtarkov sum argu-

ment. Therefore,

R̂(Λn
c·−α) ≥ 1

2

b∑
i=`

log
cn

iα
≥ 1

2

b∑
i=1

log
cn

3iα
− `

2
log n ≥ b

2
[α− log 3]−O(log n)

Combining the two bounds and using Theorem 35, we obtain

R̂(Λn
c·−α) ≥ (cn)1/α

2

[
α +

1

α− 1
− log 3

]
.

Remark By obtaining tighter bounds on R̂(POI(λ)), it should be possible to

obtain upper and lower bounds within an additive ` log n.

5.3.1 Exponential envelope

Definition 40. The exponential-law envelope class with parameters α and c is the

class of distributions Λce−α· over N such that ∀i ∈ N,

pi ≤ ce−αi.

The redundancy of Λn
ce−α· was considered in [12] who proved

log2 n

8α
(1 + o(1)) ≤ R̂(Λn

ce−α·) ≤
log2 n

2α
+O(1).

[13] showed the precise growth rate of exponential envelopes and showed that

R̂(Λn
ce−α·) =

log2 n

4α
(1 + o(1)).
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An analysis of their algorithm shows that the o(1) term is of the form log logn
logn

,

namely their upper bound shows that

R̂(Λn
ce−α·) =

log2 n

4α
+O(log n log log n),

where c and α are hidden in the order terms. We provide a simple proof of a

slightly stronger version of this result using the Poisson sampling technique and

prove that

Theorem 41.

R̂(Λn
ce−α·) =

log2 n

4α
+O(log c log n).

Proof. Note that

j ≤ log(cn)

α
⇔ λmax

j ≥ 1.

As with the power-law, let b
def
= log(cn)

α
be the location of this transition. Then

R̂(Λ
poi(n)

ce−α· )
(a)

≤
∑
i≤b

R̂(POI(λmax
i )) +

∑
i>b

R̂(POI(λmax
i ))

≤
b∑

j=1

log
(

2 +

√
2λmax

j

π

)
+
∞∑
j=b

λmax
j

Using ebα = cn,

∞∑
i=b

λmax
i =

∞∑
i=b

cne−αi = cne−αb
1

1− e−α
=

1

1− e−α
.

For any λ > 1, 2 +
√

2λ/π < 3
√
λ.

b∑
i=1

log(2 +

√
2λmax

i

π
) ≤

b∑
i=1

log(3
√
λmax
i )

= b log 3 +
1

2

b∑
i=1

log[cne−αi]

= b log 3 +
1

2
log[(cn)be−αb(b+1)/2)]

= b log 3 +
1

2
log[(cn)b · (cn)−(b+1)/2]

= b log 3 +
(b− 1)

4
log(cn)

< b log(3c) +
b

4
log n.
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Substituting b = log(cn)/α, and noting that log2 n is the dominant term,

R̂(Λce−α·) ≤
log2 n

4α
+O

(
log n

)
.

We now prove the lower bound by a similar argument. Clearly, for a ≥
1
α

log( c
1−e−α ),

∞∑
j=a

λmax
j < n.

Let b′ = 1
α

log( c
1−e−α ).

R̂(Λce−α·) ≥
b∑

j=b′

log(
√
λmax
j /4)

≥ 1

2

b∑
j=b′

log(cne−αj)− b log 4

≥ 1

2
log((cn)be−αb(b+1)/2))−O(log n)

≥ 1

2

(b− 1)

4
log(cn)−O(log n)

≥ log2 n

4α
−O(log n).
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Chapter 6

Pattern redundancy - Tight

bounds

6.1 Introduction

We recap some of the definitions and motivations for pattern based com-

pression and other applications of patterns.

Definition 42. The pattern of a sequence xn1
def
= x1 . . . xn, denoted ψ(xn1 ) is the

integer sequence obtained by replacing each symbol in xn1 by the number of distinct

symbols up to (and including) its first appearance.

The pattern of the length-11 sequence abracadabra over the english letters,

i.e., X = {a, b, . . . , z}, is 12314151231. The pattern of the 5 word phrase to

be or not to be, where all possible english words is the underlying alphabet, is

ψ(to be or not to be) = 123412. A sequence can be described by encoding its

pattern and the dictionary separately. Such a coding scheme was proposed by [14,

15]. For example, one can encode the sequence abracadabra by first compressing

12314151231 and then conveying the dictionary as 1→ a, 2→ b, 3→ r, 4→ c, 5→
d.

Patterns capture all the structural information present in a sequence, dis-

regarding the meaning of individual symbols. However, since many sequences map

to the same pattern, by the function redundancy lemma, patterns of sequences

52
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generated by a source can be compressed with smaller redundancy than sequences

themselves.

6.2 Pattern probability and redundancy

Let Ψn be the set of all possible patterns of length n. [15] showed a bijection

from Ψn to all partitions of a set with n elements. This shows that |Ψn| = Bn,

the nth Bell number. We consider the induced distributions on Ψn when length−n
sequences are generated i.i.d.. Let P be a distribution over an underlying alphabet

X . The probability of a sequence xn1 ∈ X n under P is P n(xn1 )
def
=
∏n

i=1 P (xi). The

probability of a pattern is

P n(ψ)
def
=

∑
xn1 :ψ(xn1 )=ψ

P n(xn1 ),

the probability of observing a sequence with pattern ψ. For example, the proba-

bility of the pattern 1232 under distribution P over X = {A,B, . . . , Z} is

P 3(1232) = P 3(ABCB) + P 3(ABDB) + . . .+ P 3(ZY XY ).

Let In be the class of all length−n i.i.d. distributions over any discrete

alphabet of any size. Let InΨ denote the class of all distributions induced on Ψn by

distributions in In i.e.,

InΨ = {P ′ : P ′(ψ) = P n(ψ) where P n ∈ In}.

The redundancy of InΨ is

R(InΨ) = inf
Q

sup
P∈InΨ

D(P ||Q),

R̂(InΨ) = inf
Q

sup
P∈InΨ

sup
ψ∈Ψn

log
P (ψ)

Q(ψ)
.

Note that here the infimum Q is over all possible distributions on Ψn.
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6.3 Related work and known results

The redundancy of patterns was considered in [15] who show that the worst

case redundancy of patterns is O(
√
n) and at least Θ(n1/3) and therefore patterns

of i.i.d. distributions have diminishing per-symbol redundancy and they are uni-

versally compressible. A conclusion of this is that the structure of sequences can

be compressed efficiently, and for large alphabets, and almost all the redundancy

is in compressing the dictionary. In [56] the authors provide a different analysis to

improve the constant in the lower bound. [57] consider the problem of finding the

average redundancy of patterns of i.i.d. sequences. Restricting to the class of i.i.d.

distributions with at most k symbols, they show that for k ≤ n1/3, R(InΨ) grows at

least linearly with k, and extending to all k, they prove that for any fixed ε ≥ 0,

R(InΨ) ≥ n1/3−ε for large n. Similarly, they prove that for k ≤
√
n, R(InΨ) grows

at most linearly with k. [24] improved the upper bound on average redundancy to

n0.4, still leaving a large gap between the known lower and upper bounds. The

lower bound on average redundancy was improved from n1/3−ε by Garivier [58],

who showed that R(InΨ) ≥ 1.84
(

n
logn

)1/3

.

Combining these results, the best known bounds on pattern redundancy

before this work can be surmised in the following equation.

1.84

(
n

log n

)1/3

≤R(InΨ) ≤ O(n0.4) (6.1)

3

2
n1/3 <R̂(InΨ) <

(
π

√
2

3

)
n1/2. (6.2)

We determine the exact growth exponent of both average and worst case

pattern redundancy and prove that

0.5n1/3 ≤ R(InΨ) ≤3n1/3 log4/3 n (6.3)

R̂(InΨ) <110n1/3 log5/3 n. (6.4)

We now define profiles of sequences and show that they are a sufficient

statistic of the pattern, much the same way as type is a sufficient statistic of a

sequence.
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6.4 Profiles

Definition 43. The profile of a sequence xn1 , denoted ϕ̄(xn1 ) is the multiset of the

multiplicities of all symbols appearing in it.

The profile of the length-4 strings room, abac, isit are all {1, 1, 2}, meaning

that there is a symbol that appears twice and two symbols that appear once in

each of them.

Let Φn be the set of all possible patterns of length n. [15] showed a bijection

from Ψn to all partitions of an integer n. This shows that |Ψn| = pn, the nth

partition number. The upper bound in Equation (6.2) was derived using the bound

of exp(O(
√
n)) on pn.

The probability of a profile ϕ̄ ∈ Φn under P is the probability that an i.i.d.

sequence generated according to P has profile ϕ̄, i.e.,

P n(ϕ̄)
def
=

∑
x:ϕ̄(xn1 )=ϕ̄

P n(xn1 ).

As with patterns, let InΦ = {P ′ : P ′(ϕ̄) = P n(ϕ̄) where P is any discrete distribution},
denote all induced distributions on profiles via i.i.d. sequences, and

R(InΦ) = inf
Q

sup
P∈InΦ

D(P ||Q),

R̂(InΨ) = inf
Q

sup
P∈InΦ

sup
ϕ̄∈Φn

log
P (ϕ̄)

Q(ϕ̄)
.

It is easy to see that patterns are functions of sequences and profiles are

functions of patterns. For i.i.d. distributions, profiles are particularly interesting

due to the following observation. Its states that under i.i.d. sampling, profiles are

a sufficient statistic for the patterns.

Lemma 44 ([15]). For a distribution P and two patterns ψ1 and ψ2 with the same

profile

P n(ψ2) = P n(ψ1).

Proof. For i.i.d. sampling, the probability of any sequence is unchanged under

any permutation of its symbols. For example, when n = 4, P (isit) = P (itis) =



56

P (siit) = · · · . Using this, for any two patterns ψ1 and ψ2 with the same profile,

there is a bijection between sequences with pattern ψ1 and those with pattern

ψ2 such that each sequence is mapped to a sequence that can be obtained by

permuting its symbols, and hence has the same probability. Summing over all

sequences proves the result.

Therefore, if f is a function that maps a pattern to a profile, then it obeys

Equation (3.1), and by applying Lemma 12 proves

Lemma 45. R(InΨ) = R(InΦ) and R̂(InΨ) = R̂(InΦ).

We therefore consider only the redundancy of profiles.

In a number of problems in machine learning, profiles are a sufficient statis-

tic. For example, learning the support size, estimating the entropy, etc the indi-

vidual symbols do not matter. Such properties are symmetric properties of dis-

tributions [16]. For the problems of classification and closeness testing the notion

of joint profile can be defined [59, 60, 21, 22]. Using joint profiles, [21, 22] prove

results on classification and closeness testing that are independent of the underly-

ing alphabet size |X |. These results are along the lines of the results of pattern

redundancy being sublinear.

For a discrete distribution P let M(P ) denote the multiset of probabil-

ity values in P . For example, a distribution on a loaded die given by P (1) =

3/21, P (2) = 5/21, P (3) = 1/21, P (4) = 5/21, P (5) = 2/21, P (6) = 5/21 has

M = {1/21, 2/21, 3/21, 5/21, 5/21, 5/21}. Any permutation of these values is a

distribution on a die with the same M. Since patterns are obtained by striping

off the symbol labels and keeping only the ordering, we obtain

Lemma 46. If M(P ) =M(Q), then for any pattern ψ, P n(ψ) = Qn(ψ) and for

any profile ϕ̄, P n(ϕ̄) = Qn(ϕ̄).

Proof. Since P and Q have the same multiset of probabilities there is a bijection

between their supports. Then an argument similar to that of Lemma 44 shows the

result.

Therefore, any distribution in InΦ can be described by its multiset.
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6.5 Alternate profile probability via Poissoniza-

tion

Similar to the bounds on redundancy of sequences in Chapter 5, we consider

the redundancy of profiles generated via Poisson sampling. InΦ is the class of

induced distributions on Φnby all i.i.d. distributions over all support sizes, when

sampled n times. Let Ipoi(n)
Φ be the class of induced distributions on Φ∗ by all i.i.d.

distributions, when sampled poi(n) times.

Consider the following method to generate a profile in Φ∗ from a distribution

P withM(P ) = {p1, . . .}. For an integer n, let λi = npi, then
∑
λi = n. Generate

µi ∼ poi(λi) independently. Output the multiset of non-negative µi’s.

Using Lemma 6 it follows that the distribution above is the same as the

distribution induced by P poi(n) over Φ∗.

Therefore any distribution in Ipoi(n)
Φ can be described as a multiset Λ =

{λ1
def
= np1, λ2

def
= np2, . . .}. The profile generated by Poisson sampling is a multiset

ϕ̄ = {µ1, µ2, . . .}, where each µi generated independently according to poi(λi). The

probability that Λ generates ϕ̄ is [21, 15],

Λ(ϕ̄) =
1∏∞

µ=0 ϕµ!

∑
σ

∏
i

poi(λσ(i), µi), (6.5)

where ϕµ is the number of appearances of µ in ϕ̄.

6.5.1 Profile redundancy bounds

We now relate the redundancy of profiles under Poisson sampling to the

redundancy under sampling exactly n times.

To prove our lower bound on R(InΦ), we use Lemma 9. Therefore, it suffices

to provide a good lower bound on M(InΦ, δ). We do so by proving the follow-

ing lemma, and then bounding M(Ipoi(n)
Φ , δ), whose calculation is easier owing to

independence.

Lemma 47.

M(Ipoi(n−
√
n logn)

Φ , δ) ≤M(InΦ, 2δ).
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Proof. Consider the set of distributions that give rise toM
def
= M(Ipoi(n−

√
n logn)

Φ , δ), δ)

distributions. By Lemma 4 for large n,

Pr
(

poi
(
n−

√
n log n

)
≥ n

)
≤ δ.

Therefore, these M distributions generate a profile of length at most n with prob-

ability ≥ 1 − δ. Given profiles of length n generated by a distribution we can

generate profiles of any length n′ ≤ n from the same distribution. Therefore these

set of distributions are also distinguishable over length-n profiles with probability

of error at most 2δ.

For the upper bound, we can show a result analogous to Theorem 35 for

profiles. Using monotonicity of InΦ with n, and the fact that the median of a

Poisson random variable is close to its mean, we obtain

Lemma 48. For R ∈ {R, R̂},

R(InΨ) ≤ R(Ipoi(n)
Ψ ) + 1.

These results imply that we can only consider Poisson-sampled profiles.

6.6 Lower bound on average pattern redundancy

We now lower bound M(Ipoi(n)
Φ , δ), for some δ > 0. We will construct a

class of distinguishable distributions Λ1, . . . ,ΛM , each in Ipoi(n)
Φ , such that there

exist disjoint Φj ⊂ Φ∗, with Λi(Φi) > 1 − δ. Maximizing the size of M yields a

lower bound on R(Ipoi(n)
Φ ).

We now describe our class of distributions. For notational simplification,

we use n instead of n−
√
n log n. Recall that a distributionin Ipoi(n)

Φ is a collection

of Poisson parameters that sum to n, namely each Λi is a collection of positive

reals that sum to n. Let C > 0 and λi
def
= Ci2, where the value of C will be chosen

later.

Let

S = {λi : 1 ≤ i ≤ K},
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where K = b(3n/C)1/3c ensures that∑
λ∈S

λ ≤ n.

For a binary string x = x1x2 . . . xK , let

Λx = {λ∗i : xi = 1} ∪
{
n−

∑
λ∗ixi

}
.

This maps every length-K binary string to a distribution in Ipoi(n)
Φ . The distri-

bution adds a λi whenever xi = 1, and the final element is added to ensure that

the sum of elements in the distribution is n. We consider a subset of these 2K

distributions that correspond to a binary code.

Let C(K,αK) be a code satisfying Lemma 5. For this code, let

L = {Λc : c ∈ C},

be the collection of distributions generated by the codewords in C(K,αK). Then,

|L| = |C(K,αK)| ≥ 2( 3
C

)1/3(1−h(α))n1/3

. (6.6)

We now show that for suitable choices of C and α, and large K, the distri-

butions in L are δ−distinguishable (see Section 3.1), for some δ that approaches 0

as K grows by proving the following theorem.

Theorem 49. Let C > 0, and 1
2
> α > 2.01e−C/2. Then, the set of distributions

in L are δ−distinguishable, and K large.

Proof. The set L consists of δ-distinguishable distributions if there is a map f :

Φ∗ → L, such that for any Λ ∈ L, if ϕ̄ ∼ Λ, then

P (f(ϕ̄) 6= Λ) < δ. (6.7)

The map f is constructed as follows. We first describe a function from Φ∗ to

{0, 1}K , and then map the string to the codeword with the least Hamming distance

from it.

Formally, let ϕ̄ = {µ1, µ2, . . .} be a profile. For each j = 1, 2, . . . , K, let

xi =

 1 if ∃j such that i = arg min
r
|µj − λr|

0 otherwise.
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In other words, for each multiplicity µj if λi is closest to µj we set xi to 1. Let

x(ϕ̄) = x1 . . . xK be the sequence generated by this process. Let ĉ(ϕ̄) ∈ C be the

code with minimum Hamming distance from x(ϕ̄). Let

f(ϕ̄) = Λĉ.

We now pick any distribution Λc and and find conditions unver which Equa-

tion (6.7) holds.

Two adjacent λ’s are separated by

∆i
def
= λi+1 − λi = C(i+ 1)2 − Ci2 = (2i+ 1)C > 2

√
Cλi. (6.8)

Let λi ∈ Λc be any element. Let Yi be a random variable that is 1 if the multiplicity

µi generated by λi is closest to a λj, j 6= i and 0 otherwise. Since the minimum

distance of the code is αK, the probability of error is at most the probability that

2
∑
Yi ≥ αK

2
. Thus, for ϕ̄ ∼ Λc

P (f(ϕ̄) 6= Λc) ≤ P

(∑
Yi ≥

αK

4

)
.

Applying this Lemma to Equation (6.8)

P (Yi = 1) ≤P
(

poi(λi) ≤ λi −
(λi − λi−1)

2

)
+ P

(
poi(λi) ≤ λi +

(λi+1 − λi)
2

)
≤ exp

(
−(C(2i− 1))2

2Ci2

)
+ exp

(
−((2i+ 1)C)2

2(Ci2 + Ci)

)
< 2 exp(−C/2).

Without loss of generality, assume that at least half of the codewords in

C(K,αK) have weight at most K/2. If not we can take the complement of each

codeword, and still maintain the same minimum distance, but ensuring that the

new code has at least half the codewords of weight at most K/2. So, we throw away

the distributions that have more than K/2 elements (at most half the distributions

satisfy this) So,

E
[∑

Yi

]
=
∑

P (Yi = 1) ≤ 2e−C/2
K

2
= e−C/2K.

By the independence of Yi’s,

σ2 def
= V

[∑
Yi

]
=
∑
i

V [Yi] ≤ e−C/2K.
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By the Chebychev’s Inequality,

P (f(ϕ̄) 6= Λc) ≤ P

(∑
Yi ≥

αK

4

)
≤ P

(∣∣∣∑Yi − e−C/2K
∣∣∣ ≥ (α− 2e−C/2)K

2

)
≤ e−C/4

K(α− 2e−C/2)2
.

When the conditions of the theorem are satisfied, and K grows, error probability

goes to 0.

The value of logM(Ipoi(n)
Φ , δ) is at most the largest value attained by

(
3
C

) 1
3 (1−

h(α)n1/3, subject to exp(−C/4) < α < 1
2
. When C = 19, a simple calculation

shows that logM(Ipoi(n)
Φ , δ) > 0.5n1/3. Applying this result to Lemma 47 and

Lemma 9 yields the lower bound.

6.7 Upper bound on average pattern redundancy

In this section we upper bound the average redundancy of patterns under

i.i.d. sampling. The bound on the worst-case is obtained via a more refined

analysis and is presented later. Even though the basic principle behind proving

both the results are similar, the arguments that hold for an expected profile do

not hold over all profiles. We circumvent this problem by showing that it suffices

to consider a smaller class of profiles, for which a result similar to the average case

holds.

Let µ = (µ1, . . . , µm), where µi ∼ poi(λi) are independent Poisson random

variables. Any collection of m λi’s induces a distribution on m-tuples of non-

negative integers. Let

I(m, (λ0, λ0 + ∆])
def
= {(poi(λ1), . . . , poi(λm)) : λ0 < λi ≤ λ0 + ∆}

be the set of all products of m Poisson distributions, with each parameter in

the interval (λ0, λ0 + ∆]. In order to generate a profile from a distribution, we

simply consider the multiset {µ1, . . . , µm}. We first prove an upper bound on the
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redundancy of this class, and since profiles are functions of the multiplicity tuple,

we obtain an upper bound on the profile redundancy.

Let Λ = (λ1, . . . , λm) and Λ
′

= (λ′1, . . . , λ
′
m) be any two distributions in

I(m, (λ0, λ0 + ∆]). For a profile ϕ̄ ∈ Φ∗, let Λ(ϕ̄) be probability of observing

profile ϕ̄, a function of µ. Let IΦ(m, (λ0, λ0 + ∆]) denote this induced class of

distributions over profiles. Since KL-divergence adds up on product spaces, for

any two distributions

D
(

Λ(ϕ̄)||Λ′(ϕ̄)
) (a)

≤ D
(

Λ(µ)||Λ′(µ)
)

(6.9)

=
m∑
j=1

D(poi(λj)||poi(λ′j)) (6.10)

(b)
=

m∑
j=1

λ′j − λj + λj log
(λj
λ′j

)
(6.11)

(c)

≤
m∑
j=1

λ′j − λj + λj

(λj
λ′j
− 1
)

(6.12)

=
m∑
j=1

(λ′j − λj)2

λ′j
(6.13)

(d)

≤ m
∆2

λ0

, (6.14)

where (a) uses the following form of Data-processing inequality. For any function

f , and random variables X and Y ,

D(f(X)||f(Y )) ≤ D(X||Y ),

which follows from the convexity of logarithms. The function f simply maps

(µ1, . . . , µm) to {µ1, . . . , µm}. (b) is the expression of KL divergence between Pois-

son distributions, and (c) uses log x ≤ x− 1, the (d) from the fact that all λ’s are

in an interval of width ∆, starting at λ0. Combining this result with the definition

of redundancy bounds the redundancy of I(m, (λ0, λ0 + ∆]) yields

Lemma 50.

R
(
IΦ(m, (λ0, λ0 + ∆])

)
≤ R

(
I(m, (λ0, λ0 + ∆])

)
≤ m∆2

λ0

.
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Note that the right hand side of this bound reduces with ∆, namely distri-

butions with close parameters have small redundancy. We will therefore divide the

interval (0, n] into intervals. We define a partition of Ipoi(n)
Φ based on the choice of

intervals. Using Lemma 17, we show that considering one of the classes suffices.

We then apply Lemma 50 over all the intervals. Optimizing over the choice of

intervals we obtain the upper bound.

6.7.1 Construction of distribution classes

Any collection of positive reals Λ
def
= {λ1, λ2, . . .} is defines a distribution

over Φ∗, where the profile generated is the collection of poi(λi) random variables.

By Lemma 48, we bound the redundancy of

Ipoi(n)
Φ =

{
Λ :
∑
λ∈Λ

λ = n
}
,

the collection of all distributions whose elements add up to n.

Let b be a positive integer (specified later). Consider any partition of (0, n]

into b + 1 consecutive intervals I0, I1, I2, . . . , Ib of lengths ∆0 = 1,∆1,∆2, . . . ,∆b.

In other words, the first interval is (0, 1]. We will be mostly interested in the b

intervals I1, . . . , Ib.

For any Λ ∈ Ipoi(n)
Φ ,

• For j = 0, 1, . . . , b, Λj
def
= Λ ∩ Ij be the multiset of elements of Λ in Ij,

• For j = 1, 2, . . . , b, let mj
def
= mj(Λ)

def
= |Λj| be the number of elements of Λ

in Ij, and m
def
= m(Λ) is the b-tuple of mj’s.

Two distributions have same m if they have the same number of λ’s in

I1, . . . , Ib. A partition of (0, n] induces a partition of Ipoi(n)
Φ via m, i.e., distributions

having same m are in the same class. Let Ipoi(n)
Φ (i), i = 1, . . . , Tn be these classes

of distributions. Since ∆0 = 1, and sum of elements in a distribution in Ipoi(n)
Φ is n,

this shows that mj ≤ n, for all j = 1, . . . ,m. Thus, m is a b−tuple of non-negative

integers each at most n. Therefore,

Tn ≤ nb.
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Combining with Lemma 17,

R(Ipoi(n)
Φ ) ≤ max

1≤i≤Tn
R(Ipoi(n)

Φ (i)) + b log n. (6.15)

6.7.2 Bounding redundancy of each class

Let λ∗j denote the start point of interval Ij, i.e., Ij = (λ∗j , λ
∗
j+1], and ∆j =

λ∗j+1 − λ∗j . Let I be one of the Tn classes, with m = (m1, . . . ,mb). We bound the

redundancy of I by proving the following theorem.

Theorem 51. For any class I,

R(I) ≤
b∑

j=1

mj

∆2
j

λ∗j
+ 2 log2 n.

Proof. For any distribution Λ ∈ Ipoi(n)
Φ , let ϕ̄j denote the profile generated by Λj,

where recall that Λj is Λ ∩ Ij. By the independence of Poisson sampling, ϕ̄j’s are

all independent. Moreover, the profile ϕ̄ = ϕ̄0 ∪ . . . ∪ ϕ̄b, a function of the tuple

(ϕ̄0, . . . , ϕ̄b). For j = 1, . . . , b

Ij
def
= {Λj : Λ ∈ I}

be the class of marginal distributions in interval j.

By definition, IΦ(mj, (λ
∗
j , λ
∗
j+1]) consists of all possible distributions with

mj elements in (λ∗j , λ
∗
j+1]. Therefore, Ij ⊆ IΦ(mj, (λ

∗
j , λ
∗
j+1]). Using Lemma 17

and the independence of ϕ̄j’s, and Lemma 50,

R(Ipoi(n)
Φ ) ≤

b∑
j=0

R(Ij) ≤ R(I0) +
b∑

j=1

R(Ij) ≤ R(I0) +
b∑

j=1

mj

∆2
j

λ∗j
.

Any distribution in I0 is a collection of λ’s that are all ≤ 1 and with sum most

n. To bound R(I0), we provide a single explicit encoding of profiles with expected

length ≤ 5 log2 n for all distributions in I0. The largest expected codelength of any

code over a class of distributions is clearly an upper bound on average redundancy.

One way to describe a collection of multiplicities is to describe the set of distinct

multiplicities, with their respective number appearances. We will describe all pos-

itive integers using Elias coding. Elias Codes [61] are prefix free coding scheme
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over positive integers that uses 2blog µc + 1 bits to represent µ. Using concavity

of logarithms, a random variable X can be encoded with at most 2 logE[X] + 1

expected bits. Let µmax be the largest multiplicity generated by a distribution

{λ1, λ2, . . .}, where λj ≤ 1, and
∑
λ ≤ n. For any j ≥ 1,

P (µmax ≥ j)
(a)

≤
∑
λi

e−λi
(eλi
j

)j (b)

≤
(e
j

)j∑
λi

λji
(c)

≤
(e
j

)j
· n,

where (a) follows by the union bound, (b) uses exp(−λi) ≤ 1, and (c) uses λj ≤ 1

and j ≥ 1. Now, for j > log n the probability falls exponentially with j. This

combined with the fact that the number of times a multiplicity appears is at most

the number of total samples, which is poi(n) shows that Elias code has expected

codelength at most log2 n for any distribution in I0.

6.7.3 Final bound

We now use Theorem 51 with Equation 6.15. The average redundancy is

bounded by,
b∑

j=1

mj∆
2
j

λ∗j
+ log2 n+ b log n,

for any choice of intervals.

We choose the intervals in a geometric progression. The start of the first

interval is 1, and the ending point of the bth interval is n. The starting point of

the jth interval is (1 + c)j−1, for j = 1, . . . , b, where 1 + c is the parameter of the

geometric series. Then,

(1 + c)b = n.

Thus, the jth interval has length,

∆j = (1 + c)j − (1 + c)j−1 = c(1 + c)j−1 = cλ∗j .

Plugging these R(Ipoi(n)
Φ ) can be upper bounded by,

b∑
j=1

mj∆
2
j

λ∗j
+ b log n+ log2 n = c2

b∑
j=1

mjλ
∗
j + b log n+ log2 n ≤ c2n+ b log n+ log2 n,



66

where we used the fact that the sum of all elements of a distribution is at most

n, thus
∑

jmjλ
∗
j ≤ n. Now, (1 + c)b = n, therefore, b log(1 + c) = log n. We are

interested in the case where b is a polynomial of n, and hence c is small. Thus for

any ε > 0, as n grows,

c ≤ (1 + ε)
log n

b
.

Plugging this,

R(InΦ) ≤ R(Ipoi(n)
Φ ) + log n

≤ (1 + ε)2n log2 n

b2
+ b log n+ log2 n+ log n

≤ 3n1/3 log4/3 n,

by choosing b = n1/3 log1/3 n.

6.8 Upper bound on worst-case pattern redun-

dancy

6.8.1 Overview

Any collection of non-negative reals {λ1, . . .} implies a distribution over

Φ∗ by Poisson sampling. From each distribution in Ipoi(n)
Φ , we generate three

distributions, the collection of λ’s that are at most n1/3, those between n1/3 and

H, and those larger than H. The value of H will be close to n2/3 and specified

later. Using independence of the multiplicities generated via Poisson sampling, we

show that it suffices to consider distributions that have all the λ’s in the middle

range, namely in (n2/3, H].

We then partition all such distributions into Tn classes, where log(Tn) =

b log n. Using Lemma 17, we need to consider only one of these classes. Using

Lemmas 14 and 11 and some other manipulations over Poisson distributions, we

prove that each such class has redundancy Õ(n1/3).
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6.8.2 Details

For any distribution Λ ∈ Ipoi(n)
Φ , let

Λlow
def
= {λ ∈ Λ : λ ≤ n1/3},

Λmed
def
= {λ ∈ Λ : n1/3 < λ ≤ H},

Λhigh
def
= {λ ∈ Λ : λ > H}.

Let ϕ̄low, ϕ̄med, ϕ̄high denote the profiles generated by Λlow,Λmed,Λhigh respectively.

Thus, Λ = Λlow∪Λmed∪Λhigh, and any ϕ̄ generated by a distribution in Ipoi(n)
Φ is of

the form ϕ̄low ∪ ϕ̄med ∪ ϕ̄high, and hence a function of the triple (ϕ̄low, ϕ̄med, ϕ̄high).

Let,

Ipoi(n)
Φlow

def
=
{

Λ : λ < n1/3 ∀λ, and
∑
λ∈Λ

λ ≤ n
}
,

Ipoi(n)
Φmed

def
=
{

Λ : n1/3 < λ ≤ H ∀λ, and
∑
λ∈Λ

λ ≤ n
}
,

Ipoi(n)
Φhigh

def
=
{

Λ : λ > H ∀λ ∈ Λ, and
∑
λ∈Λ

λ ≤ n
}
.

It is each to see that for any distribution in Ipoi(n)
Φ , Λlow ∈ Ipoi(n)

Φlow
, Λmed ∈

Ipoi(n)
Φmed

, and Λhigh ∈ Ipoi(n)
Φhigh

. We can now state the following lemma that enables us

to concentrate only these classes separately.

Lemma 52.

R̂(Ipoi(n)
Φ ) ≤ R̂(Ipoi(n)

Φlow
) + R̂(Ipoi(n)

Φmed
) + R̂(Ipoi(n)

Φhigh
)

Proof. ϕ̄ is a function of the triple (ϕ̄low, ϕ̄med, ϕ̄high), which itself is a product

random variable by Poisson sampling. Using Lemma 11, and an extension of

Lemma 14 to three products gives the result.

The redundancies of Ipoi(n)
Φlow

, and Ipoi(n)
Φhigh

are easier to bound compared to

Ipoi(n)
Φmed

and are done first.

Lemma 53.

R̂(Ipoi(n)
Φlow

) < 4n1/3 log n, and R̂(Ipoi(n)
Φhigh

) <
n

H
log n.



68

Proof. The proof is similar to bounding the redundancy of I0 in the proof of

Theorem 51. We encode ϕ̄low and ϕ̄high using Elias codes described before. We show

the proof for Ipoi(n)
Φhigh

and sketch it for Ipoi(n)
Φlow

. The number of distinct multiplicities

in ϕ̄high is at most n/H. Now the probability of the largest multiplicity exceeding

n falls down exponentially with µ. Therefore as before, the redundancy can be

bounded by n/H log n. The proof of Ipoi(n)
Φlow

is similar and is omitted.

6.8.3 Bounding R̂(Ipoi(n)
Φmed

)

We first consider I(m, s, (λ0, λ0 + ∆]), which is the subset of I(m, (λ0, λ0 +

∆]) that have b(
∑
λi) × n94c = s. Thus, distributions in the such classes have

same number of elements and their sums are extremely close (differ by at most

1/n94).

As with the average case we are interested in finding an upper bound on

worst-case redundancy of this class. For average redundancy the KL divergence

between distributions had a nice expression that we bound. We are now interested

in finding bounds on the sum of maximum likelihood probabilities over all profiles,

by distributions in this class. Using Poisson tail bounds we first show that it suffices

to consider only a class of all profiles, namely the one’s with all multiplicities around

the interval of interest (i.e., (λ0, λ0 + ∆]). We then bound the Shtarkov sum of

this class of profiles.

Consider any profile ϕ̄ with all multiplicities in [λ+ ∆/2−Θ/2, λ+ ∆/2−
Θ/2]. Consider any uniform distribution Λ

′
= {m × λ′} in I(m, s, (λ0, λ0 + ∆]).

Then by definition, |
∑
λj −mλ′| < 1/n94. We bound the Shtarkov sum of these

profiles using the following theorem.

Theorem 54. For any distribution Λ = {λ1, . . . , λm} in I(m, s, (λ0, λ0 +∆]), then

for any profile ϕ̄ with multiplicities in the interval specified,

Λ(ϕ̄)

Λ
′
(ϕ̄)
≤
√

2 exp
[
m
(∆Θ

λ0

)2]
.
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Proof. Let ϕ̄ = {µ1, . . . , µm}. By Equation (6.5),

Λ(ϕ̄j) = N(ϕ̄)
exp(−

∑m
j=1 λj)∏
µj!

(∑
σ∈Sm

m∏
l=1

λµlσ(l)

)
.

Taking the ratio with Λ
′
,

Λ(ϕ̄)

Λ
′
(ϕ̄)

= exp
(
−
∑

λj +mλ
)
· 1

m!

(∑
σ∈Sm

m∏
l=1

(
λσ(l)

λ′

)µl)

≤ exp
( 1

n94

)
· 1

m!

(∑
σ∈Sm

m∏
l=1

(
λσ(l)

λ′

)µl)

Let δj
def
= λj − λ′. Let µave =

∑
µ

m
be the average of multiplicities in ϕ̄, and

θj
def
= µj − µave. Then,

∑m
l=1 θl = 0, and |

∑mj
l=1 δj| < 1

n94 . Therefore,

1

m!

(∑
σ∈Sm

m∏
l=1

(
λσ(l)

λ′

)µl)
=

1

m!

(∑
σ∈Sm

m∏
l=1

(
1 +

δσ(l)

λ′

)µl)
(a)

≤ 1

m!

∑
σ∈Sm

exp

(
m∑
l=1

δσ(l)(µave + θl)

λ′

)
(b)

≤ exp
( µave

n94λ′

)
· 1

mj!

∑
σ∈Smj

exp

(
mj∑
l=1

δσ(l)θl
λ′

)
,

where (a) uses 1 + x ≤ exp(x) and (b) uses |
∑
δl| ≤ 1

n94 . We now want to bound

a function of the form,

f({δl}, {θl}) =
1

m!

∑
σ

[
exp

(
m∑
l=1

δlθσl
λ′

)]
.

Now |θj| ≤ Θ , |δj| < ∆, θj’s sum to 0 and δj’s sum to a very small quantity, (less

than 1/n94 in absolute value). Therefore, the convexity of exponential functions

we can assume that for m even, the function is maximized when m/2 of the θj’s

are Θ and the other m/2 are −Θ. Similarly, half the δj’s are ∆ and the other

half −∆. Note that the problem is independent of permutations of the random

variables.

We are therefore interested in the following problem (after suitable normal-

ization). Let x1, . . . , xm and y1, . . . ym are such that half of the xj’s and yj’s are 1
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and the remaining half −1. We are interested in F (σ) =
∑

j xσ(jyj over all permu-

tations. Since m is even, the value of F is of the form m−4k for k = 0, 1, . . . ,m/2.

By a simple counting, the number of permutations that lead to the value m− 4k

can be shown to be (
(
m

2
)!
)2
(
m
2

k

)2

.

Plugging in these values

f({δl}, {θl}) ≤
(
m
2

!
)2

m!

m/2∑
k=0

(
m
2

k

)2

exp

(
(m− 4k)

∆Θ

λ′

)
(a)

≤

(
m
2

!
)2(m

2
m
4

)
m!

exp

(
m∆Θ

λ′

) m
2∑

k=0

(
m
2

k

)
exp

(
−4k∆Θ

λ′

)
(b)

≤
√

2

2m/2

(
1 + exp

(
−4∆Θ

λ′

))m
2

exp

(
2∆Θ

λ′

)m
2

=
√

2

exp
(
− 2∆Θ

λ0

)
+ exp

(
2∆Θ
λ′

)
2


m
2

(c)

≤
√

2 exp
[
m
(∆Θ

λ0

)2]
,

where (a) follows since
(
n
k

)
is maximized at k = n/2, (b) uses Stirling’s approxi-

mation, and (c) uses the fact that for any x,

ex + e−x

2
≤ ex

2/2,

which can be proved by Taylor series expansion of exp(x). The theorem follows

since the other terms present are small compared to n94 by the definition of profiles.

Remark

1. It is possible to prove a stronger form of the theorem that does not have the
√

2 term. It makes the proof slightly longer and does not yield any improve-

ments in the leading terms of the worst-case redundancy and therefore not

presented.
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2. For any fixed profile, as we let ∆ → 0 all distributions look alike and hence

the ratio on the left hand side of the theorem should converge to 1, as can

be shown . We bound it by
√

2.

We now prove a result equivalent to Lemma 50 for average redudancy. Re-

call that we are interested in Ipoi(n)
Φmed

, where all λ’s are between n1/3 and n/H,

and hence there are at most n2/3 elements in any such distribution. Consider any

interval (λ0, λ0 + ∆]. Let Φnear be the set of all profiles with all multiplicities

in Inear
def
= [λ0 − 2

√
λ0 log n, (λ0 + ∆) + 2

√
(λ0 + ∆) log n]. Applying Poisson tail

bounds from Lemma 4 a poi(λ) random variable lies in λ± 2
√
λ log n with proba-

bility at least 1 − 1/n4, and the probability falls exponentially beyond the range.

By the union bound, a profile generated by I(m, s, (λ0, λ0 + ∆]) for m ≤ n is in

Φnear with probability > 1 − 1/n3. We use this to first show that it suffices to

consider Φnear.

Lemma 55.
∑̄
ϕ∈Φ

sup
Λ∈I(m,s,(λ0,λ0+∆])

Λ(ϕ̄) < 2
∑

ϕ̄∈Φnear

sup
Λ∈I(m,s,(λ0,λ0+∆])

Λ(ϕ̄).

Proof. Recall from Equation (6.5) that the probability of a profile ϕ̄ = {µ1, . . . , µk}
is

Λ(ϕ̄) =
1∏∞

i=0 ϕi!

∑
σ∈Sm

k∏
j=1

poi(λσ(j), µj)

=
1∏∞

i=0 ϕi!

∑
σ∈Sm

[ ∏
µj∈Inear

poi(λσ(j), µj)
∏

µj /∈Inear

poi(λσ(j), µj)
]
.

A profile ϕ̄ can be written as the union

ϕ̄ = ϕ̄near ∪ ϕ̄far,

where ϕ̄near is the collection of all multiplicities in Inear, and ϕ̄far has all ele-

ments outside this interval. Now when we are interested in distributions in Λ ∈
I(m, s, (λ0, λ0 + ∆]) a multiplicity outside Inear is maximized by either λ or λ+ ∆.

Therefore, for any distribution in Λ ∈ I(m, s, (λ0, λ0 + ∆])

Λ(ϕ̄) ≤ mi1+i2 ·
∏

µi /∈Inear

max{poi(λ0 −∆, µi), poi(λ0 + ∆, µi)}
(

max Λ(ϕ̄near)
)
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Now consider all profiles with the same ϕ̄near,∑
ϕ̄|ϕ̄∼ϕ̄near

max Λ(ϕ̄)

≤max Λ(ϕ̄near) ·
∑
j

mj
∏

µi /∈Inear

max{poi(λ0 −∆, µi), poi(λ0 + ∆, µi)}

(a)

≤max Λ(ϕ̄near) ·
∑
i1,i2

(m
n2

)j
,

where (a) uses Lemma 4. Summing over all j and using the fact that m ≤ n proves

the result.

Using these two lemmas, we bound R̂(IΦ(m, s, (λ0, λ0 + ∆])).

Lemma 56.

R̂(IΦ(m, s, (λ0, λ0 + ∆])) ≤ 3

2
+m

∆2
(

∆ + 4
√

(∆ + λ0) log n
)2

λ2
0

.

We divide Ipoi(n)
Φmed

into Tn classes of distributions, and bound the redundancy

of each class. Invoking Lemma 17 gives the result.

Partition of Ipoi(n)
Φmed

We form partition of the set of distributions similar to the construction for

average redundancy. Partition (n1/3, H] into b consecutive intervals I1, I2, . . . , Ib of

lengths ∆1,∆2, . . . ,∆b. We will optimize for b later. A distribution in Ipoi(n)
Φmed

is a

collection of positive reals in (n1/3, H] that sum to at most n.

Let b be a positive integer (specified later). Consider any partition of (0, n]

into b + 1 consecutive intervals I0, I1, I2, . . . , Ib of lengths ∆0 = 1,∆1,∆2, . . . ,∆b.

In other words, the first interval is (0, 1]. We will be mostly interested in the b

intervals I1, . . . , Ib.

A distribution in Ipoi(n)
Φ is a collection of positive reals in (n1/3, H]. For any

Λ ∈ Ipoi(n)
Φmed

,

• For j = 1, 2, . . . , b, Λj
def
= Λ ∩ Ij be the multiset of elements of Λ in Ij,
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• For j = 1, 2, . . . , b, let mj
def
= mj(Λ)

def
= |Λj| be the number of elements of Λ

in Ij, and m
def
= m(Λ) is the b-tuple of mj’s.

• sj
def
= sj(Λmed)

def
= bn94 ·

∑
λ∈Λj

λc, and s(Λmed)
def
= (s1, . . . , sb).

A partition of (n1/3, H] induces a partition of Ipoi(n)
Φ via m and s, i.e.,

distributions having same m and s are in the same class.

Let Ipoi(n)
Φmed

(i), i = 1, . . . , Tn be these classes of distributions. Note that each

mj is at most n2/3 and any sj an integer that is at most n95. The number of possible

tuples m and s is therefore at most nb · (n95)b ≤ n96b. Therefore, Tn ≤ n96b.

Using Lemma 17 with this yields the following result.

Lemma 57.

R̂(Ipoi(n)
Φmed

) ≤ max
1≤i≤Tn

R̂(Ipoi(n)
Φmed

(i)) + 100b log n.

Bounding redundancy of each class

Let I be one of these Tn classes. Let the class I correspond to m =

(m1, . . . ,mb) and s = (s1, . . . , sb) and λ∗j be the start of interval Ij.

We bound R̂(I) by proving a result analogous to Theorem 51.

Theorem 58.

R̂(Ipoi(n)
Φmed

) ≤ 3b

2
+

b∑
j=1

mj

∆2
j

(
∆j + 4

√
λ∗j+1 log n

)2

(λ∗j)
2

.

Proof. Analogous to the average case, let ϕ̄j be the profile generated by Λj. Then

ϕ̄med = ϕ̄1 ∪ . . . ∪ ϕ̄b = f(ϕ̄1, . . . , ϕ̄b), where ϕ̄j’s are independent due to Poisson

sampling. For j = 1, . . . , b,

Ij
def
= {Λj : Λ ∈ I}

be the class of marginal distributions in interval j.

By definition, IΦ(mj, sj, (λ
∗
j , λ
∗
j+1]) consists of all possible distributions with

mj elements in (λ∗j , λ
∗
j+1]. Therefore, Ij ⊆ IΦ(mj, , sj, (λ

∗
j , λ
∗
j+1]).

Since sampling is Poisson, ϕ̄j’s are independent. By
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R̂(I)
(a)

≤
b∑

j=1

R̂(Ij)
(b)

≤
b∑

j=1

[3

2
+mj

∆2
j

(
∆j + 4

√
λ∗j+1 log n

)2

(λ∗j)
2

]
(6.16)

where (a) uses Lemmas 11 and 14 and (b) follows from Lemma 56.

Interval lengths and redundancy

We will bound worst case redundancy by choosing intervals in a geometric

progression similar to the average case. Recall that λ∗1 = n1/3. If we take the

interval ends in a geometric progression with ratio c, then n1/3(1 + c)b = H. Now

λ∗j+1 = λ∗j(1 + c), and ∆j = cλ∗j . As before c ≤ logn
3b

. Also, Θj ≤ ∆j + 2
√
λ∗j log n

yields, Θ2
j ≤ 2(∆2

j + 4λ∗j log n). Plugging these reduces the bound in Equa-

tion (6.16), and using λ∗j ≤ H,

3b

2
+

b∑
j=1

2mjc
2(∆2

j + 4λ∗j log n) ≤3b

2
+ 8nc2 log n+

b∑
j=1

2mjc
4(λ∗j)

2

≤3b

2
+ 8nc2 log n+

b∑
j=1

2mjc
4λ∗jH

≤3b

2
+ 8nc2 log n+ 2n ·Hc4.

Combining the results of Lemmas 52, 53, and 57,

R̂(Ipoi(n)
Φ ) ≤4n1/3 log n+

n

H
log n+

3b

2
+ 8nc2 log n+ 2n ·Hc4 + 100b log n

≤4n1/3 log n+ 1.5b+
n

H
log n+ 8n

log3 n

b2
+ 2n ·H

( log n

b

)4

+ 100b log n

To optimize the value of this expression, let H = n2/3/ log1/6 n, and b =

n1/3 log2/3 n, then for large n,

R̂(Ipoi(n)
Φ ) ≤4n1/3 log n+ 1.5n1/3 log2/3 n+ 6n1/3 log7/6 n+ 108n1/3 log5/3 n

<110n1/3 log5/3 n.
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