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Abstract-We derive several pattern maximum likelihood
(PML) results, among them showing that if a pattern has only
one symbol appearing once, its PML support size is at most twice
the number of distinct symbols, and that if the pattern is ternary
with at most one symbol appearing once, its PML support size is
three. We apply these results to extend the set of patterns whose
PML distribution is known to all ternary patterns, and to all but
one pattern of length up to seven.

I. INTRODUCTION

Estimating the distribution underlying an observed data
sample has important applications in a wide range of fields,
including statistics, genetics, system design, and compression.

Many of these applications do not require knowing the
probability of each element, but just the collection, or multiset
of probabilities. For example, in evaluating the probability that
when a coin is flipped twice both sides will be observed, we
don't need to know p(heads) and p(tails) , but only the multiset
{p( heads) , p( tails) }. Similarly to determine the probability
that a collection of resources can satisfy certain requests, we
don't need to know the probability of requesting the individual
resources, just the multiset of these probabilities, regardless of
their association with the individual resources. The same holds
whenever just the data "statistics" matters.

One of the simplest solutions for estimating this proba
bility multiset uses standard maximum likelihood (SML) to
find the distribution maximizing the sample probability, and
then ignores the association between the symbols and their
probabilities. For example, upon observing the symbols @ 1\ @,

SML would estimate their probabilities as p(@) == 2/3 and
p(1\) == 1/3, and disassociating symbols from their probabili
ties, would postulate the probability multiset {2/3, 1/3}.

SML works well when the number of samples is large
relative to the underlying support size. But it falls short when
the sample size is relatively small. For example, upon observ
ing a sample of 100 distinct symbols, SML would estimate
a uniform multi set over 100 elements. Clearly a distribution
over a large, possibly infinite number of elements, would better
explain the data. In general, SML errs in never estimating a
support size larger than the number of elements observed, and
tends to underestimate probabilities of infrequent symbols.

Several methods have been suggested to overcome these
problems. One line of work began by Fisher [1], and was
followed by Good and Toulmin [2], and Efron and Thisted [3].
Bunge and Fitzpatric [4] provide a comprehensive survey of
many of these techniques.

A related problem, not considered in this paper estimates the
probability of individual symbols for small sample sizes. This
problem was considered by Laplace [5], Good and Turing [6],
and more recently by McAllester and Schapire [7], Shamir [8],
Gemelos and Weissman [9], Jedynak and Khudanpur [10], and
Wagner, Viswanath, and Kulkarni [11].

A recent information-theoretically motivated method for the
multiset estimation problem was pursued in [12], [13], [14]. It
is based on the observation that since we do not care about the
association between the elements and their probabilities, we
can replace the elements by their order of appearance, called
the observation's pattern. For example the pattern of @ 1\ @ is
121, and the pattern of abracadabra is 12314151231.

Slightly modifying SML, this pattern maximum likelihood
(PML) method asks for the distribution multiset that maxi
mizes the probability of the observed pattern. For example,
the 100 distinct-symbol sample above has pattern 123...100,
and this pattern probability is maximized by a distribution
over a large, possibly infinite support set, as we would expect.
And the probability of the pattern 121 is maximized, to 1/4,
by a uniform distribution over two symbols, hence the PML
distribution of the pattern 121 is the multiset {1/2, 1/2} .

To evaluate the accuracy of PML we conducted the fol
lowing experiment. We took a uniform distribution over 500
elements, shown in Figure 1 as the solid (blue) line. We sam
pled the distribution with replacement 1000 times. In a typical
run, of the 500 distribution elements, 6 elements appeared 7
times, 2 appeared 6 times, and so on, and 77 did not appear at
all as shown in the figure. The standard ML estimate, which
always agrees with empirical frequency, is shown by the dotted
(red) line. It underestimates the distribution's support size by
over 77 elements and misses the distribution's uniformity. By
contrast, the PML distribution, as approximated by the EM
algorithm described in [14] and shown by the dashed (green)
line, performs significantly better and postulates essentially the
correct distribution.

As shown in the above and other experiments, PML's
empirical performance seems promising. In addition, several
results have proved its convergence to the underlying distribu
tion [13], yet analytical calculation of the PML distribution for
specific patterns appears difficult. So far the PML distribution
has been derived for only very simple or short patterns.

Among the simplest patterns are the binary patterns, con
sisting of just two distinct symbols, for example 11212. A
formula for the PML distributions of all binary patterns was
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elements and a continuous interval. For example, a distribution
P may assign probability p(a) to an element a, p(b) to an
element b, and 1 - p(a) - p(b) to the interval [2, 3].

If P is sampled independently with replacement then

P(7jj) ~f P( {x : ~ (x) = 7jj } )

is the probability that the sample has pattern ~ . For example,
the distribution P above assigns to the pattern 121 probability

P(121) = P(aba) + P (bab)+ P ({xyx : x E {a ,b} ,y E [2, 3]})

= p2(a)(1 - p(a)) + p2(b)(1 - p(b)).

Note that the pattern probability is determined by just the
multi set of discrete probabilities, hence P can be identified
with a vector in the monotone simplex

200 400 600 800 1000 P ~f {(Pl ,P2, .. . ) : PI ~ P2 ~ .. . ~ 0, LPi ::::; I}.

Fig. I. SML and PML reconstruction of uniform distribution over 500
symbols from 1000 samples

derived in [12].
Another simple group of patterns are the ternary patterns,

consisting of three distinct symbols, for example 121232. The
PML distribution of some ternary patterns follows from results
proven earlier. But so far not all ternary patterns have known
PML's. In this paper we determine the PML of all previously
unknown ternary patterns.

One of the most interesting applications of PML is to
determine the underlying distribution's support size. The sup
port size is of interest in many applications and is useful in
simulations. Several bounds on the support size have been
proven in [12]. We extend known bounds to show that if only
one symbol in the sample appears once, then the PML support
size is at most twice the number of distinct symbols.

We can apply the results described above to establish the
PML distribution of many simple patterns, in particular we
extend the set of patterns with known PML distributions to all
but one pattern of length at most seven .

II. NOTATION

The pattern ~(x) of a sequence X ~f xl is the integer
sequence obtained by replacing each symbol x in x by the
number of distinct symbols up to (and including) x's first
appearance. For example, ~(abracadabra) = 123141 51231.

We denote the length of a pattern by n and its number
of distinct symbols by m. The multiplicity of an integer ~
in a pattern tjj is the number J.1,p of times ~ appears in 7jj.
For example, for 12314151231, n = 11, m = 5, III = 5,
112 = J.13 = 2, and 114 = 115 = 1.

For simplicity, if a number ~ repeats consecutively i times,
we abbreviate it as ~i. For example, we may write the pattern
11222111 as 122313 . A pattern of the form 1/1 12/12 . . · m 11=
with J.1l ~ ... ~ J.1m is canonical. Clearly every pattern has
a canonical pattern with the same multiplicities. For example,
the canonical pattern of 123223 is 13223.

We now define pattern probabilities. To be most general, we
consider mixed distributions that assign probability to discrete

We call q ~f 1 - L Pi, the continuous part of P. The
maximum -likelihood (PML) probability of a pattern tjj is

P;;;(7jj) ~f max P(7jj) ,
'f/ PE P

the highest probability assigned to tjj by any di~tribution,

and its maximum-likelihood (PML) distribution P1fJ~is ~e

distribution achieving this highest probability. We let k = k1fJ
denote the discrete support size of P1fJ.

Observe that every distribution assigns the same probability
to a pattern as it does to its canonical form . Hence the two
have the same PML distribution. From now on we therefore
consider without loss of generality only canonical patterns.

III. R ESULTS

A pattern is binary if, like 11122, it has m ~ 2. Theorem
11 in [12] shows that all binary patterns have k = 2, and the
PML distribution can then be determined.

A pattern is uniform if, as in 121323, all multiplicities J.1 i are
equal. A pattern is quasi-uniform if the square of the difference
between any two multiplicities is at most their sum, namely for
all i , j, (ll i -llj)2 ::::; J.1 i +llj ' For example, the pattern 111223
is quasi-uniform. Note that a binary pattern is quasi -uniform
if (J.1l - J.12)2 ::::; n.

Theorem 11 in [12] shows also that all quasi -uniform binary
patterns have PML (~ , ~). The following lemma extends this
result to non-binary patterns when the underlying distribution
is limited to support size m.

Lemma 1: If an m-symbol pattern is quasi-uniform then
among all discrete distributions with support size m, its
probability is maximized by the uniform distribution. •
For example, the lemma implies that among all distributions
over three elements, (k ,k,k) maximizes the probability of
111223.

The support-size restriction assumed in the lemma implies
that it cannot be used to determine the PML distribution on
its own. However, combined with other results that bound the
support size it can be used to derive the PML distribution.
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An important application of PM~ is to estimate the un
derlying distribution's support size k. Inequality (1) bounds
the support size when the lowest mt;!tiplicity, JLm, is at least
2. The next theorem upper bounds k when JLm == 1 and all
other multiplicities are at least 2, namely exactly one element
appears once, for example as in the pattern 11122334. We call
such patterns unique-singleton. We will later use this result to
establish the PML distribution of ternary patterns.

Theorem 3: For unique-singleton patterns,

In particular, all patterns with JLm > log(m + 1) have PML
distribution with support size m. Combined with the lemma,
we obtain

Corollary 2: The PML distribution of a quasi-uniform
pattern with JLm > log2 (m +1) is uniform over m symbols.•

For example, the pattern 11111222333 is quasi-uniform and
has JLm == 3 > 2 == log2 (m + 1), hence the corollary yields
the previously unknown PML distribution

P11111222333 == (1/3,1/3,1/3).

Theorem 6 in [12] states that

....... m-1
k<m+---

- 2J-Lrn - 2
(1)
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Canonical to P-;j) Reference
1 any distribution Trivial
11,111,111, ... (1) Trivial
12, 123, 1234, ... () Trivial
112,1122,1112,

(1/2, 1/2) [12]
11122, 111122
11223, 112233, 1112233 (1/3,1/3,1/3) [13]
111223, 1112223, (1/3,1/3,1/3) Corollary 5
1123, 1122334 (1/5,1/5, ... ,1/5) [12]
11234 (1/8,1/8, ... ,1/8) [13]
11123 (3/5) [15]
11112 (0.7887 ..,0.2113..) [12]
111112 (0.8322 ..,0.1678..) [12]
111123 (2/3) [15]
111234 (112) [15]
112234 (1/6,1/6, ... ,1/6) [13]
112345 (1/13, ... ,1/13) [13]
1111112 (0.857 ..,0.143 ..) [12]
1111122 (2/3, 1/3) [12]
1112345 (3/7) [15]
1111234 (4/7) [15]
1111123 (5/7) [15]

1111223 (1 0-1 0-1) Corollary 70' 20 ' 20
1123456 (1/19, ... ,1/19) [13]
1112234 (1/5,1/5, ... ,1/5)7 Conjectured

TABLE I
PML DISTRIBUTIONS OF ALL PATTERNS OF LENGTH::::; 7

k :S 2(m - 1).
Corollary 6: For all ternary patterns with at most one

• symbol appearing once,

A pattern tt/J is i-uniform if JLi - JLj :S 1 for all i.], namely
all multiplicities are within one from each other as in 1112233.
As shown in [13], all l-uniform patterns have a uniform PML
distribution and can thus be evaluated.

As mentioned earlier, the simplest patterns are binary,
and their PML distribution was d~rived in [12], showing in
particular that all of them have k == 2. The next simplest
patterns are ternary, and have m == 3. Three types of ternary
patterns can be addressed by existing results.

1) Uniform (lT2T3T). Of these, 123 has P == (), and all
others have P == (1/3,1/3,1/3) [12].

2) l-uniform (lT2T3T- 1 or 1T2T-13T-l). Of these, 1123
has P == (1/5,1/5,1/5,1/5,1/5), and all others have
P == (1/3,1/3,1/3) [13].

3) Skewed (l T 23). Of these, 1123 is I-uniform and ad
dressed above, and all others have P == (T~2). This
result is proved in [15].

It is easy to see that all ternary patterns not covered by these
cases have at most one symbol appearing once, for example
111223 and 111122233. For all those, we show that the PML
distribution has support size 3.

Theorem 4: All ~rnary patterns with at most one symbol
appearing once have k == 3. •

The theorem allows us to compute the PML distribution of
all ternary patterns. Some follow by an easy combination of
the theorem with Lemma 1.

Corollary 5: P111223 == P1112223 == (1/3,1/3,1/3).
For more complex patterns, the PML distribution can be
obtained by combining the theorem with the Kuhn-Tucker
conditions.

where PI, P2, P3 are solutions to the following three polyno
mial equations,

PI + P2 + P3 == 1,

"""' J-Ljl -1 J-Lj2 J-Lj3 _ """' J-Lh-1 J-Lj2 J-Lj3c: JLj1Pl P2 P3 - c: JLj1P3 PI P2 .

where the summation is over all six permutations (]1,]2,]3)
of (1,2,3). •

For short patterns we can solve the equations in Corollary 6
and derive the PML distribution. An example is the following
result.

Corollary 7: P _ (1 1- ~ 1- ~ ) •1111223 - 0' -2-' -2- .

Combined with previously known results, the three PML
distributions in Corollaries 5 and 7 yield the PML distri
butions of all but one pattern of length up to 7. The only
exception is 1112234, which we conjecture to have PML
(1/5,1/5, ... ,1/5) but have not been able to prove yet. The
PML distributions of these patterns are shown in Table I along
with references to where they were shown.

IV. PROOFS

For a probability distribution P == (PI, P2, ... ), let Pi
(PI, ... ,Pi-I, 0, Pi+1, ... ) be the sub-distribution agreeing
with P on all probabilities, except Pi, which is set to O. Note
that the probabilities in Pi, including q, sum to 1 - Pi, hence
if Pi > 0 then Pi is not a distribution but a point inside the
probability simplex P. We let Pi, be normalized Pi so it is a
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hence

and (a) follows since for 1 ~ Q ~ J-ls - J-lt - 1,

Since J-ls 2: J-lt for s < t, it follows that

Pk-lUk(1{J) == Pk- 1,k(1{J) + L(Pk + Pk_l)J1i Pk- 1,k (1{Ji)
i=1

(a) ~ - ~ J1' J1' ~ -
2: Pk-1,k(tt/J) + L.J (pk2 + Pk~ 1)Pk-1,k(tt/Ji)

i=1

m-l

+ L (PkP~~~1 + p~i-lpk-l)Pk-l,k(1{Ji)'
i=1

k-2
Pk- 1,k (1{Ji) == L p~j Pk- 1,k,s (1{Ji,j)

s=1
(a) k-2 ~ _
> "pJ1 j P, (fll, . .)- L.J k-l k-l,k,s If/1,,1

s=1

m

" (J1j J1i + J1i J1j ) n (-;:r;)L.J Pk Pk-l Pk Pk-l rk-l,k If/i,j .

l::;i<j::;m

Taking i == k - 1 in Equation (2) in the distribution Pk-1Uk,

P(1{J) == Pk- 1,k(1{J) + L(p~i + P~~I)Pk-l,k(1{Ji)+
i=1

m

m-l

L (PkP~~~1 + p~i-lpk-l)Pk-l,k(1{Ji)
i=1

2: Ll::;i<j::;m(p~jP~~1 + P~ip~~I)Pk-l,k(1{Ji,j)·

Claim 1:

p (-;:r;.) > (k - m) Lr;#iPt~J5k-l,k(lf;i,j)
k-l,k If/1, - (m - 1)

Proof'

where (a) follows since for J-l 2: 2,

( )J1 J1 J1-1 J1-1 J1
Pk + Pk-l 2: Pk-l + Pk-lPk + Pk-lPk + Pk-l·

To prove P(1{J) < Pk-1Uk(1{J) it suffices to show that

Note that equality cannot hold simultaneously in both (a) and
(b). Hence, !s,t > 0 for all s < t. Therefore

aP (1{J) aP (1{J)
-->--

apj api'

and decreasing Pi and increasing Pj by the same infinitesimal
amount will increase P(1{J). •

For a distribution P == (PI,P2, ... ,Pk), denote the distri
bution obtained by combining the two smallest probabilities,
Pk-l and Pk, by

clef ( )Pk-1Uk == Pl,P2,··· ,Pk-2,Pk-l + Pk .

Proof of Theorem 3: Theorem 2 of [12] states that PML
distribution is discrete whenever at most one symbol appears
once. Hence we consider only discrete distributions. We show
that for any distribution P with support size k > 2m - 2,
Pk-lUk(1{J) > P(1{J). This implies that k ~ 2(m - 1).

Let k 2: 2m - 1. We will prove that for any distribution P
with support size k, P(1{J) < Pk-1Uk(1{J). By taking i == k and
j == k - 1 in Equation (3) we obtain

(2)
m

P (1{J) == Pi(1{J) + L prsPi(1{Js),
s=1

L (J-lsprs- 1pjt + J-ltprt- 1pjs)P
i,j(1{Js,t).

l::;s<t::;m

J1s-J1t-1
(pt(prS-Ji-t + pjs-Ji-t) - (Ps - Pt) L pfpjCJi-t~)

a=1

m

P (1{J) == Pi,j (1{J) + L (prs + pjs)Pi,j (1{Js)
s=1

+ L (prspjt + prtpjS)Pi,j(1{Js,t)· (3)
l::;s<t::;m

distribution. Note that the support size of Pi is one less than
the support size of P. Similarly, let Pi,j be the sub-distribution
obtained from P by setting Pi and Pj to 0, and let Pi,j be its
normalized version.

- - clef
Similarly for a pattern tt/J == 1J11 2J12 ... tnl">, let tt/J i ==

1J11... (i - 1)J1i-1i J1i+1... (m - l)J1rn be the pattern obtained
by deleting all appearances of the ith symbol, and let 1{Ji,j be
the pattern obtained by deleting all appearances of ith and jth
symbol.

The following hold for all i i- j E {I, ... ,k},

aP (1{J) _ aP (1{J) _ " f . J1t -1. J1t -1 . p. .(-;:r; )
a . Bo. - L.J s,t Pi Pj 1,,1 If/ s,t ,

P1 p1, l::;s<t::;m

where

!s,t =PS(PiPj)(Pjs~Ji-t~l - prS~Ji-t~l)

+ Pt (prS~Ji-t+l _ pjs-Ji-t+l)

==(Pi - Pj)·

Proof of Lemma 1: We show that if P == (PI, P2, ... ,Pm) is
not uniform, namely Pi > Pj for some i < j, then decreasing
Pi and increasing Pj by the same small amount will increase
P(1{J). Using the fact that when support size of P is less than
m, P(1{J) == 0 in Equation (3),

P(tt/J) == L (prspjt + prtpjS)Pi,j(1{Js,t),
l::;s<t::;m
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where (a) follows since Pi'S are non decreasing and (b) follows
since each term in the polynomial expansion of Pk-l,k(~i,j)
appears in all but m - 2 summands. Summing over all j's not
equal to i yields the claim.

Using Claim 1, whenever k - m 2: m - 1, we will show
that for any i and j, the coefficient of Pk- 1,k(1{Ji,j) is larger
for Pk- 1Uk. This is equivalent to showing that

(PkP~~l + p~i-lpk_l)p~~l 2: (P~jp~~l + P~ip~~l)'

which follows since Pk-l 2: Pk· •
Proof of Theorem 4: If JLl == 2, ~en 1{J == 11223 or

112233 is l-uniform, and [13] implies k == 3. Assume then
that JLl 2: 3. If JL3 2: 3, then Equation (1) shows}hat k == 3.
Thus we assume JL3 ~ 2. Theorem 3 implies k ~ 4. Let
P == (PI, P2,P3,P4) be any discrete distribution with support
size 4. We show that P3U4 == (PI, P2,P3 + P4) assigns larger
probability to any pattern with JLl 2: 3, JL2 2: 2 and JL3 ~ 2.
We provide a sketch of the proof for JL3 == 1. An identical
argument holds for JL3 == 2.

Proceeding as in Theorem 3 and using the following facts
which hold for JL2 2: 2 and JLl 2: 3,

(Pk + Pk_l)J-L2 2: p~2 + p~=-~lpk + Pk_lP~2-1 + P~=-l

(Pk + Pk_l)J-Ll 2: p~l + 3(p~~~lpk + Pk_lP~l-l) + P~~l'

it suffices to show that

(pi1p2 + p~lpl)(p~2-1p4 + p~2-1p3)

+ 3(p~1-lp4 + p~1-lp3)(pi2p2 + P~2Pl)

2: (PI + P2)(p~l p~2 + p~l p~2)

+ (pil+p~l )(p~2P4+ P~2p3)+ (p~2 + pi2)(p~lP4+ p~lp3).

This can be verified by expanding and suitably pairing the
terms and using the fact that JL3 2: JL4. •

This can be used to find the PML distribution for all
the patterns with three distinct symbols. Skewed [15] and
l-uniform patterns [13] have been proved. The remaining
patterns can be solved by the method mentioned here.

We now find the exact PML distribution for some short
patterns, using the tools developed.

Proof of Corollary 5: By Lemma 4, the support size of the
PML distribution is 3. The multiplicities satisfy the condition
of Lemma 1, thus proving the theorem. •

Proof of Corollary 6: By Theorem 4 we know that the PML
distribution is of the form (PI, P2,P3). Kuhn-Tucker conditions
state that Pi'S satisfy

BP (1{J) BP (1{J) BP (1{J)

BPI BP2 Bp3·

Using Equation (2), we get the conditions mentioned. •
Proof of Corollary 7: By Theorem 4, the support size of the

PML distribution is 3. Let Plll1223 == (Pl,P2,P3). We show
that two of the Pi'S have same value.

Let Sl == PI + P2 + P3, S2 == PI + P§ + P~' T2 == PIP2 +
P3Pl + P2P3, and T3 == PIP2P3. By Corollary 6,

8P(7f) _ 8P(7f) = 0

BPI BP2 '
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which for PI i= P2 yields

4T3T2 - 2T3(pi + P~ + PIP2) - (PI + P2)p~S2 == o.
Similarly, if PI i= P3,

4T3T2 - 2T3(pi + P~ + PIP3) - (PI + P3)p~S2 == 0

Subtracting, we obtain

Using the arithmetic-geometric mean inequality it is easy
to see that S2T2 > 2S1T3.

This would mean that P2 == P3, hence two of Pi'S are the
same. Let the PML distribution be Plll1223 == (p, l;p, l;p)
and we have to maximize

P(1111223) = p(l ~ p)3(1 ~ P ~ p2 + 9p3) .
32

Differentiating and equating to 0, (1 - 7p2)(3p + 1)2 o.
Thus, the only maximizing value of P is ~. •
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