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Property	estimation
• 𝒑:	unknown discrete	distribution	over	𝒌 elements
• 𝒇(𝒑):	a	property	of	𝒑
• 𝜺:	accuracy	parameter,	𝜹: error	probability
• Given:	access	to	independent	samples	from	𝒑
• Goal:	estimate	𝒇(𝒑) to	±𝜺 with	probability> 𝟏 − 𝜹
Usually,	𝜹 constant,	say	0.1

Focus	of	the	talk:	large	𝒌



Sample	complexity
𝑋., 𝑋0,… , 𝑋2:	independent	samples	from	𝑝
𝑓5(𝑋.2):	estimate	of	𝑓(𝑝)

Sample	complexity	of	𝑓5(𝑋.2):

𝑆 𝑓5, 𝜀, 𝑘, 𝛿 = min{𝑛: ∀𝑝, Pr |𝑓5(𝑋.2) − 𝑓(𝑝)| ≥ 𝜀 ≤ 𝛿}

Sample	complexity	of	𝑓:
𝑆 𝑓, 𝜀, 𝑘, 𝛿 = min

G5
𝑆 𝑓5, 𝜀, 𝑘, 𝛿



Symmetric	properties
Permuting	symbol	labels	does	not	change	𝑓(𝑝)

Examples:

• 𝐻 𝑝 ≜ −∑ 𝑝K ⋅ log 𝑝KK

• 𝑆 𝑝 ≜ ∑ 1QRSTK

Renyi entropy,	distance	to	uniformity,	unseen	symbols,	
divergences,	etc



Sequence	maximum	likelihood
𝑁K: #	times	𝑥 appears	in	𝑋.2 (multiplicity)
𝑝W:	empirical	distribution	

𝑝KW =
𝑁K
𝑛

𝑓W 𝑋.2 = 𝑓(𝑝W)

Empirical	estimators	are	maximum	likelihood	estimators
𝑝W = argmax

Q
𝑝(𝑋.2)

Call	this	sequence	maximum	likelihood (SML)



Empirical	entropy	estimation
Empirical	estimator:	

𝐻W 𝑋.2 = 𝐻 𝑝W =Z
𝑁K
𝑛
log

𝑛
𝑁KK

.

𝑆 𝐻W, 𝜀, 𝑘, 0.1 = Θ
𝑘
𝜀

Various	corrections	proposed:
Miller-Maddow,	Jackknifed	estimator,	Coverage	adjusted,	…
Sample	complexity:	Ω(𝑘)

[Paninski’03]:	𝑆 𝐻, 𝜀, 𝑘, 0.1 = 𝑜(𝑘) (existential)
Note:	For	𝜀 ≪ 1/𝑘,	empirical	estimators	are	the	best



Entropy	estimation
[ValiantValiant’11a]:	Constructive	proofs	based	on	LP:

𝑆 𝐻, 𝜀, 𝑘, 0.1 = 	Θc
d

efg d
• [YuWang’14,	HanJiaoVenkatWeissman’14,	 ValiantValiant11b]:	

Simplified	algorithms,	and	exact	rates:

𝑆 𝐻, 𝜀, 𝑘, 0.1 = Θ d
c	efg d



Support	coverage
Expected	number	of	symbols	when	𝑝 is	sampled	𝑚 times

𝑆i 𝑝 =Z(1 − 1 − 𝑝K i)
K

Goal:	Estimate	𝑆i 𝑝 to	±(𝜀 ⋅ 𝑚)

[OrlitskySureshWu’16,	 ZouValiantetal’16]:

𝑛 = Θ i
efgi

log .
c

samples	for	𝛿 = 0.1



Known	results	summary
Many	symmetric	properties:	entropy,	support	size,	distance	
to	uniform,	support	coverage

• Different	estimator	for	each	property
• Sophisticated	results	from	approximation	theory



Main	result

Simple,	ML	based	plug-in	method	that	is	sample-optimal		
for	entropy,	support-coverage,	distance	to	uniform,	
support	size.



Profiles
Profile	of	a	sequence	is	the	multiset of	multiplicities:

Φ 𝑋.2 = {𝑁K}

𝑋.2 = 1𝐻, 2𝑇 , 𝑜𝑟	𝑋.2 = 2𝐻, 1𝑇 ,	Φ 𝑋.2 = {1,2}

Symmetric	properties	depend	on	multiset of	probabilities
Coins	w/	bias	0.4,	and	0.6	have	same	symmetric	property

Optimal	estimators	have	same output	for sequences	with	
same	profile.

Profiles	are	sufficient	statistic



Profile	maximum	likelihood	[OSVZ’04]
Probability	of	a	profile:

𝑝 Φ(𝑋.2) = Z 𝑝(𝑌.2)
opq:r opq sr tpq

	

Maximize	the	profile	probability:	
𝑝ruvw = argmax

Q
𝑝(Φ 𝑋.2 )

𝑋.2 = 1𝐻, 2𝑇 :
SML:	(2/3,1/3)
PML:	(1/2,1/2)



PML	for	symmetric	properties

To	estimate	a	symmetric	𝑓(𝑝):
• Find	𝑝uvw Φ(𝑋.2)
• Output	𝑓(𝑝uvw)

Advantages:
• No	tuning	parameters
• Not	function	specific



Main	result

PML	is	sample-optimal	 for	entropy,	support	coverage,	
distance	to	uniformity,	and	support	size.



Ingredients
Guarantee	for	PML.

If	𝑛 = 𝑆 𝑓, 𝜀, 𝑘, 𝛿 ,	then	𝑆 𝑓 𝑝uvw , 2𝜀, 𝑘, 𝛿 ⋅ W
y q

.T
	 ≤ 𝑛

If 𝒏 = 𝑺 𝒇, 𝜺, 𝒌, 𝒆}𝟑 𝒏 ,	then 𝑺 𝒇 𝒑𝑷𝑴𝑳 , 𝟐𝜺, 𝒌, 𝟎. 𝟏 ≤ 𝒏

#	profiles	of	length	𝑛 < Wy q

.T



Ingredients
𝑛 = 𝑆 𝑓, 𝜀, 𝛿 ,	achieved	by	an	estimator	𝑓5(Φ(𝑋2)):
𝑝:	underlying	distribution.

• Profiles	Φ 𝑋2 such	that	𝑝 Φ 𝑋2 > 𝛿,	

𝑝uvw Φ ≥ 𝑝 Φ > 𝛿

𝑝ruvw Φ ≥ 𝑝 Φ > 𝛿
𝑓 𝑝ruvw − 𝑓 𝑝 ≤ 𝑓 𝑝ruvw − 𝑓5 Φ + 𝑓5 Φ − 𝑓 𝑝 < 2𝜀

• Profiles	with	𝑝 Φ 𝑋2 < 𝛿,	

𝑝(𝑝 Φ 𝑋2 < 𝛿 < 𝛿 ⋅ #𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠	𝑜𝑓	𝑙𝑒𝑛𝑔𝑡ℎ	𝑛



Ingredients
Better	error	probability	guarantees.

Recall:

𝑆 𝐻, 𝜀, 𝑘, 0.1 = Θ
𝑘

𝜀 ⋅ log 𝑘
Stronger	error	guarantees	using	McDiarmid’s inequality:

𝑆 𝐻, 𝜀, 𝑘, 𝑒}2�.� = Θ d
c⋅efg d

With	twice	the	samples	error	drops	exponentially
Similar	results	for	other	properties



Main	result

PML	is	sample-optimal	 for	entropy,	unseen,	distance	to	
uniformity,	and	support	size.

Even	approximate	PML is	optimal	for	these.



Algorithms
• EM	algorithm	[Orlitsky et	al]

• Approximate	PML	via	Bethe	Permanents	[Vontobel]
• Extensions	of	Markov	Chains	[VatedkaVontobel]

Polynomial	time	algorithms	for	approximating	PML



Summary
• Symmetric	property	estimation
• PML	plug-in	approach
• Universal,	simple	to	state
• Independent	of	particular	properties

• Directions:
• Efficient	algorithms	– for	approximate	PML
• Relies	heavily	on	existence	of	other	estimators



In	Fisher’s	words	…

Of	course	nobody	has	been	able	to	prove	that	maximum	
likelihood	estimates	are	best	under	all	circumstances.	
Maximum	likelihood	estimates	computed	with	all	the	
information	available	may	turn	out	to	be	inconsistent.	
Throwing	away	a	substantial	part	of	the	information	may	
render	them	consistent.	

R.	A.	Fisher	
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