Hadamard Response: Local Private Distribution Estimation

Jayadev Acharya, Ziteng Sun, Huanyu Zhang

Cornell University

Information Theory and Applications (ITA), 2018

Based on:

https://arxiv.org/abs/1802.04705

Distribution Estimation

- p: unknown discrete distribution over k elements
- α: accuracy
- Input: independent samples $X_1, X_2, ..., X_n$ from p
- Output: \widehat{p} such that w.p. at least 0.9:

$$d(\boldsymbol{p},\widehat{\boldsymbol{p}}) \leq \boldsymbol{\alpha}$$

• We consider ℓ_1 , ℓ_2 distances

Sample Complexity

Sample Complexity: Least $m{n}$ to estimate $m{p}$

To estimate to $\ell_1 \leq \alpha$:

$$\Theta\left(\frac{k}{\alpha^2}\right)$$

Empirical distribution works

Distribution Estimation with Privacy

Samples are sensitive

- Drug abuse
 - Learn underlying drug usage behavior (for policy design)
 - Maintain privacy of users
- Internet
 - Distribution of web traffic to websites
 - Maintain browsing of a particular user private

Model

- $X_1 \dots X_n$ stored over n users
- User i transmits Z_i to data collector/server
- Server has to learn $oldsymbol{p}$
- Without privacy: send X_i

Local Differential Privacy (LDP)

• Q: a channel with input [k] and output Z

E-LDP [DuchiWainwrightJordan'12, ErlingssonPihurKorolova'14]:

$$\frac{Q(z|x)}{Q(z|x')} \le e^{\varepsilon}$$

User i passes X_i through Q, send output Z_i

Randomized Response (RR)

[Warner'65, KairouzBonawitzRamadge'14]: Z = [k]

$$Q_{\varepsilon}(z|x) = \begin{cases} \frac{e^{\varepsilon}}{e^{\varepsilon} + k - 1}, & z = x\\ \frac{1}{e^{\varepsilon} + k - 1}, & z \neq x \end{cases}$$

Optimal only in the low privacy regime ($\varepsilon > \log k$)

RAPPOR

[DuchiWainwrightJordan'12, ErlingssonPihurKorolova'14]: $\mathcal{Z} = \{0,1\}^k$.

- One hot encoding: $x \to e_x$ (basis vector with xth entry 1)
- Flip each entry in e_x with probability $\frac{1}{e^{\varepsilon/2}+1}$

 e_x , $e_{x'}$ differ in at most two positions

• Optimal only for $\varepsilon \lesssim 1$, and $\varepsilon > 2 \log k$

Subset Selection (SS)

[WangHuangWangNieXuYangLiQiao'16, YeBarg'17]:

 \mathcal{Z} : strings in $\{0,1\}^k$ with Hamming weight $\left[\frac{k}{e^{\varepsilon}+1}\right]$

Optimal in all regimes

Sample Complexity

ε	RR	RAPPOR	SS	HR
(0,1)	k^3	k^2	k^2	k^2
	$\overline{\varepsilon^2 \alpha^2}$	$\overline{\varepsilon^2 \alpha^2}$	$\overline{\varepsilon^2 \alpha^2}$	$\overline{\varepsilon^2 \alpha^2}$
$(1, \log k)$	k^3	k^2	k^2	k^2
	$e^{2\varepsilon}\alpha^2$	$e^{\varepsilon/2}\alpha^2$	$e^{\varepsilon}\alpha^2$	$\overline{e^{\varepsilon}\alpha^2}$

For constant
$$m{arepsilon}$$
, say $m{arepsilon} = 1$, $\frac{k}{lpha^2}
ightarrow \frac{k^2}{lpha^2}$

Other Resources

Computational Complexity:

What is the encoding/decoding time?

Impractical if high running time, even if sample optimal

Communication Complexity:

How much communication to server?

Many papers considering these resources, including today on both!

Resources for $\varepsilon \in (0,1)$

	RR	RAPPOR	SS	HR
Communication	$\log k$	\boldsymbol{k}	k	log k
Decoding time	n	$n \cdot k$	$n \cdot k$	n
Samples	k^3	k^2	k^2	k^2
	$\overline{\varepsilon^2 \alpha^2}$	$\overline{\varepsilon^2 \alpha^2}$	$\overline{\varepsilon^2 \alpha^2}$	$\overline{\varepsilon^2 \alpha^2}$

How to claim bounds on time and communication? Faithful implementation:

- Communication $\geq H(Z)$ bits.
- Decoding Time $\geq n \cdot H(Z)$

Communication requirements

	RR	RAPPOR	SS	HR
Communication	log k	$\log k + \frac{k}{e^{\varepsilon/2}}$	$\log k + \frac{k}{e^{\varepsilon}}$	log k

All these are entropy bounds!!

Other Resources

Large domain:

- Browsing patterns of internet users
- Distribution of product purchases of Target

Communication:

- Handheld devices with low uplink capacity
- Low battery power, 4G data

General encoding matrices

 $M: \pm 1$ matrix of size $k \times K$

h: #1's in each row

$$Q_{\varepsilon}(z|x) = \begin{cases} \frac{e^{\varepsilon}}{e^{\varepsilon} + K - h}, & M(x,z) = +1\\ \frac{1}{e^{\varepsilon} + K - h}, & M(x,z) = -1 \end{cases}$$

Hadamard Matrix

 H_m : $m \times m$ matrix

 $H_1 = [1]$, and for other m:

$$H_m = \begin{bmatrix} H_{m/2} & H_{m/2} \\ H_{m/2} & -H_{m/2} \end{bmatrix}.$$

- The first row & column has m '1's
- Every other row & column has $\frac{m}{2}$ '1's
- Hamming distance between any two rows is $\frac{m}{2}$
- Matrix vector multiplication real fast!

(b, B)-Hadamard Matrix

b, B: powers of 2, and $K = b \cdot B$

$$H_K^b = \begin{pmatrix} H_b & P_b & \dots & P_b \\ P_b & H_b & & P_b \\ \vdots & & \ddots & \vdots \\ P_b & P_b & \dots & H_b \end{pmatrix}$$

 P_b : $b \times b$ matrix with all entries '-1'

$$B=1$$
, $H_K^b=H_b$
 $b=1$, $H_K^b=Identity matrix$

Encoding Matrix

Rows of H_K^b have different number of 1's

- Delete the first row of each embedded H_b
- The first k rows is the encoding matrix M

Selecting the parameters

B: largest power of 2 less than $\min\{e^{\varepsilon}, 2k\}$

b: smallest power of 2 larger than $\left| \frac{k}{B} \right|$

$$K = B \cdot b \le 4k$$

Communication: $\log K \leq \log k + 2$ bits.

Key arguments

Large Hamming distance -> Sample Optimality
Fast Hadamard Transform -> Fast Decoding

L2 error plots (k = 1000, Geo(0.8))

(a)
$$\varepsilon = 0.5$$

(b)
$$\varepsilon = 2$$

L2 error plots (k = 1000, Geo(0.8))

(c)
$$\varepsilon = 5$$

(d)
$$\varepsilon = 7$$

Running time Geo(0.8)

(a)
$$k = 100$$

(b)
$$k = 1000$$

Running time Geo(0.8)

(c)
$$k = 5000$$

(d)
$$k = 10000$$

Thank You

Details in the paper online!

https://arxiv.org/abs/1802.04705