
Discrete Probability and Randomized Algorithms
Assignment One

Due: 9/19

It is ok to discuss the problems when stuck, but not ok to simply search for solutions. Please
clearly explain the problems where you received any help from any source other than yourself or the
instructor. There is NO penalty for this, but it will help us structure future assignments.

Problem 1. (Randomness generation). Throughout this course we will assume that we have
access to arbitrary amount of randomness, namely we can say statements like “choose a number
uniformly at random from the set S”, etc. This problem discusses a few points about the process
of generating randomness.

1. Suppose you have a coin with Pr(H) = p. You toss the coin independently to generate
tosses X1, X2, . . .. Let T be the first time such that XT−1 = H, and XT = T . Show that
E[T ] ≤ 10

p(1−p) .

In the next two parts (2,3) you should design Las Vegas algorithms, which may never termi-
nate.

2. Given a coin with an unknown Pr(H) that you can flip as many times as you wish. Describe
a scheme to generate a random variable Y such that Pr(Y = H) = Pr(Y = T ) = 0.5. Can
you ensure that the expected number of tosses used by the scheme is at most 100

p(1−p) .

3. Given a fair coin, and a number p ∈ [0, 1]. Generate a random variable Y such that Pr(Y =
H) = p, and Pr(Y = T ) = 1− p by flipping the coin such that the expected number of tosses
is at most 100.

The next part shows that assuming Las Vegas algorithms is essential.

4. Show that if p is irrational, any algorithm solves part 3 cannot have a bounded worst case
running time.

Problem 2. (Fixed points and cycles). Let [n] := {1, . . . , n}, and let σ : [n] → [n] be a per-
mutation of [n]. A number i is a fixed point of σ if σ(i) = i. Let f(σ) be the number of fixed points
of σ. The cycle corresponding to a number i is the set C(i) := {i, σ(i), σ(σ(i)), . . .}. For example,
consider the permutation σ = 5 6 3 2 1 4. Then, the only fixed point is 3, and C(1) = C(5) = {1, 5},
C(3) = {3}, and C(2) = C(4) = C(6) = {2, 4, 6}.

1. Suppose σ is uniformly chosen from all possible n! permutations. Show that E [f(σ)] = 1.

2. Suppose fk denotes the number of permutations of [n] with exactly k fixed points. Then show
that

∑n
k=0 k · fk = n!.

3. Suppose σ is uniformly chosen from all possible n! permutations, and 1 ≤ j ≤ n. What is
Pr(|C(1)| = j)? How many permutations have a cycle of length n− 2?

4. There are 100 prisoners numbered 1, . . . , 100. The jailor creates 100 opaque boxes numbered
from 1 to 100. The jailor also creates 100 cards numbered 1 to 100. Then the cards are put
completely at random in the boxes, such that each box has exactly one card (hence selecting
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a uniform permutation over [100]). Each prisoner is allowed to open 50 boxes sequentially
(namely, they can look at what they have seen to decide which box to open next), with the
hope of finding their own number. They then put the cards exactly as they found them and
close the boxes. If all of them find their numbers, they are spared, if not, they are all shot.
Is there a strategy such that they all survive with probability at least 0.2? The prisoners do
not interact with each other during any time.

Problem 3. (Min-cut with node merging). In class we considered min-cut by merging nodes
based on randomly picking edges. Suppose instead we pick two random nodes, and merge them at
each stage, until we are left with two nodes. Show that there are graphs such that the probability
of finding the min-cut using this process is at most c−n for some c < 1.
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