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In today’s lecture, we talked about:
e Poisson sampling

e Good-Turing probability estimation and missing mass

1 Poisson Sampling

Let P be a discrete distribution, and X7' be the independent samples drawn from P. Let N, be
the number of times that = appears in X7, then we know that N, ~ Bin(n,p,), and hence
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Notice that in this case, N, s are dependent, and )", N, = n.

Now considering the following sampling process:
e Generate a random number N ~ Poi(n).
e Generate X1,..., Xy ~ P.

Theorem 1. Let Xy,..., Xy be the samples generated using above procedure, and N, is the number
of time that x appears in X{V, then

1. Ny ~ Poi(npg);
2. N.’s are independent, that is,

Pr(Nz, = ngy, Ngy =ngy,...) = HPr(Nx,L. =ng,);
@;

3. Conditioned on N = ny,
PPoi(no) — pno

Proof. 1. Recall that the pmf of a Poi(n) is:
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Using the concept of conditional probability, we have

Pr(N,=ng;) = » Pr(N=N")Pr(N,=nN=N")
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where in the last line, we use the fact that e* = ), f—,z We recognize that the resulting
probability is the pmf of Poi(np,).

2. To show the independence, it is enough for us to show that
Pr (N = ng, Ny = ny) = Pr (N, = ng) Pr (N, =ny) .
Since

Pr(Ny = ng, Ny = ny)
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we know that N, and N, are independent for x # y, and hence N,’s are independent.
O

Theorem 2. If there exists an algorithm on a problem P such that Pr(error) < 1/4 when using n
samples, then there exists an algorithm on the same problem P such that Pr(error) < 1/4+ 1/16
when using Poi(n + 4y/n) samples.



2 Good-Turing Probability Estimation

2.1 Missing mass problem

Let P be a discrete distribution, and we observe samples X7' ~ P. Let M; be the total probabilities
of symbols that appear exactly j times, i.e.,

Mj =" pI(Ns = j),
X

where
I(N, = .
(Ne = J) {O, otherwise

My is the missing mass.

Example 3. Let P be a discrete distribution on the sample space {a,...,z}. Suppose we observe
samples X' = abracadabra, then

Mo = (p(e) +p(f) +--- +p(2)) — p(r)
My = p(d) + p(c)

My = p(b) + p(r)

M;=0

My=0

Ms = p(a)

Theorem 4. Let ¢; be the number of symbols in X7 appearing ezactly j times, we know that
wj => ., I(Ny =j). Then
Jj+1
E[M;] = TE[@J‘+1]~

Proof. Since
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The Good-Turing probability estimator is:
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Proof. Consider the MSE of M;.
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Since E[M;] = L E[p;,1] and N,’s are independent under Poisson sampling,
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Now, take 7 = 0. Then
1
MSE(Mo) = — (2E [p2] + E[p1]) -

Recall that n =, jE[g;], and hence 2E [ps] + E[p1] < n. Therefore, MSE(Mo) < 1/n.



