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Recap

In the previous lecture, we studied estimating symmetric properties of distributions. We saw the
following

k
1. Maximum likelihood estimator requires O <> samples for estimating entropy, whereas
€

k
C) (elogk> suffice.

2. Optimal entropy estimators require estimating polynomial approximations of the entropy
function.

1 Introduction

In this lecture, we will look at a recent paper [1] that proposes a simple estimator based on a mod-
ification of the maximum likelihood estimator. This approach turns out to be sample competitive
for all symmetric properties.

1.1 Maximum Likelihood Principle

Maximum likelihood estimators or sequence maximum likelihood estimators (SML) are one of the
most common distribution estimators dating back to Fisher. Given a sample X" € A}, the SML
estimate assigns p, = argmax, p (2"). It is easy to see that p, (v) = % where N, is the number
of times symbol x € /A appears in X™. Plug-in estimators based on SML are used to estimate
symmetric properties of the distributions.

As seen in the previous lectures, the SML estimate is not optimal in the large-alphabet regime.
One of the drawbacks of SML is that it tries to learn the entire distribution and ends up overfitting.
In addition, SML estimators cannot obtain sublinear sample complexity since learning the entire
distribution requires linear number of samples.

2 Profile Maximum Likelihood

The central idea behind profile maximum likelihood (PML) [2] is to output a distribution that max-
imizes the likelihood of a sufficient statistic, which in the case of estimating symmetric properties is
the profile of the sequence. Recall that the profile of a sequence is defined as ¢ (X™) = {N,,z € A}.
The probability of a profile ¢ is defined as

p@)= D  p(X"

Xmp(Xm)=¢



Suppose we want to estimate the symmetric function f (.) on the class of distributions P, given the
sample X”. The PML estimation scheme is the following

1. Compute py = argmaxp (¢ (X"))
peEP

2. Output f (pg)

Example 1. Let X3 = {a,a,b} be a sequence generated from a distribution over {a,b,c}. Clearly
the SML distribution is {%, %, O}. The probability of the profile of this sequence, {1,2) is

p({1.2}) = (i’) (P (@’ p®) +p 1) p(a) +p(@)’ p() + () p(a) +p () D (1) + 2 (1) p(0))

For the special case where the support size of the PML distribution is 2, the following argument
shows that the uniform distribution {%, %} achieves the marimum.

]

> p@’p®) =) pla)xpa)p(l—a) <
a#b a

[2] shows that the above statement holds even if the support size of the PML distribution is
not known. Moreover, PML can also predict new symbols. For instance, if X* = {a,b,a,c) and
¢ (X*) = {1,1,2}, it can be shown that the PML distribution is the uniform distribution over 5
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elements (5, 3 5).

3 Performance of MLE

Since PML is a maximum likelihood based approach applied to profiles of a sequence, it is worth-
while to examine what performance guarantees an ML based approach offers in general. Let P be
a collection of distributions over Z and f: P — R. Given a sample Z from an unknown p € P, we
want to estimate f (p). Denote the maximum likelihood distribution after observing Z as py.

Theorem 2. Suppose there is an estimator f: Z — R such that for allp € P, Z ~ p,

Pr(1f () = f(2)| > ) <,

then
Pr(|f(p) — f(pz)| > 2¢) < 4|2

Proof. Case 1: Consider z € Z such that p (z) > 4. Clearly |f (p) — f (2)| < € for all such z. Since
pz(2) = p(2) =6, |f () — f(2)| < e. Therefore, by triangle inequality, |f (p:) — f (p)| < 26 for
all such z. This proves that the required guarantee is met without any error for all z such that
p(z) > 6.

Case 2: Consider z € Z such that p(z) < 4. Since any error in the performance occurs when
p(z) <9, for Z ~ p,

Pr(error) <Pr(p(Z) <d) < Z p(z) < 0|Z]
z€Z:p(z)<d



Although the above theorem holds for general Z, to estimate symmetric properties of distri-
butions we let Z = ®", all possible profiles of length n sequences. A similar result holds for
(multiplicative) approximate ML distributions [1].

3.1 Upper bound on partition size

We now present upper bounds on |®"| which is equal to the partition number of n. The following
compression argument gives a 2"1°8™ upper bound on the partition number.

Lemma 3.
’(I)n‘ < 22\/ﬁlog2n

Proof. We encode each profile of an n-length sequence using 2v/nlogy n bits. Therefore the total
number of profiles of n is upper bounded by 22v7logn,

Consider a profile ¢. For all x such that N, = t < /n, encode the number of x such that
N, =t using log, n bits. For z such that N, =t > /n, encode each z separately using log, n bits.
The number of such z is atmost /n since the sum of all entries in the profile is n. O

We will use a tighter bound of e3V™ due to Hardy and Ramanujan. [3]

3.2 Competitiveness of ML - Median Trick

We now establish sample competitiveness of ML based approaches using the median trick in the
informal theorem below. Recall the median trick from assignment 1 problem 6 : if we can solve
a problem using n independent samples with error probability atmost 0.1, then the same problem
can be solved with error probability e~ using O (nm) samples where ¢ is a constant.

Theorem 4. Iff : Z — R is an estimator of f(p) with sample complexity n, accuracy € and
constant error probability, the ML estimator f (pz) achieves accuracy 2¢ with sample complezity
O (nz) and constant error probability

Proof. Using the median trick based estimator, Theorem 2 then implies that the error probability
of the ML estimator for accuracy 2¢ is e~ “" x| Z|. For the PML based approach, using the partition
number bound in the previous section, the error probability of the PML estimator is e =" x e3Vnm
Therefore, O (n) copies are necessary to get a constant error probability implying that the PML
estimator has a sample complexity of O (n2) O

Note that the above result has both drawbacks and advantages. The drawback being the
sample complexity is now quadratic in n and the advantage being that the sample complexity is
not dependent on k or e. In the following section we provide an intuition as to how PML does
better than quadratic sample complexity.

4 Optimality of PML

Recall from previous lectures (Lecture 9) that if an estimator has a small bounded difference

constant we can use McDiarmid’s inequality to drive the error probability down faster than the

median trick. Specifically, we saw that learning a discrete distribution can be done in © (E%) samples
1

with error probability e*. Similarly, to drive drown the error probability of PML, [1] modify



existing sample-optimal estimators so that the bounded difference of the modified estimators is
small. We state this in the form of the following lemma proved in [1].

Lemma 5. For a fized constant o« > 0, there exist PML based entropy estimators with optimal
sample complezity and bounded difference constant c% where ¢ is a positive constant.

The above lemma holds for other symmetric properties like support size, support coverage and
distance to uniformity. Given a lower bound on the bias of the PML estimator, one can show that
the PML estimator estimates entropy with 4e accuracy and error probability e Vn,

An interesting fact shown in [1] is that the above result holds even for approximate ML distri-
butions. The approximation can be as weak as e~ V7.
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