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1 Introduction

So far, we’ve looked a lot at sample complexity and a little bit at time complexity. In these two
lectures, we consider communication complexity and its trade offs with sample complexity.

2 Distributed Hide and Seek Problem

We first define the distributed model we consider in this lecture. Then we define the learning
problem we will study in this distributed setting.

2.1 Distributed Model

There are many possible models to study the tradeoffs of sample complexity and communication
complexity for distributed learning. We consider the following model from Shamir [S14].1

Definition 1 ((b, n,m) Protocol). Let M1,M2, . . . ,Mm be machines with communication to a
central server, which can be thought of as a public blackboard. Each machine Mt has access to n
i.i.d. data points from some distribution. In some order, each machine Mt computes a function ft
from the data it has seen plus the results of the previous machines, where each function’s output
must not exceed b bits. Finally, the central server computes a final output using the individual
machines outputs. This protocol is summarized as follows:
• For t = 1, . . . ,m,

– Mt samples n i.i.d. data points, denoted as Xt.
– Mt sends W t = ft(W 1, . . . ,W t−1, Xt) to the server, not exceeding b bits.

• The server outputs W = f(W 1, . . . ,W t).

For a particular problem P, we want to figure out the sample complexity of a (b, n,m) protocol
that solves P. Essentially, we want to understand the tradeoff between each machine’s communication
capacity, b, and the total samples needed, mn. If b is unbounded and there is just 1 machine, this
corresponds exactly to the standard notion of sample complexity.

For simplicity, we consider the case where n = 1, where the number of samples equals the
number of machines. This case is at least as hard as the problem for general n when fixing the total
number of samples mn. This is because a single machine could simulate n machines solving the
n = 1 problem for fixed b. We will see how the number of machines, m, depends on the maximum
communication, b, and other parameters for this problem.

1In fact, all results in these two lectures are adopted from [S14].



2.2 Hide and Seek Problem

At a high level, the Hide and Seek problem is to determine which coordinate is biased in a simple
multi-dimensional distribution. The parameters of interest are the dimension d and the bias ρ. We
define this formally as follows.

Definition 2 (Hide and Seek Problem). For j = 1, . . . , d, let Prj(·) be the distribution on {±1}d
such that
• Prj(x1, . . . , xd) = Prj(x1) · . . . · Prj(xd), and

• Prj(xi = 1) =
{

1/2 if i 6= j

1/2 + ρ if i = j
.

Suppose j is unknown and chosen uniformly at random from {1, . . . , d}. Output j given sample
access to Prj .

We’ll first analyze the sample complexity for Hide and Seek when there is no constraint on b.
Then we’ll give upper and lower bounds on the sample complexity when b is constrained.

3 No Memory Constraint

We first consider the standard notion of sample complexity for the Hide and Seek problem. In other
words, how many samples are needed when there is no constraint on b? We claim this if there is no
constraint on b, that is equivalent to a (b, 1,m) protocol since each machine can process its data
point and send its entire memory to the central server.

If b ≥ Ω(d log 1
ρ), we can store and transmit an empirical estimate for each coordinate with

poly(ρ) additive accuracy. To see why the log 1
ρ factor is necessary, consider a case where we need

accuracy in each coordinate within 0.1. Then, we would need to store at least log 1
0.1 = log 10 bits

per coordinate. The empirical estimate needs to be accurate in each coordinate within poly(ρ), so
we have to use Ω(log 1

ρ) bits per coordinate.
We show that if each machine updates an empirical estimate of all samples seen so far, m =

O( log d
ρ2 ) machines suffice. We then show that this is tight with a lower bound for the standard

sample complexity of the Hide and Seek Problem.

3.1 Upper Bound

Theorem 1 (Unconstrained Upper Bound). For any b ≥ Ω(d log 1
ρ), the protocol where each machine

updates an empirical estimate of all samples seen so far is a (b, 1,m) protocol for the Hide and Seek
problem for m = O( log d

ρ2 ).

Proof. We show that by estimating the empirical bias of each coordinate with O( log d
ρ2 ) samples, we

can figure out j with at least 9/10 probability. Let Zi be the bias at coordinate i. It is easy to see
that

E[Zi] =
{

0 if i 6= j

2ρ if i = j

Therefore we need a sufficient number of samples such that E[Zi] < ρ for all i 6= j and E[Zj ] > ρ
with at least 9/10 probability.
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Since each coordinate is a Bernoulli distribution, we can estimate each coordinate within an
additive factor of ρ after O(1/ρ2) samples with 9/10 probability. However, in order for every
coordinate to simultaneously be right with 9/10 probability, we need the error probability of each
individual coordinate to be at most O(1/d). We can do this by repeating O(log d) times and taking
the majority answer. Thus, O( log d

ρ2 ) samples suffice to determine j with at least 9/10 probability.

3.2 Lower Bound

Theorem 2 (Unconstrained Lower Bound). The Hide and Seek problem has sample complexity
Ω( log d

ρ2 ).

Proof. We’ll start by arguing why the log d factor is necessary. Suppose ρ = 1/2. Then we can rule
out any coordinate that ever equals −1. For each data point, every non-biased coordinate will be
−1 with probability 1/2, so after O(log d) rounds, we will rule all but the biased coordinate.

We next use an information theoretic argument to show the lower bound for general ρ. First
we claim for a data point x, the coordinate xj gives O(ρ2) information about j. This is because
distinguishing Bern(1/2) from Bern(1/2 + ρ), which is 1 bit of information, requires Θ(1/ρ2)
samples, so each sample must gives at most O(ρ2) bits of information. Furthermore, no other
coordinate gives any information about j. Then because j was chosen uniformly from [d], we need
to get at least Ω(log d) bits of information to determine j with at least 9/10 probability. Thus, the
sample complexity is at least Ω( log d

ρ2 ).

This theorem gives the following corollary in the language of (b, n,m) protocols.

Corollary 1. Any (b, n,m) protocol for the Hide and Seek problem requires mn ≥ Ω( log d
ρ2 ).

4 Memory Constraint

We just saw if b is sufficiently large, then the sample complexity of any (b, 1,m) protocol for Hide
and Seek is Θ( log d

ρ2 ). If b isn’t sufficiently large, we will possibly need more machines to solve the
problem.

In this section, we give an upper bound on the number of machines for a (b, 1,m) protocol that
requires no knowledge of past messages. We then give a lower bound even assuming machines can
use past messages. Furthermore, these bounds are tight up to log factors. The bounds also show an
exponential in d increase in sample complexity relative to the non-memory constrained setting for
small enough values of b.

4.1 Upper Bound

Theorem 3 (Constrained Upper Bound). For any b ≤ O(d log 1
ρ), there exists a (b, 1,m) protocol

for the Hide and Seek problem for m = O( d
b′ρ2 log b′ log d

b′ ) where b′ = Θ( b
log(1/ρ)).

Proof. Let b′ = Θ( b
log(1/ρ)) be the maximum number of coordinates you accurately store with

an empirical estimator. In the protocol, each machine will store an empirical estimate for b′
coordinates. By Theorem 1, it will take O( log b′

ρ2 ) machines, each using one sample, for the central
server to determine if j is in those b′ coordinates with at least 9/10 probability. We can repeat
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this for all d
b′ different chunks of size b′. Thus, with O(d log b′

b′ρ2 ) samples we can make sure the
central server can determine with at least 9/10 probability whether or not each chunk contains j.
Lastly, we repeat this O(log d

b′ ) times to amplify the failure probability for each of the d
b′ chunks

to O( 1
d/b′ ). Taking a union bound, this implies that all chunks are correct with at least 9/10

probability. Thus the number of machines required for this approach is m = O( d
b′ρ2 log b′ log d

b′ ) =
O(d log(1/ρ)

bρ2 log b
log(1/ρ) log d log(1/ρ)

b ).

4.2 Lower Bound

Theorem 4 (Constrained Lower bound). Any (b, 1,m) protocol for the Hide and Seek problem
requires m ≥ Ω( d

bρ2 ).

We note that this lower bound applies even with the knowledge of past messages, which our
upper bound from the previous section did not make use of. However, the upper bound is still tight
up to log factors.

At a high level, we will prove the theorem by comparing upper and lower bounds on the sum of
KL Divergence over all biased distributions Prj with an unbiased distribution, which we will call
Pr0. These bounds are information theoretic and will imply the lower bound on m as stated in the
theorem.

We first define some useful notation. Then we prove the lower bound on the sum of KL
Divergences in Claim 1. Next the upper bound is derived using Claims 2, 3, and 4. Finally, we
prove the theorem by comparing the bounds of Claims 1 and 4. In Appendix A, we prove some
auxiliary lemmas needed in the following proof in order to clean up the following analysis.

Notation

W 1, . . . ,Wm are the messages generated by the machines in the (b, 1,m) protocol from definition 1.
The task is to estimate the biased index j for the Hide and Seek problem as introduced in definition
2.

Recall Pr1, . . . , P rd are distributions over {±1}d, where Prj is unbiased everywhere except for
the jth coordinate with bias ρ. We also define a new distribution Pr0 as

Pr0(x1, . . . , xd) = 1
2d ,

so each coordinate is unbiased and independently distributed over {±1}.
For simplicity, we will use the notation Ŵ t to denote (W 1, . . . ,W t). We will exploit notation

a bit to think of Prj as a function also on Ŵ t for t ∈ {1, . . . ,m}. For i = 1, . . . , d, Pri(Ŵ t) is a
probability distribution corresponding to when the bias is in position i for data points (X1, . . . , Xt).
Similarly, Pr0 is a probability distribution over Ŵ t when there is no bias on (X1, . . . , Xt).

Lower Bound on Sum of KL Divergences

Claim 1. Let Pri be the biased distribution over {±1}d defined as above and Q be any distribution
over {±1}d. Suppose after seeing W 1, . . . ,Wm you are able solve the Hide and Seek problem with
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at least 9/10 probability, then there exists a constant c such that

d∑
i=1

DKL(Pri(W 1, . . . ,Wm), Q(W 1, . . . ,Wm)) ≥ cd.

Proof. Assuming you can solve the Hide and Seek problem, this means after seeing W 1, . . . ,Wm

you can figure out j among [d] with at least 9/10 probability. In particular, this implies you can
also distinguish Pri from Pri′ for i 6= i′ with probability at least 9/10.

This implies that2

Pr(error) ≥ 1
2 −

1
2dTV(Pri(W 1, . . . ,Wm), P ri′(W 1, . . . ,Wm))

Thus,
dTV(Pri(W 1, . . . ,Wm), P ri′(W 1, . . . ,Wm)) ≥ 8/10.

Using triangle inequality on TV-distance, we get that

dTV(Pri, Q) + dTV(Pri′ , Q) ≥ 8/10,

so for at least one of î equal to i or i′, î must satisfy

dTV(Prî, Q) ≥ 4/10.

We relate this to the KL Divergence using Pinsker’s inequality and conclude

DKL(Prî, Q) ≥ 2d2
TV(Prî, Q) > 3/10.

If we do the above analysis for d/2 disjoint pairs of indices in {1, . . . , d}, we conclude that for at
least d/2 indices i it must be the case that DKL(Pri, Q) > 4/10. Thus we get that,

d∑
i=1

DKL(Pri(W 1, . . . ,Wm), Q(W 1, . . . ,Wm)) > d/2 · (3/10) ≥ cd

for c = 3/20.

Note that this lower bound for KL Divergence holds for any distribution Q over {±1}d. In
particular, it must hold for Pr0 defined above.

Upper Bound on Sums of KL Divergences

We now give an upper bound on the sum of KL Divergence b/w Pri and Pr0 as stated in claim
4. Note that claim 4 is direct application of lemma 4 on claim 2. For the sake of clarity, We will
directly use claim 2 for now. An elaborate proof is presented in Appendix A.

Claim 2. For Pri and Pr0 as defined before,

DKL(Pri(W t|Ŵ t−1), P r0(W t|Ŵ t−1)) ≤ c′ρ2IXt∼Pr0(W t;Xt
i |Ŵ t−1).

where I(X,Y |Z) denotes the mutual information between random variables X|Z and Y |Z.
2Recall that we proved this in Assignment 1, Problem 2(b).
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Claim 3.
d∑
i=1

DKL(Pri(W t|Ŵ t−1), P r0(W t|Ŵ t−1)) ≤ c′ρ2b.

Proof. Xt
1, . . . , X

t
d are independent random variables, so Xt

1|Ŵ t−1, . . . , Xt
d|Ŵ t−1 are also indepen-

dent. Then by Lemma 4,
d∑
i=1

I(W t;Xt
i |Ŵ t−1) ≤ b.

For Pri and Pr0 as defined before, using Claim 2,

d∑
i=1

DKL(Pri(W t|Ŵ t−1), P r0(W t|Ŵ t−1)) ≤
d∑
i=1

c′ρ2I(W t;Xt
i |Ŵ t−1)

≤ c′ρ2
d∑
i=1

I(W t;Xt
i |Ŵ t−1)

≤ c′ρ2b

We’re now ready to give the desired upper bound on the KL Divergence.

Claim 4.
d∑
i=1

DKL(Pri(W 1, . . . ,Wm), P r0(W 1, . . . ,Wm)) ≤ mc′ρ2b

Proof.

d∑
i=1

DKL(Pri(W 1, . . . ,Wm), P r0(W 1, . . . ,Wm))

=
d∑
i=1

m∑
t=1

E
Ŵ t [DKL(Pri(W t|Ŵ t), P r0(W t|Ŵ t))]

(using chain rule for KL Divergence as in Lemma 5)

=
m∑
t=1

E
Ŵ t [

d∑
i=1

DKL(Pri(W t|Ŵ t−1), P r0(W t|Ŵ t−1))]

≤ m max
W 1,...,W t

[
d∑
i=1

DKL(Pri(W t|Ŵ t−1), P r0(W t|Ŵ t−1))]

≤ mc′ρ2b (using Claim 3)
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Proof of Constrained Lower Bound

Using Claims 1 and 4 we have,

cd ≤
d∑
j=1

DKL(Prj(W 1, . . . ,Wm), P r0(W 1, . . . ,Wm)) ≤ mc′ρ2b.

Thus,
m ≥ Ω( d

bρ2 ),

which completes the proof.
Thus, we have shown that Ω( d

bρ2 ) samples are required to solve the Hide and Seek problem for
any (b, 1,m) protocol, giving a lower bound matching the upper bound of Theorem 3 up to log
factors.

5 References
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A Appendix

In the following, we state and prove various lemmas used in this lecture. Lastly, we give the proof
of Claim 2.

Lemma 1 (Chain Rule for Mutual Information). Let X and Y be two random variables from
marginal distributions P(X), P(Y) and joint distribution P(X, Y). Also, Let I(X;Y) denote the
mutual information between X and Y. Then,

I(X;Y ) = DKL (P (X,Y ), P (X)P (Y )) = Ex[DKL(P (Y |X), P (Y ))].

Lemma 2 (Lemma 4, S14). Let P and Q be distributions on a discrete set, such that max
x

p(x)
q(x) ≤ c.

Then,
DKL(P,Q) ≤ Dχ2(P,Q) ≤ 2cDKL(P,Q)

Lemma 3. Let Prj, Pr0, W t, Ŵ t−1, and Xt be defined as in Section 3.2. Then,

Prj(W t|Ŵ t−1) =
∑
a=±1

Prj(W t|Xt
j = a, Ŵ t−1)Prj(Xt

j = a|Ŵ t−1)

=
∑
a=±1

Pr0(W t|Xt
j = a, Ŵ t−1)Prj(Xt

j = a|Ŵ t−1)

where the last line follows because Prj and Pr0 are identical after fixing the jth coordinate.

Lemma 4. : Given z1, . . . , zd independent random variables and W ∈ [2b] then

d∑
i=1

I(W ; zi) ≤ b.

Proof. The claim has a very intuitive formulation that a sample can not give more information
about W than the total information contained in W (which is upper bounded by b as W is a b-bit
string).

d∑
i=1

I(W ; zi) =
d∑
i=1

H(zi)−H(zi|W ) (1)

= H(zd1)−
d∑
i=1

H(zi|W ) (2)

≤ H(zd1)−
d∑
i=1

H(zi|W, z1, . . . , zi−1) (3)

= H(zd1)−H(zd1 |W ) (4)
= I(W, zd1) (5)
= H(W )−H(W |zd1) (6)
≤ b (7)
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Note that lines (1), (5), and (6) come from the definition of mutual information. Line (2) crucially
follows from independence. Without independence, the statement isn’t true. Line (3) follows since
entropy can only decrease when conditioning. Line (4) is the chain rule for conditional entropy.
Lastly, line (7) follows since H(W ) = b and entropy is always positive.

Lemma 5 (Chain Rule for KL Divergence). For random variables X and Y ,

DKL(P (X,Y ), Q(X,Y )) = DKL(P (X), Q(X)) + Ex[DKL(P (Y |X), Q(Y |X))]

Proof.

∑
x,y

p(x, y) log p(x, y)
q(x, y) =

∑
x,y

p(x)p(y|x)[log p(x)
q(x) + log p(y|x)

q(y|x) ]

=
∑
x

p(x) log p(x)
q(x) +

∑
x

p(x)
∑
y

p(y|x) log p(y|x)
q(y|x)

A.1 Proof of Claim 2

Proof. We will prove this by expanding LHS and RHS and equating them.
Expanding the RHS, we get

Ixt∼Pr0(W t;Xt
j |Ŵ t−1) = EXt

[
DKL(Pr0(W t|Xt

j , Ŵ
t−1), P r0(W t|Ŵ t−1))

]
=
∑
a=±1

Pr0(Xt
j = a|Ŵ t−1)DKL(Pr0(W t|Xt

j , Ŵ
t−1), P r0(W t|Ŵ t−1))

= 1
2
∑
a=±1

DKL(Pr0(W t|Xt
j , Ŵ

t−1), P r0(W t|Ŵ t−1)).

Expanding the LHS, we get3

DKL(Prj(W t|Ŵ t−1), P r0(W t|Ŵ t−1))
≤ Dχ2(Prj(W t|Ŵ t−1), P r0(W t|Ŵ t−1))

3There might be a better way to manipulate these terms, but we will be sticking to the proof in [S14].
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For simplicity, we define W = W t|Ŵ t−1 for the following set of inequalities continuing from before.

= Dχ2(Prj(W ), P r0(W ))

=
∑
w

(Prj(W )− Pr0(W ))2

Pr0(W )

=
∑
w

(
∑
a=±1(Pr0(W |Xj = a)(1/2 + aρ)− Pr0(W |Xj = a))(1/2))2

Pr0(W ) (by Lemma 3)

= ρ2∑
w

(
∑
a=±1 aPr0(W |Xj = a))2

Pr0(W )

= ρ2∑
w

(
∑
a=±1((Pr0(W |Xj = a)− Pr0(W ))a))2

Pr0(W )

≤ ρ2∑
w

∑
a=±1 2(Pr0(W |Xj = a)− Pr0(W ))2

Pr0(W )
(This follows from the inequality (a+ b)2 ≤ 2(a2 + b2))

= 2ρ2 ∑
a=±1

∑
w

(Pr0(W |Xj = a)− Pr0(W ))2

Pr0(W )

= 2ρ2 ∑
a=±1

Dχ2(Pr0(W |Xj = a), P r0(W ))

≤ 8ρ2 ∑
a=±1

DKL(Pr0(W |Xj = a), P r0(W )) (by Lemma 2)

= 16ρ2
(

1
2
∑
a=±1

DKL(Pr0(W |Xj = a), P r0(W ))
)

= 16ρ2IXt∼Pr0(W ;Xj)

The inequality using Lemma 2 follows under the bounds Pr0(W |Xj=a)
Pr0(W ) ≤ 2 and Pr0(W ) =∑

a=±1 Pr0(W |Xj = a)(1/2). The last line equates the derived results to the RHS computed for
mutual information.

Plugging back in W = W t|Ŵ t−1, we finish the proof:

DKL(Prj(W t|Ŵ t−1), P r0(W t|Ŵ t−1)) ≤ c′ρ2IXt∼Pr0(W t;Xt
j |Ŵ t−1)
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